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Abstract. In this paper, we first consider the existence and multiplicity
of positive solutions to a Minkowski-curvature problem when nonlin-
earity is sublinear. We then study the nonexistence and multiplicity
of positive solutions for the corresponding one-parameter problem in
which its nonlinear function has m zeros in the interval (0, 1

2
) by prov-

ing that the problem has no and m + 1 positive solutions for suitably
small and large parameter, respectively. Furthermore, we investigate the
Calabi–Bernstein type asymptotic property of each positive solution of
the one-parameter problem as the parameter goes to infinity, showing
that the ith solution converges to a function whose shape is isosceles
trapezoid when 1 ≤ i ≤ m and isosceles triangle when i = m + 1.
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1. Introduction and main results

We first consider the existence of one or two positive solutions of the following
one-dimensional Minkowski-curvature problem

⎧
⎨

⎩

−
(
φ(u′(t))

)′
= r(t)f(u(t)), t ∈ (0, 1),

u(0) = 0 = u(1),
(P )

where φ(y) = y√
1−y2

, y ∈ (−1, 1), weight function r satisfies r ≥ 0, r �≡ 0 on

any compact subinterval of (0, 1) and r ∈ Aq a class of functions given as

Aq �
{

r ∈ L1
loc((0, 1), [0,∞)) :

∫ 1

0

τ q(1 − τ)qr(τ)dτ < ∞, q ≥ 1
}

.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-022-00999-w&domain=pdf


82 Page 2 of 25 R. Yang JFPTA

As an example, consider r(t) = t−
5
2 , then r /∈ L1(0, 1) but r ∈ A2 (q = 2 in

Aq). f : [0, α) → [0,∞) with α > 1
2 is a continuous function and f �≡ 0 on

any compact subinterval of (0, 1
2 ).

We say u a solution of problem (P ) if u ∈ C[0, 1] ∩ C1(0, 1), |u′(t)| < 1
for t ∈ (0, 1), and φ(u′) is absolutely continuous on any compact subinterval
of (0, 1), and u satisfies the equation and the boundary conditions in problem
(P ). Moreover, we say u is a positive solution of problem (P ) if solution u
satisfies u(t) ≥ 0 and u(t) �≡ 0 on (0, 1).

This type of problem is related to mean curvature operator in flat
Minkowski space endowed with the Lorentzian metric, which has a wide range
of applications in physics and geometry. Physically, it naturally appears in
Dirichlet p-branes of string theory (see [22]) and nonlinear electrodynam-
ics model of the Born–Infeld theory, see for instance [9–12]. Geometrically,
it plays a significant role in determining existence and regularity proper-
ties of maximal and constant mean curvature hypersurfaces (see [4,21,35])
and cosmological model, see [5,33] and references therein. In recent decades,
many researchers have studied the nonexistence, existence and multiplicity
of solutions for boundary value problems of nonlinear Minkowski-curvature
equations (see [6–8,15,16,19,20,30,34,40]).

We detail some existence and multiplicity results of solutions for Minkowski-
curvature problems with singular nonlinear terms. Specially, Coelho–Corsato–
Obersnel–Omari [15] studied the existence and multiplicity of positive solu-
tions for the 0-Dirichlet boundary problem

⎧
⎨

⎩

−
(
φ(u′(t))

)′
= f(t, u(t)), t ∈ (0, T ),

u(0) = 0 = u(T ),
(S)

where f : [0, T ] × R → R satisfies the L1-Carathéodory conditions. Under
some more assumptions on f , mainly by variational and topological methods,
they proved the existence of either one, or two, or three, or infinitely many
positive solutions.

In a subsequent paper, Coelho–Corsato–Rivetti [16] studied the exis-
tence and multiplicity of positive radial solutions for the null Dirichlet prob-
lem of the Minkowski-curvature equation

{
−div

(
φN (∇v(x))

)
= f(|x|, v(x)), in BR,

v = 0, on ∂BR,
(G)

where φN (y) = y√
1−|y|2 , y ∈ R

N , N ≥ 2, R > 0 and BR is a ball in R
N ,

f : [0, R] × R → R satisfies the L1-Carathéodory conditions. By variational
methods, they proved the existence of either one, two or three positive so-
lutions according to the behaviour of f(r, s) near s=0. A model example is
f(r, s) = λa(r)sp + μb(r)sq, 0 < p < 1 < q. Their work extended partially
the results for one-dimensional problem (S) obtained in [15] to the radial
problem (G).
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Recently, Yang–Lee–Sim [38,40] studied the existence of positive or
nodal radial solutions for the following problem defined on an exterior do-
main

⎧
⎨

⎩

−div
(
φN (∇v(x))

)
= λK(|x|)f(v(x)), in Ω,

v|∂Ω = 0, lim
|x|→∞

v(x) = 0,
(Eλ)

where Ω = {x ∈ R
N : |x| > R} and N ≥ 3, f : R → R is a continuous and

odd function satisfying f(s)s > 0 for s �= 0, and a function K satisfies

(HK) K ∈ L1([R,∞), [0,∞)) is not identically zero on any subinterval in
(R,∞) and satisfies

∫ ∞
R

rK(r)dr < ∞.

After introducing variables |x| = r, v(x) = u(r) and t = ( r
R )−(N−2), problem

(Eλ) is transformed into one-dimensional problem of the form
⎧
⎨

⎩

−
(
β(t)φ

(
1

β(t)u
′(t)

))′
= λh(t)f

(
u(t)

)
, t ∈ (0, 1),

u(0) = 0 = u(1),
(Dλ)

where functions β and h are given by

β(t) =
R

N − 2
t−

N−1
N−2 , h(t) = β2(t)K

(
Rt−

1
N−2

)
.

We note that weight function h is singular at t = 0 and if K in (Eλ) satisfies
(HK), then corresponding h in (Dλ) satisfies h ∈ L1

loc((0, 1), [0,∞)) with
∫ 1

0
τh(τ)dτ < ∞. Under assumptions 0 < f1

0 < ∞ and f1
∞ = 0, where

f1
0 � lims→0

f(s)
s and f1

∞ � lim|s|→∞
f(s)

s , they proved that for each k ∈ N,
there exists λ∗ ∈ (0, λk(h)

f0
] such that problem (Dλ) has no (k − 1)-nodal

solution for all λ ∈ (0, λ∗) and at least two (k − 1)-nodal solutions for all
λ ∈ (λk(h)

f0
,∞), where λk(h) is the kth eigenvalue of corresponding second

order linearized problem and for k = 1, the 0-nodal solution is a positive
solution or a negative solution.

Very recently, Bartolo–Caponio–Pomponio [3] considered the existence
of a spacelike solution of the exterior Dirichlet problem

⎧
⎪⎪⎨

⎪⎪⎩

div
(
φN (∇u(x))

)
= nH(x, u), in Ωc,

u = ϕ, on ∂Ω,

lim
|x|→+∞

u(x) = 0,
(H)

where Ωc = R
N \ Ω̄ is an exterior domain in R

N , N ≥ 3, ϕ : ∂Ω → R and
H : Ωc × R → R is a Carathéodory function satisfying

(Hh) there exists h ∈ Ls(Ωc) ∩ L∞
loc(Ωc), s ∈ [1, 2N

N+2 ], such that

n|H(x, t)| ≤ h(x) for a.e. x ∈ Ωc and all t ∈ R.

They gave a necessary and sufficient condition for the existence of a spacelike
solution of problem (H).
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In the study of [38,40], a novel class of weight functions is generally
defined as

A1 � {r ∈ L1
loc((0, 1), [0,∞)) :

∫ 1

0

τ(1 − τ)r(τ)dτ < ∞},

admitting the singularity of weight function at t = 0 or t = 1. In fact, we
can easily check that L1((0, 1), [0,∞)) ⊂ A1 ⊂ Aq for q > 1. The singularity
in nonlinear term may affect the compactness of solution space for such a
problem. In paper [41], authors classified the solutions by introducing ”non
π
4 -tangential solution” defined as u ∈ C1[0, 1], |u′(0)| < 1 and |u′(1)| < 1 and
”π

4 -tangential solution” defined as u ∈ C1[0, 1], |u′(0)| = 1 or |u′(1)| = 1.
When weight function in nonlinear term belongs to L1-class, all solutions of
problem (P ) are non π

4 -tangential, while solutions of problem (P ) may be π
4 -

tangential if weight function is of Aq-class and meanwhile, solution operator
may loss of compactness. To guarantee compactness of solution operator in
this paper, the asymptotic behaviour of f(s) near s = 0 is linear or sublinear,
which will be specified later. It is also interesting to note that studies of the
existence and multiplicity of positive solutions for problem (P ), specially with
nonlinearity f satisfying 0 ≤ f0 < ∞ and weight function r of Aq-class are
rare before this paper as far as the authors know. In the present paper, we
will deal with the existence and multiplicity of positive solutions of problem
(P ) using the Krasnoselskii’s theorem of cone expansion and compression, a
different approach to the one in [3,15,16,38,40].

We now give a relation between weight function r and nonlinear function
f .
(F ) there exist δ ∈ (0, 1

2 ) and ρ ∈ (0, δMδ) such that

f(s) ≥ φ

(
s

δMδ

)

for s ∈ [δρ, ρ],

where Mδ = min
{∫ 1

2
δ

φ−1
(∫ 1

2
s

r(τ)dτ
)

ds,
∫ 1−δ

1
2

φ−1
(∫ s

1
2

r(τ)dτ
)

ds
}

.

Remark 1.1. Condition (F ) is first introduced in [39] and there is a large
number of functions satisfying condition (F ), one can refer to [39].

Denote f0 � lims→0+
f(s)
sq , where q is from Aq. The following proposition

is an existence result of one positive solution to problem (P ).

Proposition 1.1. Assume r ∈ Aq, (F ) and 0 ≤ f0 < ∞. Then problem (P )
has at least one positive solution u satisfying ρ < ‖u‖∞ < 1

2 .

Our existence result of two positive solutions to problem (P ) is the
following.

Theorem 1.2. Assume r ∈ Aq, (F ) and f0 = 0. Then problem (P ) has at least
two positive solutions u1 and u2 such that 0 < ‖u1‖∞ < ρ < ‖u2‖∞ < 1

2 .

Next, we consider the corresponding one-parameter problem
⎧
⎨

⎩

−
(
φ(u′(t))

)′
= λr(t)g(u(t)), t ∈ (0, 1),

u(0) = 0 = u(1),
(Pλ)
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where λ > 0, weighted function r satisfies the same conditions as the ones
in problem (P ), g : [0, α) → [0,∞) is a continuous function with α > 1

2

and g �≡ 0 on (0, 1
2 ). A multiplicity result of the one-parameter problem is

the following, which shows that the number of solutions of problem (Pλ) is
related to the number of interior zeros of function g on (0, 1

2 ).

Theorem 1.3. Assume r ∈ Aq and 0 ≤ g0 < ∞. Also assume that there
exist numbers 0(= a0) < a1 < a2 < · · · < am < 1

2 (= am+1) such that
( 1
2 + ai)ai > 2ai−1 for all i ∈ {1, 2, · · · ,m + 1}, ∑m

i=0 g(ai) = 0 and g > 0
on the set I � (0, 1

2 ) \ {ai}m
i=1. Then there exist 0 < λ∗ ≤ λ∗ < ∞ such

that problem (Pλ) has no positive solution for all λ < λ∗ and at least m + 1
distinct positive solutions {uλ,i}m+1

i=1 for all λ ≥ λ∗, which satisfy

(i) uλ,i(t) > 0 for t ∈ (0, 1);
(ii) 0 < b1 ≤ ‖uλ,1‖∞ ≤ a1 < b2 ≤ ‖uλ,2‖∞ ≤ a2 < · · · ≤ am−1 < bm ≤

‖uλ,m‖∞ ≤ am < bm+1 ≤ ‖uλ,m+1‖∞ < 1
2 , where b1, b2, · · · , bm+1 are

constants.

Remark 1.2. (i) The condition (1
2 + ai)ai > 2ai−1 is crucial to guaran-

tee a suitable interval length between ai−1 and ai. If such condition is
a2

i > 1
4ai−1, by a similar fashion, the result is also valid. Previous work

on nonlinear problems with nonlinear function which has many zeros
has been done in [25,36]. In [25], the author proved 2m − 1 positive so-
lutions result for a nonlinear elliptic eigenvalue problem, in which non-
linear function is of C1-class and may be negative in some subintervals.
Paper [36] is concerned with those quasilinear equations where opera-
tors satisfy a homeomorphism condition. Condition

∑m
i=0 g(ai) = 0 is

equivalent to g(a0) = g(a1) = · · · = g(am) = 0.
(ii) The number m + 1 of positive solutions is sharp in Theorem 1.3. Spe-

cially, situation 1: when m = 0, 0 < g0 < ∞ and g(s)
s is strictly decreas-

ing on (0, 1
2 ), problem (Pλ) has exact one positive solution for suitably

large λ. For readers’ convenience, we give a brief explanation here. In-
deed, by a similar argument of Theorem 2.4 in [37], problem (Pλ) has
at most one positive solution for any fixed λ > 0. And together with
the result of Corollary 1.1 in [29], we conclude that there exists λ∗ > 0
such that problem (Pλ) has a unique positive solution for all λ ≥ λ∗;
situation 2: when m = 0 and g0 = 0, similar to Corollary 1.2 in [29],
problem (Pλ) has at least two positive solutions for suitably large λ.

The existence, uniqueness and regularity for spacelike hypersurface with
zero or constant mean curvature are classical and important problems in gen-
eral relativity (see [1,2,13,14,18,35] and references therein). There are some
well-known results in this perspective which are so called Calabi–Bernstein
problem in Minkowski spacetime. In 1968, Calabi [13] studied the maximal
spacelike hypersurface equation

(1 − |∇u|2)
N∑

i=1

∂2u

∂x2
i

+
N∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
= 0, (1.1)
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and found a remarkable result that Eq. (1.1) has the Bernstein-type property
by proving that (1.1) has only linear entire solutions in dimension N ≤ 4.
In 1976, Cheng–Yau [18] extended the result to all N . In [17,27], authors
studied Calabi–Bernstein-type problem for the maximal surface equation in
a Robertson–Walker spacetime. Note that the above references [13,17,18,27]
considered the equations with zero mean curvature. In a recent paper [29], au-
thors studied bifurcation and Calabi–Bernstein type asymptotic property of
one-sign solutions of problem (Pλ) as parameter λ goes to ∞ when nonlinear
function g has no interior zero on the interval (0, 1

2 ) and proved that one-sign
solutions on two bifurcation branches converge to two linear functions. Our
next aim is to investigate Calabi–Bernstein type asymptotic property of mul-
tiplicity solutions of problem (Pλ) as λ goes to ∞ when nonlinearity g has m
zeros on the interval (0, 1

2 ).
The Calabi–Bernstein type asymptotic property result of multiplicity

solutions for problem (Pλ) is given as follows.

Theorem 1.4. Under the assumptions in Theorem 1.3, the solutions {uλ,i}m+1
i=1

of problem (Pλ), obtained from Theorem 1.3, satisfy
(i) uλ,i(t) is continuous with respect to λ (≥ λ∗), that is, there exist a

sequence {(λn, uλn,i)} and (λ̃, uλ̃,i) such that ‖uλn,i − uλ̃,i‖∞ → 0 as
λ → λ̃, here notation (λ, uλ) means a solution pair that uλ is a solution
of problem (Pλ) at λ;

(ii) limλ→∞ u′
λ,i(t) = 1 uniformly on [0, ai−ε], for sufficiently small ε > 0,

i ∈ {1, 2, · · · ,m + 1};
(iii) limλ→∞ u′

λ,i(t) = −1 uniformly on [1 − ai + ε, 1], for sufficiently small
ε > 0, i ∈ {1, 2, · · · ,m + 1};

(iv) limλ→∞ u′
λ,i(t) = 0 uniformly on [ai + ε, 1 − ai − ε], for sufficiently

small ε > 0, i ∈ {1, 2, · · · ,m};
(v) limλ→∞ ‖uλ,i‖∞ = ai, i ∈ {1, 2, · · · ,m + 1}.

Note that Theorem 1.4 (i) shows that the solution pairs (λ, uλ,i), i =
1, 2, · · · ,m + 1, of problem (Pλ) may form at least m + 1 connected curves,
name Ci(λ, uλ,i), going through (λ, uλ,i), which can extend to infinity in λ-
direction. The results (ii)−(v) in Theorem 1.4 manifests that solution uλ,i(t)
(i ∈ {1, · · · ,m+1}) of problem (Pλ) converges to the following function as λ
goes to ∞, whose shape is isosceles trapezoid when 1 ≤ i ≤ m and isosceles
triangle when i = m + 1,

ui(t) =

⎧
⎪⎨

⎪⎩

t, t ∈ [0, ai),
ai, t ∈ [ai, 1 − ai],
1 − t, t ∈ (1 − ai, 1].

It is worth mentioning that in a recent paper [26], Hong-Yuan studied
the existence and uniqueness of solution to the exterior Dirichlet problem of
the Minkowski spacetime and proved asymptotic properties of the exterior
solution at infinity, which shows that the linear growth rate of the exterior
solution at infinity is uniformly less that one. Compared with the asymptotic
results of Hong-Yuan, the asymptotic property in Theorem 1.4 is concerned
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with stable state of solution with respect to a parameter near infinity in a
bounded domain.

The rest of this paper is organized as follows. In Sect. 2, we prove
Proposition 1.1 and Theorem 1.2. In Sect. 3, we prove Theorems 1.3–1.4.

2. Multiplicity result for problem (P )

In this section, we prove Proposition 1.1 and Theorem 1.2 which deal with the
existence and multiplicity of positive solutions for problem (P ), respectively.

Let E = C[0, 1] be the Banach space with supremum norm ‖ · ‖∞ and
denote K = {u ∈ E : u(0) = u(1) = 0 and u is concave on (0, 1)}. Then K
is a cone in E.

We will mainly use the Krasnoselskii’s theorem of cone expansion and
compression to prove the existence and multiplicity results in this section.

Lemma 2.1. ([23]) Let E be a Banach space and let K be a cone in E. Assume
that Ω1 and Ω2 are bounded open subsets of E such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2,
and let T : K ∩ (Ω2 \ Ω1) → K be a completely continuous operator such that
either

(i) ‖Tx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω2, or
(ii) ‖Tx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \ Ω1).

Remark 2.1. Assume r ∈ Aq and 0 ≤ f0 < ∞, then r(·)f(u(·)) ∈ L1(0, 1)
and every solution u of problem (P ) is of C1[0, 1] and ‖u′‖∞ < 1 implying
‖u‖∞ < 1

2 , refer to Theorem 2.1 in [41].

For u ∈ K and fixed σ ∈ (0, 1) in an arbitrary manner, we define an
integral operator T : K → E as

(Tu)(t) =

{∫ t

0
φ−1

(
α +

∫ σ

s
r(τ)f(u(τ))dτ

)
ds, t ∈ (0, σ],

∫ 1

t
φ−1

(−α +
∫ s

σ
r(τ)f(u(τ))dτ

)
ds, t ∈ [σ, 1),

(2.1)

where α satisfies
∫ σ

0

φ−1

(

α +

∫ σ

s

r(τ)f(u(τ))dτ

)

ds =

∫ 1

σ

φ−1

(

−α +

∫ s

σ

r(τ)f(u(τ))dτ

)

ds.

We easily check by a standard argument that T (K) ⊂ K and T is completely
continuous. Moreover, we can check that u is a solution of problem (P ) if
and only if u ∈ K satisfies u = Tu. For u ∈ K, Tu is concave and satisfies
the Dirichlet boundary condition. Thus we may assume that there exists t∗ ∈
(0, 1), a maximal point of Tu, such that ‖Tu‖∞ = (Tu)(t∗) and (Tu)′(t∗) = 0.
Here t∗ need not be unique.

From the fact (Tu)′(t∗) = 0, we obtain

α = −
∫ σ

t∗
r(τ)f(u(τ))dτ.
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Since r ∈ L1(t∗ − δ, t∗ + δ) for any small δ, replacing σ with t∗, we get α = 0
and Tu can be written as

(Tu)(t) =

{∫ t

0
φ−1

(∫ t∗

s
r(τ)f(u(τ))dτ

)
ds, t ∈ (0, t∗],

∫ 1

t
φ−1

(∫ s

t∗ r(τ)f(u(τ))dτ
)
ds, t ∈ [t∗, 1).

(2.2)

This operator is first introduced in [39].

Remark 2.2. (i) If there exist 0 < t1 < t2 < 1 such that u′(t1) = u′(t2) = 0,
then the operator T defined in (2.2) is independent of the choice of
t∗ ∈ [t1, t2]. In fact, by the concavity of u, we see that u′(t) ≡ 0 for
t ∈ [t1, t2] and thus u(t) ≡ constant for t ∈ [t1, t2]. We calculate the first
equation in problem (P ) and get

− u′′(t)
(√

1 − |u′(t)|2
)3 = r(t)f(u(t)), t ∈ [t1, t2].

Thus r(t)f(u(t)) ≡ 0 for t ∈ [t1, t2] implying that
∫ s2

s1
r(τ)f(u(τ))dτ = 0

for any s1, s2 ∈ [t1, t2].
(ii) If we find a nontrivial fixed point u of T in K, then u(t) > 0 for t ∈ (0, 1)

mainly by concavity and double zero property (u(t) = u′(t) = 0) of
solution u of problem (P ) (see Lemma 2.3 in [38]).

We now start to prove Proposition 1.1, an existence result of problem
(P ).

Proof of Proposition 1.1. Define Ωρ = {u ∈ E : ‖u‖∞ < ρ} and consider
u ∈ K ∩ ∂Ωρ. Let δ ∈ (0, 1

2 ) be from condition (F ). Recall Tu defined in
(2.2). If t∗ ∈ [ 12 , 1), then

‖Tu‖∞ = (Tu)(t∗) =
∫ t∗

0

φ−1

(∫ t∗

s

r(τ)f(u(τ))dτ

)

ds

≥
∫ 1

2

δ

φ−1

(∫ 1
2

s

r(τ)f(u(τ))dτ

)

ds.

Since u ∈ K ∩ ∂Ωρ, we see

u(t)
‖u‖∞

≥ t

t∗
> δ, for t ∈ [δ, t∗],

implying u(t) ∈ [δρ, ρ] for t ∈ [δ, t∗]. Applying (F ), we get
∫ 1

2

δ

φ−1

(∫ 1
2

s

r(τ)f(u(τ))dτ

)

ds ≥
∫ 1

2

δ

φ−1

(∫ 1
2

s

r(τ)φ
(

u(τ)
δMδ

)

dτ

)

ds

≥
∫ 1

2

δ

φ−1

(∫ 1
2

s

r(τ)φ
(‖u‖∞

Mδ

)

dτ

)

ds

>

∫ 1
2

δ

φ−1

(∫ 1
2

s

r(τ)dτ

)

ds
‖u‖∞
Mδ

≥ ‖u‖∞,
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where we used the property φ−1(xy) > φ−1(x)φ−1(y) for x, y > 0 in the above
inequality. Thus ‖Tu‖∞ > ‖u‖∞ for u ∈ K ∩ ∂Ωρ. By a similar argument to
the case t∗ ∈ (0, 1

2 ), we also get

(Tu)(t∗) > ‖u‖∞, for u ∈ K ∩ ∂Ωρ.

This implies that ‖Tu‖∞ > ‖u‖∞ for u ∈ K ∩ ∂Ωρ. Denote Ω1/2 = {u ∈ E :
‖u‖∞ < 1

2}. Consider u ∈ K ∩ ∂Ω1/2. From Remark 2.1, we see ‖Tu‖∞ <

‖u‖∞ for any u ∈ K ∩Ω1/2. Therefore, by Lemma 2.1, operator T has a fixed
point in K ∩ (Ω1/2 \Ωρ), which is a positive solution, name ũ, of problem (P )
satisfying ρ ≤ ‖ũ‖∞ ≤ 1

2 . Also noticing that Tu �= u for u ∈ ∂Ωρ ∪ ∂Ω1/2, we
get ρ < ‖ũ‖∞ < 1

2 and the proof is completed. �

We prove Theorem 1.2, an existence result of two positive solutions for
problem (P ) below.

Proof of Theorem 1.2. By following the proof of Theorem 3.1 in [39] with
obvious modifications and combining with the fact Tu �= u for u ∈ ∂Ωρ,
problem (P ) has a positive solution, name u1, such that 0 < ‖u1‖∞ < ρ.
Moreover, from Proposition 1.1, we see that problem (P ) also has one positive
solution u2 (name ũ in Proposition 1.1) such that ρ < ‖u2‖∞ < 1

2 . Therefore,
problem (P ) has at least two positive solutions u1 and u2 satisfying 0 <
‖u1‖∞ < ρ < ‖u2‖∞ < 1

2 . The proof is done. �

3. Multiplicity and asymptotic property for (Pλ)

In this section, we show the nonexistence, multiplicity and Calabi–Bernstein
type asymptotic property of positive solutions to the one-parameter problem
(Pλ) under condition 0 ≤ g0 < ∞. We first show a nonexistence result of
positive solutions for problem (Pλ).

Theorem 3.1. Assume r ∈ Aq. Also assume that there is a positive constant
c0 such that

g(s)
sq

≤ c0, (3.1)

for all s ∈ [0, 1
2 ]. Then problem (Pλ) has no positive solution for all λ ∈ (0, λ0]

with λ0 = 1
c02q−1

∫ 1
0 tq(1−t)qr(t)dt

.

Proof. Let λ > 0 and u be a positive solution of problem (Pλ). Under con-
ditions r ∈ Aq and (3.1), by Theorem 2.1 in [41], we know u ∈ C1[0, 1] and
|u′(t)| < 1 for t ∈ [0, 1].

Together with the boundary conditions, we obtain

|u(t)| =
∣
∣
∣
∣

∫ t

0

u′(τ)dτ

∣
∣
∣
∣ ≤ t‖u′‖∞ ≤ 2t(1 − t)‖u′‖∞, for t ∈ (0,

1
2
],

and

|u(t)| =
∣
∣
∣
∣

∫ 1

t

u′(τ)dτ

∣
∣
∣
∣ ≤ (1 − t)‖u′‖∞ ≤ 2t(1 − t)‖u′‖∞, for t ∈ [

1
2
, 1).
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Thus,

|u(t)| ≤ 2t(1 − t)‖u′‖∞, for t ∈ [0, 1]. (3.2)

To eliminate the integration
∫ 1

0
|u′(τ)|2dτ later, we now bound |u(t)|2 by

∫ 1

0
|u′(τ)|2dτ . Applying the Hölder’s inequality, we obtain

|u(t)| ≤
∫ t

0

|u′(τ)|dτ ≤ t
1
2

(∫ t

0

|u′(τ)|2dτ

) 1
2

, ∀t ∈ [0, 1].

Thus,

(1 − t)|u(t)|2 ≤ t(1 − t)
(∫ t

0

|u′(τ)|2dτ

)

, ∀t ∈ [0, 1]. (3.3)

Similarly, we also obtain

t|u(t)|2 ≤ t(1 − t)
(∫ 1

t

|u′(τ)|2dτ

)

, ∀t ∈ [0, 1]. (3.4)

Adding (3.3) and (3.4), we get

|u(t)|2 ≤ t(1 − t)
(∫ 1

0

|u′(τ)|2dτ

)

, ∀t ∈ [0, 1]. (3.5)

Multiplying the first equation in problem (Pλ) by u and then integrating it
over (0, 1), we obtain

∫ 1

0

(
φ(u′(t))

)
u′(t)dt = λ

∫ 1

0

r(t)g(u(t))u(t)dt. (3.6)

Note that the integration on the right-hand side of (3.6) makes sense, since
r(·)g(u(·)) ∈ L1(0, 1) by (3.1) and (3.2). Combining (3.2), (3.5) and (3.6), we
deduce

∫ 1

0

|u′(t)|2dt <

∫ 1

0

(
φ(u′(t))

)
u′(t)dt

= λ

∫ 1

0

r(t)g(u(t))u(t)dt

≤ λc0

∫ 1

0

r(t)|u(t)|q+1dt

= λc0

∫ 1

0

r(t)|u(t)|q−1|u(t)|2dt

≤ λc02q−1

∫ 1

0

r(t)tq(1 − t)qdt‖u′‖q−1
∞

(∫ 1

0

|u′(τ)|2dτ

)

.

It yields λ > λ0 and the proof is completed. �

The following lemma shows that a nontrivial solution of problem (Pλ)
has no interior zero on (0, 1).

Lemma 3.1. Let u be a nontrivial solution of problem (Pλ), then u(t) > 0 for
t ∈ (0, 1).
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Proof. Since u is a nontrivial solution of problem (Pλ), by the definition of
function g and 0-Dirichlet boundary conditions, u is concave and u ≥ 0 on
(0, 1). If u has an interior zero on (0, 1), then the interior zero is a double
zero of u. Now, we claim that u has no double zero on (0, 1). Then u(t) > 0
for t ∈ (0, 1) and the proof is done.

Suppose on the contrary that t0 ∈ (0, 1) is a double zero of u, that is
u(t0) = u′(t0) = 0. Integrating the first equality in problem (Pλ) over (t, t0)
for t ∈ [0, 1], we obtain

u′(t) = φ−1

(∫ t0

t

λr(τ)g(u(τ))dτ

)

.

Thus, u′(t) ≥ 0 for t ∈ [0, t0) and u′(t) ≤ 0 for t ∈ (t0, 1]. Together with the
fact u(0) = u(t0) = u(1) = 0, we deduce u ≡ 0 on [0, 1], a contradiction.
Therefore, solution u has no double zero on [0, 1]. �

Before proving the multiplicity result of Theorem 1.3, we introduce a
new family of truncation functions gi, i = 1, 2, · · · ,m + 1, by

gi(s) =

{
g(s), 0 ≤ s ≤ ai,

0, s > ai,
(3.7)

and consider the following auxiliary family
⎧
⎨

⎩

−
(
φ(u′(t))

)′
= λr(t)gi(u(t)), t ∈ (0, 1),

u(0) = 0 = u(1),
(P i

λ)

where r is given in problem (Pλ).
Similar to the operator T introduced in (2.2), we define the operator

T i
λ : K → K as

(T i
λu)(t) =

⎧
⎪⎨

⎪⎩

∫ t

0
φ−1

(
λ

∫ t∗
i

s
r(τ)gi(u(τ))dτ

)
ds, t ≤ t∗i ,

∫ 1

t
φ−1

(
λ

∫ s

t∗
i
r(τ)gi(u(τ))dτ

)
ds, t ≥ t∗i ,

(3.8)

where t∗i ∈ (0, 1) is a zero of function Gi
λ : (0, 1) → R with

Gi
λ(t) =

∫ t

0

φ−1

(

λ

∫ t

s

r(τ)gi(u(τ))dτ

)

ds −
∫ 1

t

φ−1

(

λ

∫ s

t

r(τ)gi(u(τ))dτ

)

ds.

Then T i
λ is completely continuous and u ∈ K is a positive fixed point of T i

λ

if and only if u is a positive solution of problem (P i
λ).

We consider properties of solutions of problem (P i
λ) in the following two

lemmas.

Lemma 3.2. Let g satisfy the assumptions in Theorem 1.3. If ui ∈ K is
a solution of problem (P i

λ), then ‖ui‖∞ ≤ ai and ui is also a solution of
problem (Pλ).
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Proof. Let ui be a solution of problem (P i
λ). Obviously, ui(0) = 0 = ui(1).

From the first equation in problem (P i
λ), we have

− u′′
i

(√
1 − |u′

i(t)|2
)3 = λr(t)gi(ui(t)), t ∈ (0, 1).

Thus ui is concave on (0, 1). By the mean value theorem, there exists t∗i ∈
(0, 1) such that u′

i(t
∗
i ) = 0, implying that ui(t∗i ) = ‖ui‖∞. Suppose on the

contrary that ‖ui‖∞ > ai. Then, combining with the continuity of ui, there
exists a subinterval (t1i , t

2
i ) ⊂ (0, 1) satisfying t∗i ∈ (t1i , t

2
i ), u(t) > ai for

t ∈ (t1i , t
2
i ) and ui(t1i ) = ui(t2i ) = ai. Recalling the condition gi(s) = 0 for

s ≥ ai, we have

−
(
φ(u′

i(t))
)′

= 0, t ∈ [t1i , t
2
i ].

Thus, φ(u′
i) is a constant on [t1i , t

2
i ] and so u′

i(t) is a constant on [t1i , t
2
i ].

Together with the fact u′
i(t

∗
i ) = 0, we deduce u′

i(t) ≡ 0 for t ∈ [t1i , t
2
i ]. Hence,

ui(t) = ui(t1i ) = ai for t ∈ [t1i , t
2
i ], a contradiction showing ‖ui‖∞ ≤ ai. Due

to (3.7), gi(ui) = g(ui) for 0 ≤ ui ≤ ai. Thus, ui is also a solution of problem
(Pλ). The proof is completed. �

Denote ΩR = {u ∈ E : ‖u‖∞ < R}.

Lemma 3.3. Let g satisfy the assumptions in Theorem 1.3 and bi > 0 be such
that 1

2 ( 1
2 + bi)bi ∈ (

ai−1,
1
2 ( 1

2 + ai)ai

)
, for any i ∈ {1, 2, · · · ,m + 1}. Then,

there exists 0 < λ∗
i < ∞ such that

‖T i
λu‖∞ > ‖u‖∞, for all λ ≥ λ∗

i and u ∈ K ∩ ∂Ωbi
.

Proof. From assumptions on bi for any i ∈ {1, 2, · · · ,m + 1}, we see [ 12 ( 1
2 +

bi)bi, bi] ⊂ (ai−1, ai). Select

λ∗
i =

φ
(

8bi

1+6bi

)

gi
min min

{∫ 1
2
1
2 ( 1

2+bi)
r(τ)dτ,

∫ 1− 1
2 ( 1

2+bi)
1
2

r(τ)dτ
} ,

where

gi
min = min

s∈[ 12 ( 1
2+bi)bi,bi]

gi(s).

Then, gi
min > 0 from the condition gi(s) > 0 for s ∈ [12 ( 1

2 + bi)bi, bi] ⊂
(ai−1, ai), and thus 0 < λ∗

i < ∞.
Let u ∈ K ∩∂Ωbi

and t∗i ∈ (0, 1) be such that u′
i(t

∗
i ) = 0. Then from the

definition of T i
λu in (3.8), (T i

λu)(t∗i ) is the maximum value of T i
λu on [0, 1].

Obviously, t∗i ∈ (0, 1
2 ) or t∗i ∈ [12 , 1). Without loss of generality, we consider

the case t∗i ∈ [12 , 1). The argument would be similar for the case t∗i ∈ (0, 1
2 )

and we omit its details here. Let us fix λ ≥ λ∗
i below.

For t∗i ∈ [ 12 , 1) and any δ ∈ (0, 1
2 ), we have

‖T i
λu‖∞ = (T i

λu)(t∗i ) =
∫ t∗

i

0

φ−1

(

λ

∫ t∗
i

s

r(τ)gi(u(τ))dτ

)

ds
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≥
∫ 1

2

0

φ−1

(

λ∗
i

∫ 1
2

s

r(τ)gi(u(τ))dτ

)

ds

≥
∫ δ

0

φ−1

(

λ∗
i

∫ 1
2

δ

r(τ)gi(u(τ))dτ

)

ds � I0.

By the concavity of u, we obtain

u(t) ≥ t

t∗i
‖u‖∞ ≥ δ

t∗i
‖u‖∞ > δ‖u‖∞, for t ∈ [δ, t∗i ].

Specially, setting δ = 1
2 ( 1

2 + bi), we get u(t) ∈ ( 1
2 ( 1

2 + bi)bi, bi] for t ∈ [ 12 ( 1
2 +

bi), 1
2 ]. Hence,

I0 >

∫ 1
2 ( 1

2+bi)

1
4 ( 1

2−bi)

φ−1

(

λ∗
i

∫ 1
2

1
2 ( 1

2+bi)

r(τ)gi(u(τ))dτ

)

ds

=
1 + 6bi

8
φ−1

(

λ∗
i

∫ 1
2

1
2 ( 1

2+bi)

r(τ)gi(u(τ))dτ

)

≥ 1 + 6bi

8
φ−1

(

λ∗
i g

i
min

∫ 1
2

1
2 ( 1

2+bi)

r(τ)dτ

)

≥ bi = ‖u‖∞.

Therefore, ‖T i
λu‖∞ > ‖u‖∞ for λ ≥ λ∗

i and u ∈ K ∩ ∂Ωbi
. The proof is

completed. �

Proof of Theorem 1.3. Let bi > 0 be such that 1
2 ( 1

2+bi)bi ∈ (
ai−1,

1
2 ( 1

2 + ai)ai

)

for any i ∈ {1, 2, · · · ,m + 1}. Then by Lemma 3.3, there exists 0 < λ∗
i < ∞

such that ‖T i
λu‖∞ > ‖u‖∞ for λ ≥ λ∗

i and u ∈ K ∩ ∂Ωbi
. On the other hand,

by Lemma 3.2, ‖T i
λu‖∞ ≤ ‖u‖∞ for u ∈ K ∩∂Ωai

. Therefore, by Lemma 2.1,
for any λ ≥ λ∗

i , operator T i
λ has a fixed point in K ∩ (Ωai

\ Ωbi
), which is a

positive solution of problem (P i
λ), denoted by uλ,i, satisfying

ai−1 < bi ≤ ‖uλ,i‖∞ ≤ ai. (3.9)

Now we focus on problem (Pλ). By Theorem 3.1, there exists λ∗ >
0, such that problem (Pλ) has no positive solution for all λ < λ∗. Recall
that any solution uλ,i of problem (P i

λ) is also a solution of problem (Pλ) in
Lemma 3.2. Combining with Lemma 3.1, we know uλ,i(t) > 0 for t ∈ (0, 1)
and so Theorem 1.3 (i) is derived. We set λ∗ = max1≤i≤m+1 λ∗

i , then problem
(Pλ) has at least m+1 distinct positive solutions {uλ,i}m+1

i=1 for λ ≥ λ∗, which
satisfy

0 < b1 ≤ ‖uλ,1‖∞ ≤ a1 < b2 ≤ ‖uλ,2‖∞ ≤ a2 < · · ·
< bm ≤ ‖uλ,m‖∞ ≤ am < bm+1 ≤ ‖uλ,m+1‖∞ <

1
2
,

and thus Theorem 1.3 (ii) is deduced. The proof is completed. �

We begin to investigate Calabi–Bernstein type asymptotic property of
solution uλ,i, i ∈ {1, 2, · · · ,m + 1}, of Theorem 1.3. Before showing it, we



82 Page 14 of 25 R. Yang JFPTA

give some lemmas for later use. The following lemma is essential to show the
continuity of solutions of problem (Pλ) with respect to λ.

Lemma 3.4. Let {(λn, uλn,i)} (n ∈ N) be a sequence of solution pairs of prob-
lem (Pλ) such that λn → λ̃ as n → ∞. Then there exists a solution uλ̃,i of
problem (Pλ) such that ‖uλn,i − uλ̃,i‖∞ → 0 as n → ∞.

Proof. Since {(λn, uλn,i)} is a sequence of solution pairs of problem (Pλ) with
λn → λ̃, combining with the fact ‖uλn,i‖∞ < 1

2 and by Arzelà-Ascoli theorem,
we obtain a subsequence, say {uλn,i} again and a function uλ̃,i ∈ C[0, 1] such
that uλn,i → uλ̃,i in C[0, 1]. We still need to show that uλ̃,i is a solution of
problem (Pλ) at λ = λ̃. Similar to Remark 2.1, we see r(·)g(u(·)) ∈ L1(0, 1).
It suffices to show that uλ̃,i is a fixed point of operator Tλ at λ = λ̃, where
Tλ : K → K is obtained after replacing f by λg in T given in (2.1), that is,

(Tλu)(t) =

⎧
⎨

⎩

∫ t

0
φ−1

(
α +

∫ σ

s
λr(τ)g(u(τ))dτ

)
ds, t ∈ (0, σ],

∫ 1

t
φ−1

(−α +
∫ s

σ
λr(τ)g(u(τ))dτ

)
ds, t ∈ [σ, 1),

where σ ∈ (0, 1) is fixed in any fashion and α
(
� α(λrg(u))

)
: L1(0, 1) → R

satisfies
∫ σ

0

φ−1

(

α +

∫ σ

s

λr(τ)g(u(τ))dτ

)

ds =

∫ 1

σ

φ−1

(

−α +

∫ s

σ

λr(τ)g(u(τ))dτ

)

ds.

(3.10)

Indeed, α is continuous with respect to λrg(u) and maps equi-integrable sets
of L1 into bounded sets, similar continuous functions were constructed in
[24,28,31,32] and also Tλ is completely continuous.

From the definition of sequence {(λn, uλn,i)} and (3.10), together with

the continuity of α, we get a sequence {αn}
(
αn � αn(λnrg(uλn,i))

)
satisfy-

ing αn → α̃
(
� α̃(λ̃rg(uλ̃,i))

)
. Obviously, α̃ satisfies

∫ σ

0
φ−1

(

α̃ +

∫ σ

s

λ̃r(τ)g(uλ̃,i(τ))dτ

)

ds =

∫ 1

σ

φ−1
(

−α̃ +

∫ s

σ

λ̃r(τ)g(uλ̃,i(τ))dτ

)

ds.

By the Lebesgue dominated convergence theorem, it follows from the
fact uλn,i = Tλuλn,i at λ = λn that

uλ̃,i = lim
n→∞ uλn,i = lim

n→∞(Tλuλn,i)(t)

=

⎧
⎪⎨

⎪⎩

∫ t

0
lim

n→∞ φ−1
(
αn +

∫ σ

s
λnr(τ)g(uλn,i(τ))dτ

)
ds, t ∈ (0, σ],

∫ 1

t
lim

n→∞ φ−1
(−αn +

∫ s

σ
λnr(τ)g(uλn,i(τ))dτ

)
ds, t ∈ [σ, 1),

=

⎧
⎪⎨

⎪⎩

∫ t

0
φ−1

(
lim

n→∞ αn +
∫ σ

s
lim

n→∞ λnr(τ)g(uλn,i(τ))dτ
)

ds, t ∈ (0, σ],

∫ 1

t
φ−1

(
− lim

n→∞ αn +
∫ s

σ
lim

n→∞ λnr(τ)g(uλn,i(τ))dτ
)

ds, t ∈ [σ, 1),
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=

⎧
⎪⎨

⎪⎩

∫ t

0
φ−1

(
α̃ +

∫ σ

s
λ̃r(τ)g(uλ̃,i(τ))dτ

)
ds, t ∈ (0, σ],

∫ 1

t
φ−1

(
−α̃ +

∫ s

σ
λ̃r(τ)g(uλ̃,i(τ))dτ

)
ds, t ∈ [σ, 1).

Therefore, uλ̃,i is a fixed point of Tλu at λ = λ̃ and the proof is done. �

From Theorem 1.3 and Lemma 3.4, we conclude that positive solution
pairs (λ, uλ,i) of problem (Pλ) may form at least m+1 connected curves for all
λ ≥ λ∗ in which any element is a positive solution pair of problem (P i

λ) and of
problem (Pλ) as well. Let us denote Ci � Ci(λ, uλ,i), i ∈ {1, 2, · · · ,m + 1} as
the connected curve going through solution pair (λ, uλ,i) in which uλ,i comes
from Theorem 1.3. Then Ci goes to infinity in λ-direction.

Note that any positive solution uλ,i of problem (Pλ) is concave on (0, 1).
Using 0-Dirichlet boundary conditions and the mean value theorem, u′

λ,i has
at least one zero on (0, 1). Denote tλi,0(u

′
λ,i, λ) � inf{t ∈ (0, 1) : u′

λ,i(t) = 0}
and t

λ
i,0(u

′
λ,i, λ) � sup{t ∈ (0, 1) : u′

λ,i(t) = 0}. For simplicity, we denote

tλi,0(u
′
λ,i, λ), t

λ
i,0(u

′
λ,i, λ) by tλi,0, t

λ
i,0, respectively.

In the following lemma, we consider some properties related to solution
uλ,i of problem (P i

λ) for fixed λ and to be concise, we denote uλ,i by ui with
no confusion.

Lemma 3.5. Let 0 ≤ gi
0 < ∞ and ui be a positive solution of problem (P i

λ),
then 0 < tλi,0 ≤ t

λ
i,0 < 1.

Proof. The proof is inspired by the one of Theorem 2.1 in [41]. We only
prove tλi,0 > 0. The rest can be obtained after suitable modifications. On
the contrary, suppose tλi,0 = 0 (a similar argument can be applied for the

case t
λ
i,0 = 1). Then there exists a sequence {tn} with tn ∈ (0, 1) satisfying

u′
i(tn) = 0 and tn → 0 as n → ∞. By the mean value theorem, there exists

ξ ∈ (0, t) for any t ∈ (0, 1) such that

ui(t) = |ui(t) − ui(0)| = |u′
i(ξ)|t < t, for t ∈ (0, 1),

and combining with the boundary conditions, we obtain

ui(t) ≤ t, for t ∈ [0, 1]. (3.11)

Similarly,

ui(t) ≤ 1 − t, for t ∈ [0, 1]. (3.12)

By the condition 0 ≤ gi
0 < ∞, we obtain, for some c � c(‖ui‖∞) > 0,

gi
(
ui(t)

) ≤ cui(t)q, for t ∈ [0, 1]. (3.13)

Since r ∈ Aq, we choose a small constant γ0 > 0 satisfying

c

∫ γ0

0

λτ qr(τ)dτ < 1. (3.14)
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We take N0 ∈ N large enough such that 0 < tn < γ0 for all n ≥ N0 and
consider terms t′ns for all n ≥ N0. Integrating the first equation in problem
(P i

λ) on (t, tn) for t ∈ (0, tn), we obtain

φ(u′
i(t)) =

∫ tn

t

λr(τ)gi
(
ui(τ)

)
dτ.

It follows that

u′
i(t) = φ−1

(∫ tn

t

λr(τ)gi
(
ui(τ)

)
dτ

)

. (3.15)

Integrating the above equation on (0, t) for t ∈ (0, tn), we get

ui(t) =
∫ t

0

φ−1

(∫ tn

s

λr(τ)gi
(
ui(τ)

)
dτ

)

ds.

By (3.11) and (3.13), for t ∈ (0, tn), setting ‖ui‖tn,∞ � max0≤t≤tn
|ui(t)| and

applying the Fubini’s theorem, we have

|ui(t)| ≤
∫ t

0

c

∫ tn

s

λr(τ)|ui(τ)|qdτds

≤ c

∫ tn

0

∫ tn

s

λr(τ)|ui(τ)|qdτds

= c

∫ tn

0

λτr(τ)|ui(τ)|qdτ

≤ c

∫ tn

0

λτ qr(τ)dτ‖ui‖tn,∞.

Using (3.14), we obtain ‖ui‖tn,∞ = 0 for all n ≥ N0, i.e., ui is identically
zero on [0, tn] for all n ≥ N0. Thus we may assume that ui(tn) = u′

i(tn) = 0
for sufficiently large n. For t ∈ [tn, 1], by (3.12) and (3.13), using the Fubini’s
theorem again, we obtain

|ui(t)| =
∣
∣
∣
∣

∫ t

tn

φ−1

(∫ s

tn

λr(τ)gi
(
ui(τ)

)
dτ

)

ds

∣
∣
∣
∣

≤
∫ t

tn

∫ s

tn

λr(τ)
∣
∣gi

(
ui(τ)

)∣
∣ dτds

=
∫ t

tn

λ(t − τ)r(τ)
∣
∣gi

(
ui(τ)

)∣
∣ dτ

≤ c

∫ t

tn

λ(1 − τ)r(τ)|ui(τ)|qdτ

≤ c

∫ t

tn

λ(1 − τ)qr(τ)|ui(τ)|dτ.

By the Gronwall–Bellman inequality, we obtain ui(t) = 0 for t ∈ [tn, 1]. Thus,
ui ≡ 0 on [0, 1] and this is a contradiction. Hence, tλi,0 > 0 and the proof is
done. �
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Lemma 3.6. Let (λ, uλ,i) ∈ Ci, then 0 < lim infλ→∞ tλi,0 ≤ lim supλ→∞ tλi,0 <

1 and 0 < lim infλ→∞ t
λ
i,0 ≤ lim supλ→∞ t

λ
i,0 < 1.

Proof. Without loss of generality, we take an arbitrary element in the set
{lim infλ→∞ tλi,0, lim supλ→∞ tλi,0, lim infλ→∞ t

λ
i,0, lim supλ→∞ t

λ
i,0}, denoted as

β. Claim that 0 < β < 1. Then the results will be obtained.
We now show β > 0. To prove it by contradiction, we suppose on the

contrary that β = 0. Then there exist sequences {(λn, uλn,i)} ⊂ Ci (n ∈ N)
of solution pairs of problem (P i

λ) and {tni,0} of zeros of the corresponding
{u′

λn,i} satisfying

(i) λn → ∞ as n → ∞;
(ii) ai−1 < bi ≤ ‖uλn,i‖∞ ≤ ai;
(iii) tni,0 ∈ (0, 1) and tni,0 → 0 as n → ∞.

From definitions of Ci and β, sequences {(λn, uλn,i)} and {tni,0} make sense.
Using the fact ‖u′

λn,i‖∞ < 1 for any n ∈ N and definition of {tni,0}, we
get

‖uλn,i‖∞ = uλn,i(tni,0) =
∫ tn

i,0

0

u′
λn,i(τ)dτ < tni,0.

Since tni,0 → 0 as n → ∞, we infer ‖uλn,i‖∞ → 0 as n → ∞, which contradicts
the above (ii) and thus β > 0. Similarly, we can prove β < 1 and the proof is
done. �

Lemma 3.7. Assume that there exists a sequence {(λn, uλn,i)} ⊂ Ci (n ∈ N)
satisfying

(i) λn → ∞ as n → ∞;
(ii) ai−1 < bi ≤ ‖uλn,i‖∞ ≤ ai.

Denote tni,0 � inf{t ∈ (0, 1) : u′
λn,i(t) = 0}. Also assume limn→∞ tni,0 = β.

Then limn→∞ u′
λn,i(t) = 1 uniformly on [0, β − ε], for sufficiently small

ε > 0.

Proof. By Lemma 3.6, 0 < β < 1. Directly from the definition of β, for any
small ε0 > 0, there exists N ∈ N such that β − ε0 < tni,0 < β + ε0 for all
n > N. By (ii), ‖uλn,i‖∞ ≥ bi for all n > N and together with Lemma 3.1,
uλn,i(t) > 0 for t ∈ (0, 1) and all n > N . Since uλn,i is concave and u′

λn,i(t)
is nonincreasing on (0, 1), we see

‖uλn,i‖∞ = uλn,i(tni,0) = max
t∈[0,tn

i,0]
uλn,i(t) = max

[tn
i,0,1]

uλn,i(t).

Moreover,

uλn,i(t) ≥ t

tni,0
‖uλn,i‖∞, t ∈ [0, tni,0]. (3.16)

Specially, setting t ≥ 2ai−1
ai−1+bi

tni,0 in (3.16), we get

uλn,i(t) ≥ 2ai−1bi

ai−1 + bi
> ai−1,
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for t ∈ [ 2ai−1
ai−1+bi

tni,0, t
n
i,0]. Let us fix ε0 ∈ (0, bi−ai−1

4ai−1+2bi
β) and ε1 ∈

(
2ai−1

ai−1+bi
(β + ε0), β − 2ε0

)
. Then from (3.16), we deduce

min
t∈[ε1,tn

i,0]
uλn,i(t) ≥ ε1

tn
i,0

‖uλn,i‖∞ ≥ 2ai−1(β + ε0)

(ai−1 + bi)tn
i,0

‖uλn,i‖∞ >
2ai−1bi

ai−1 + bi
> ai−1,

for all n > N . Let t ∈ [ε1, β − ε0]. Obviously, t ∈ [ε1, t
n
i,0] for all n > N since

β − ε0 < tni,0. Since uλn,i is strictly increasing on (0, tni,0), we get

ai−1 < uλn,i(t) < ai, for all t ∈ [ε1, β − ε0].

Hence there exists M0(= M0(ε1)) > 0 such that

gi(uλn,i(t)) > M0, for all t ∈ [ε1, β − ε0].

Let us first consider t ∈ [ε1, β − 2ε0], then we get
∫ β−ε0

t

r(τ)gi(uλn,i(τ))dτ > M0

∫ β−ε0

β−2ε0

r(τ)dτ > 0,

which implies

lim
n→∞ λn

∫ β−ε0

t

r(τ)gi(uλn,i(τ))dτ = ∞,

for t ∈ [ε1, β − 2ε0]. Similar to (3.15),

u′
λn,i(t) = φ−1

(

λn

∫ tn
i,0

t

r(τ)gi(uλn,i(τ))dτ

)

.

Since

φ−1

(

λn

∫ tn
i,0

t

r(τ)gi(uλn,i(τ))dτ

)

≥ φ−1

(

λn

∫ β−ε0

t

r(τ)gi(uλn,i(τ))dτ

)

,

and φ−1
(
λn

∫ β−ε0

t
r(τ)gi(uλn,i(τ))dτ

)
→ 1 as n → ∞, it follows that

limn→∞ u′
λn,i(t) ≥ 1 for all t ∈ [ε1, β − 2ε0]. Since u′

λn,i(t) < 1 for t ∈ [0, 1]
and any n, it yields

lim
n→∞ u′

λn,i(t) = 1, uniformly on [ε1, β − 2ε0]. (3.17)

For t ∈ [0, ε1], from the fact

u′
λn,i(t) = φ−1

(

λn

(
∫ ε1

t

+
∫ tn

i,0

ε1

)
r(s)gi(uλn,i(s))ds

)

≥ φ−1

(

λn

∫ tn
i,0

ε1

r(s)gi(uλn,i(s))ds

)

= u′
λn,i(ε1),

we have

limn→∞ u′
λn,i(t) = 1 uniformly on [0, ε1]. (3.18)

By combining (3.17) and (3.18), we obtain limn→∞ u′
λn,i(t) = 1, uniformly

on [0, β − 2ε0], and we conclude
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lim
n→∞ u′

λn,i(t) = 1 uniformly on [0, β − ε], for sufficiently small ε > 0.

�

Similar to Lemma 3.7, we get the following lemma.

Lemma 3.8. Assume that there exists a sequence {(λn, uλn,i)} ⊂ Ci (n ∈ N)
satisfying

(i) λn → ∞ as n → ∞;
(ii) ai−1 < bi ≤ ‖uλn,i‖∞ ≤ ai.

Denote t
n
i,0 � sup{t ∈ (0, 1) : u′

λn,i(t) = 0}. Also assume limn→∞ t
n
i,0 = β.

Then limn→∞ u′
λn,i(t) = −1 uniformly on [β + ε, 1], for sufficiently small

ε > 0.

Lemma 3.9. Let (λ, uλ,i) ∈ Ci, then

(a) lim infλ→∞ tλi,0 = lim supλ→∞ tλi,0 = ai and lim infλ→∞ t
λ
i,0 =

lim supλ→∞ t
λ
i,0 = 1 − ai, i ∈ {1, 2, · · · ,m + 1};

(b) limλ→∞ u′
λ,i(t) = 0 uniformly on [ai + ε, 1 − ai − ε], for sufficiently

small ε > 0, i ∈ {1, 2, · · · ,m};
(c) limλ→∞ ‖uλ,i‖∞ = ai, i ∈ {1, 2, · · · ,m + 1}.

Proof. Let {(λn, uλn,i)} ⊂ Ci be a sequence of solution pairs of problem (P i
λ)

such that

(i) limn→∞ λn = ∞;
(ii) ai−1 < bi ≤ ‖uλn,i‖∞ ≤ ai.

From Theorem 1.3, we see that such sequence makes sense. Then, we can
get two sequences {tni,0} and {t

n
i,0} where tni,0 � inf{t ∈ (0, 1) : u′

λn,i(t) = 0}
and t

n
i,0 � sup{t ∈ (0, 1) : u′

λn,i(t) = 0}. Due to the fact that ‖u′
λn,i‖∞ ≤ 1

and Arzelà–Ascoli theorem, we obtain a subsequence, say {uλn,i} again and
a function v ∈ C[0, 1] such that uλn,i → v in C[0, 1] as n → ∞. Correspond-
ingly, we obtain two subsequences, named {tni,0} and {t

n
i,0} again. It follows

from Lemma 3.6 that

0 < lim infn→∞ tni,0 ≤ lim supn→∞ tni,0 < 1 and

0 < lim infn→∞ t
n
i,0 ≤ lim supn→∞ t

n
i,0 < 1.

To prove lim infn→∞ tni,0 = lim supn→∞ tni,0 = ai and lim infn→∞ t
n
i,0

= lim supn→∞ t
n
i,0 = 1 − ai, it suffices to show that any two subsequences

of {tni,0} and {t
n
i,0} converge to ai and 1 − ai, respectively. We consider sub-

sequences, name {tni,0} and {t
n
i,0} again, if necessary in the following. Denote

lim
n→∞ tni,0 = t∞i,0 and limn→∞ t

n
i,0 = t

∞
i,0.

We divide the rest into four steps:
Step 1. Claim that 0 < t∞i,0 ≤ ai and 1 − ai ≤ t

∞
i,0 < 1, for any i ∈

{1, 2, · · · ,m + 1}.
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Without loss of generality, we prove 0 < t∞i,0 ≤ ai and the other can be
proved by a similar argument after suitable modifications. Suppose on the
contrary that t∞i,0 > ai. Recall the result in Lemma 3.7 that

lim
n→∞ u′

λn,i(t) = 1, uniformly on [0, t∞i,0 − ε1], for sufficiently small ε1 > 0.

(3.19)

For any small ε0 > 0, there exists N(ε0) ∈ N such that

tni,0 > t∞i,0 − ε0, for all n ≥ N(ε0).

Specially, we set 0 < ε1 <
t∞
i,0−ai

2 and ε0 = ε1 in the following proof. Noting
u′

λn,i(t) ≥ 0 for t ∈ [0, tni,0], we get

uλn,i(tni,0) =
∫ tn

i,0

0

u′
λn,i(τ)dτ ≥

∫ tn
i,0−ε1

0

u′
λn,i(τ)dτ

≥
∫ t∞

i,0−2ε1

0

u′
λn,i(τ)dτ, for all n ≥ N(ε1). (3.20)

Taking ε2 > 0 sufficiently small satisfying

0 < ε2 <
t∞i,0 − 2ε1 − ai

t∞i,0 − 2ε1
,

by applying (3.19), we may choose N(ε2) > 0 such that

1 − ε2 < u′
λn,i(t) < 1 for all n > N(ε2) and t ∈ [0, t∞i,0 − ε1].

Since ε2 satisfies (1 − ε2)(t∞i,0 − 2ε1) > ai, from (3.20), we have

uλn,i(tni,0) ≥
∫ t∞

i,0−2ε1

0

u′
λn,i(τ)dτ > (1 − ε2)(t∞i,0 − 2ε1) > ai,

for all n ≥ max{N(ε1), N(ε2)}. Thus we get

ai ≥ v(t∞i,0) = lim
n→∞ uλn,i(tni,0) > ai.

This contradiction proves t∞i,0 ≤ ai. Similarly, we can show 1 − ai ≤ t
∞
i,0 < 1.

Step 2. Claim that t∞i,0 = ai and t
∞
i,0 = 1−ai, for any i ∈ {1, 2, · · · ,m+1}.

Suppose that 0 < t∞i,0 < ai. Then, for 0 < ε3 <
ai−t∞

i,0
4 , there exists

N(ε3) ∈ N such that

t∞i,0 − ε3 < tni,0 < t∞i,0 + ε3, for all n > N(ε3).

Similarly, for 0 < ε4 <
1−ai−t∞

i,0
4 , there exists N(ε4) ∈ N such that

t
∞
i,0 − ε4 < t

n
i,0 < t

∞
i,0 + ε4, for all n > N(ε4).

Recall that 1 − ai ≤ t
∞
i,0 < 1 in Step 1 and denote N3 � max{N(ε3), N(ε4)}.

Then, for n > N3, we have

tni,0 <
ai + 3t∞i,0

4
<

3(1 − ai) + t∞i,0
4

< t
n
i,0.
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Since

uλn,i(tni,0) =
∫ tn

i,0

0

u′
λn,i(τ)dτ < tni,0 <

ai + 3t∞i,0
4

< ai, for all n ≥ N3,

we get bi ≤ ‖uλn,i‖∞ < ai for all n ≥ N3. Combining with the concavity of
uλn,i on [0, 1], we deduce

u′
λn,i(t) = 0, uλn,i(t) = ‖uλn,i‖∞ ∈ [bi, ai) on t ∈ [tni,0, t

n
i,0], for all n,

and so gi(uλn,i) > 0 on t ∈ [tni,0, t
n
i,0], for all n ≥ N3. However, from the

calculation

0 = u′
λn,i(t

n
i,0) = −φ−1

(

λn

∫ tn
i,0

tn
i,0

r(s)gi(uλn,i(s))ds

)

< 0, for all n ≥ N3,

we get a contradiction. Hence t∞i,0 = ai. By a similar fashion, we also conclude
t
∞
i,0 = 1 − ai. Consequently, result (a) is obtained.

Step 3. Prove that limn→∞ u′
λn,i(t) = 0 uniformly on [ai +ε, 1−ai −ε],

for sufficiently small ε > 0, i ∈ {1, 2, · · · ,m}.
By the concavity of uλn,i on [0, 1], we know that u′

λn,i = 0 on [tni,0, t
n
i,0],

for all n. Since t∞i,0 = ai, for small 0 < ε < 1−2ai

2 , there exists N1(ε) ∈ N such
that

ai − ε < tni,0 < ai + ε, for all n > N1(ε).

Similarly, thanks to t
∞
i,0 = 1 − ai, there exists N2(ε) ∈ N such that

1 − ai − ε < t
n
i,0 < 1 − ai + ε, for all n > N2(ε).

Thus, [ai + ε, 1 − ai − ε] ⊂ [tni,0, t
n
i,0] for n > N4 � max{N1(ε), N2(ε)} and we

have

u′
λn,i = 0, on [ai + ε, 1 − ai − ε], for all n > N4.

Further, we obtain

lim
n→∞ u′

λn,i(t) = 0 uniformly on [ai + ε, 1 − ai − ε],

for sufficiently small ε > 0, i ∈ {1, 2, · · · ,m}, which is result (b).
Step 4. Prove that limn→∞ ‖uλn,i‖∞ = ai for any i ∈ {1, 2, · · · ,m + 1}.
From (3.20), for any n ≥ N(ε1), we obtain

‖uλn,i‖∞ = uλn,i(tni,0) ≥
∫ t∞

i,0−2ε1

0

u′
λn,i(τ)dτ.

Since t∞i,0 = ai as proved in previous steps, by using Lemma 3.7 and the
bounded convergence theorem, we get

lim
n→∞ ‖uλn,i‖∞ ≥ lim

n→∞

∫ t∞
i,0−2ε1

0

u′
λn,i(τ)dτ

=
∫ ai−2ε1

0

lim
n→∞ u′

λn,i(τ)dτ = ai − 2ε1.
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Thus by the arbitrariness of ε1, we get limn→∞ ‖uλn,i‖∞ ≥ ai. On the
other hand, we know from Lemma 3.2 that ‖uλn,i‖∞ ≤ ai for all n. Therefore,
we conclude limn→∞ ‖uλn,i‖∞ = ai. Specially, limn→∞ ‖uλn,m+1‖∞ = 1

2 .
Result (c) is deduced and the proof is completed. �

Proof of Theorem 1.4. By Lemma 3.4, we deduce (i). By Lemmas 3.5–3.9,
assertions (ii) − (iv) are verified. The proof is completed. �

Finally, we give an example to illustrate the applicability of our multi-
plicity and asymptotic property results.

Example 3.1. We consider the problem
⎧
⎨

⎩

−
(
φ(u′(t))

)′
= λt−2u2(t)

∣
∣(u(t) − 1

64 )(u(t) − 1
16 )(u(t) − 1

4 )
∣
∣ , t ∈ (0, 1),

u(0) = 0 = u(1).
(3.21)

Note that r(t) = t−2 and g(s) = s2|(s − 1
64 )(s − 1

16 )(s − 1
4 )| as in problem

(Pλ). It is obvious that r ∈ A2 and g0 = lims→0

∣
∣(s − 1

64 )(s − 1
16 )(s − 1

4 )
∣
∣ =

1
4096 . Let a0 = 0, a1 = 1

64 , a2 = 1
16 , a3 = 1

4 and a4 = 1
2 . Then we can

check
∑3

i=0 g(ai) = 0 and g(s) > 0 on (0, 1
2 ) \ {ai}3

i=1. Thus, assumptions in
Theorem 1.3 are satisfied and by applying Theorem 1.3, there exist 0 < λ∗ ≤
λ∗ < ∞ such that problem (3.21) has no positive solution for all λ ∈ (0, λ∗)
and at least four positive solutions uλ,1, uλ,2, uλ,3 and uλ,4 for all λ ∈ (λ∗,∞).
Combining with Theorem 1.4, uλ,i (i ∈ {1, 2, 3, 4}) convergences to function
ui given below as λ goes to ∞,

ui(t) =

⎧
⎪⎨

⎪⎩

t, t ∈ [0, ai),
ai, t ∈ [ai, 1 − ai],
1 − t, t ∈ (1 − ai, 1].

The shape of ui is isosceles trapezoid when 1 ≤ i ≤ 3 and isosceles triangle
when i = 4.
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