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Abstract. This paper gathers two generalizations of iterated function
systems, namely the one introduced by the first two authors under the
name of generalized iterated function systems and the one introduced by
Mauldin and Williams and Boore and Falconer under the label of graph-
directed iterated function systems. By combining them we introduce the
concept of a graph-directed generalized iterated function system. We
prove that, under suitable contractivity assumptions on the constitutive
functions of such a system and structural assumptions on the underlying
metric space, it generates, via Edelstein’s contraction principle, a unique
attractor. The result is illustrated by two examples.
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1. Introduction

Since the appearance of the seminal Hutchinson’s paper [21] introducing it-
erated function systems, many authors proposed different types of general-
izations of this concept which represents a convenient way to describe and
classify fractal sets. Having in mind the aim of this paper, we are going
to emphasize two types of such generalizations, namely generalized iterated
function systems introduced by Miculescu and Mihail (see [32] and [34]) and
graph-directed iterated function systems introduced Mauldin and Williams
(see [27]) and Boore and Falconer (see [5]).

On the one hand, given m ∈ N and a metric space (X, d), one such gen-
eralization is obtained by considering (rather than selfmaps of X) functions
defined on the finite Cartesian product Xm with values in X . In this way
one gets the so called generalized iterated function systems (for short GIFSs)
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of order m. Miculescu and Mihail (see [32] and [34]) proved the existence and
uniqueness of the attractor of a GIFS and pointed out some of its properties.
A big step forward was made by F. Strobin (see [40]) who proved that GIFSs
are real generalizations of iterated function systems. To be more precise, he
proved that, for any m ≥ 2, there exists a Cantor subset of the plane which
is an attractor of some GIFS of order m , but is not an attractor of a GIFS
of order m−1. Algorithms generating images of attractors of GIFSs could be
found in [6,19,22] and [29]. Various aspects concerning Hutschinson’s mea-
sure in the framework of GIFS were studied in [7,28,33] and [38]. Finally let
us mention that the papers [14,15,25,30,31,35,36,39,41–43] are dealing with
certain extensions of GIFSs.

On the other hand, another generalization of the concept of iterated
function system is based on the replacement of a single fixed point equa-
tion that is satisfied by the attractor with a system of equations. In this
way one yields an attractor of a more complicated type of system. More pre-
cisely, a family of compact sets (also called invariant list) is considered such
that each of them is a union of contracted copies of some (but not neces-
sarily all) family’s components. It was Mauldin and Williams’ idea of using
graphs in the theory of iterated function systems which leads to the concept
of graph-directed iterated function system (also referred to as recurrent iter-
ated function system). A classical iterated function system can be presented
as a 1-vertex graph-directed iterated function system. Moreover, Boore and
Falconer (see [5]) provided a class of 2-vertex graph-directed iterated function
systems having attractors which cannot be the attractors of standard iterated
function systems. Therefore, Mauldin and Williams’ concept is a genuine gen-
eralization of Hutchinson’ one. For some other works related with this topic
see [1–4,8–13,18,20,23] and [44]. One can also consult [17, section 4.3] and
[24, section 2.6.3].

The motivation of our study derives from the previously mentioned gen-
eralizations of the concept of iterated function system. These generalizations
are part of the ongoing research program whose purpose is to obtain a larger
class of fractals by extending Hutchinson’s framework. By combining these
two lines of research, we introduce the concept of graph-directed generalized
iterated function system and prove the existence and uniqueness for the at-
tractor of such a system. The main tool that we use is Edelstein’s contraction
principle (see [16]) concerning (ε, λ)-uniformly locally contractive functions
on complete ε-chainable metric spaces. Note that iterated function systems,
on a ε-chainable metric space, consisting on (ε, λ) -contractions were studied
by L. Máté (see [26]) and Gwóźd ź-�Lukawska and Jachymski (see [20]).

2. Preliminaries

Notation and terminology

For a function f : X → X and n ∈ N, by f [n] we designate the compo-
sition of f by itself n times.
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For metric spaces (X, d) and (Y, ρ) and a function f : X → Y , we shall
use the following notation:

{A ⊆ X | A �= ∅ and A is compact} not= Pcp(X)

and

sup
{

ρ(f(x), f(y))
d(x, y)

| x, y ∈ X, x �= y

}
not= lip(f).

Moreover, the function h : Pcp(X) × Pcp(X) → [0,∞), described by

h(K1,K2) = max{ sup
x∈K1

d(x,K2), sup
x∈K2

d(x,K1)},

for every K1,K2 ∈ Pcp(X) (which turns out to be a metric), is called the
Hausdorff-Pompeiu metric on X.

Note that:
– (Pcp(X), h) is a complete metric space, provided that (X, d) is complete;
–

h(K1 ∪ K2, C1 ∪ C2) ≤ max{h(K1, C1), h(K2, C2)},

for every K1,K2, C1, C2 ∈ Pcp(X).

Definition 2.1. Given ε > 0, a metric space (X, d) is called ε-chainable if for
every x, y ∈ X there exist n ∈ N and x0, x1, . . . , xn−1, xn ∈ X such that
x0 = x, xn = y and d(xk, xk+1) < ε for each k ∈ {0, 1, . . . , n − 1}.

Proposition 2.2. If (X, d) is an ε -chainable metric space for some ε > 0,
then (Pcp(X), h) is 2ε-chainable.

Proof. Let us consider A,B ∈ Pcp(X) fixed, but arbitrarily chosen.
Then there exist m ∈ N, x1, . . . , xm ∈ A and y1, . . . , ym ∈ B such that

A ⊆ m∪
l=1

B(xl, ε) and B ⊆ m∪
l=1

B(yl, ε). (1)

One should note that we used the fact that, via a possible repetition of
the points xl and yl, we can suppose that the set of the points xl has the
same number of elements as the set of the points yl.

Since xl and yl are elements of the ε-chainable metric space (X, d), there
exist n ∈ N and zl,0, . . . , zl,n ∈ X such that

zl,0 = xl, zl,n = yl

and

d(zl,k, zl,k+1) < ε, (2)

for all k ∈ {0, 1, . . . , n − 1} and l ∈ {1, ....,m}. One should note that we used
the fact that, via a possible repetition of the elements zl,k, the number n
(which basically depends on xl and yl) can be chosen to be the same for all
l ∈ {1, ....,m}.

Let us consider the finite (so compact) sets

Ck = {z1,k, . . . , zm,k} ⊆ X,

where k ∈ {1, . . . , n − 1}.
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Then,

d(zl,k, Ck+1)
zl,k+1∈Ck+1≤ d(zl,k, zl,k+1)

(2)
< ε,

for every k ∈ {1, . . . , n − 2} and l ∈ {1, . . . , m}, so

sup
x∈Ck

d(x,Ck+1) < ε, (3)

for every k ∈ {1, . . . , n − 2}.
In a similar manner, for every k ∈ {1, . . . , n−2}, we obtain sup

x∈Ck+1

d(x,Ck)

< ε. Using this and (3), we get h(Ck, Ck+1) < ε for every k ∈ {1, . . . , n − 2}.
We also have

d(zl,1, A)
xl∈A≤ d(zl,1, xl) = d(zl,1, zl,0)

(2)
< ε,

for each l ∈ {1, . . . , m}, so

sup
x∈C1

d(x,A) < ε.

Choose any x ∈ A. Then taking into account (1), there exists l ∈
{1, . . . ,m} such that

d(x, zl,0) = d(x, xl) < ε. (4)

Consequently

d(x,C1)
zl,1∈C1≤ d(x, zl,1) ≤ d(x, zl,0) + d(zl,0, zl,1)

(2)&(4)
< ε + ε = 2ε,

which gives sup
x∈A

d(x,C1) < 2ε, and hence h(A,C1) < 2ε. In a similar manner

one can prove that h(Cn−1, B) < 2ε. The proof is complete. �
Definition 2.3. Let (X, d) be a metric space, ε > 0 and C ∈ [0, 1). A function
f : X → X is called (ε, C)-uniformly locally contractive if d(f(x), f(y)) ≤
Cd(x, y) for all x, y ∈ X such that d(x, y) < ε.

Edelstein’s contraction principle 2.4. (see [16]) Let (X, d) be a complete ε-
chainable metric space and f : X → X a (ε, C) -uniformly locally contractive
function. Then f has a unique fixed point x∗ and lim

n→∞f [n](x) = x∗ for every
x ∈ X, i.e., f is a Picard operator.

In connection with the above mentioned result, see also [37].

Definition 2.5. Let (X, d) be a metric space, m ∈ N and f : Xm → X. An
element x of X is called fixed point of f if f(x, . . . , x

m times
) = x.

Remark 2.6. The fixed points of the above mentioned function f coincide
with the fixed points of g : X → X given by g(x) = f(x, . . . , x

m times
) for every

x ∈ X.

In this paper, for a metric space (X, d) and m ∈ N, on Xm we consider
the maximum metric dmax, given by

dmax((x1, . . . , xm), (y1, . . . , ym)) = max{d(x1, y1), . . . , d(xm, ym)},

for every (x1, . . . , xm), (y1, . . . , ym) ∈ Xm.
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Definition 2.7. Given m ∈ N, a pair (((Xj , dj))j∈{1,...,p}, (fi)i∈{1,...,q}) is called
a graph-directed generalized iterated function system (abbreviated g-dGIFS)
of order m if:

i) for each j ∈ {1, . . . , p} there exists εj > 0 such that (Xj , dj) is a com-
plete εj-chainable metric space;

ii) there exist D,C : {1, . . . , q} → {1, . . . , p}, C onto, such that fi :
Xm

D(i) → XC(i) for each i ∈ {1, . . . , q};
iii) fi is a Banach contraction for every i ∈ {1, . . . , q} i.e., there exists

Ci ∈ [0, 1) such that

dC(i)(fi(x1, . . . , xm), fi(y1, . . . , ym)) ≤ Ci max{dD(i)(x1, y1), . . . , dD(i)(xm, ym)},

for every (x1, . . . , xm), (y1, . . . , ym) ∈ Xm
D(i).

We denote such a system by S.

Note that the ε-chainability assumption for some ε > 0 is quite weak
as, for example, each bounded metric space has this property.

Concerning the comparison of graph-directed generalized iterated func-
tion systems with graph-directed iterated function systems considered in
literature, we mention that, for m = 1, Definition 2.7 yields a particu-
lar case of the concept of a directed graph IFS considered in [5] (denoted
by (V,E∗, i, t, r, ((Cv, dv))v∈V , (Se)e∈E1)). Namely we have V = {1, . . . , p},
E∗ = E1 = {ek | k ∈ {1, . . . , q}}, where the functions i, t : E∗ → V
are given by i(ek) = D(k) and t(ek) = C(k) for every k ∈ {1, . . . , q},
((Cv, dv))v∈V = ((Xj , dj))j∈{1,...,p}, (Se)e∈E1 = (fk)k∈{1,...,q} and the func-
tion r : E∗ → (0, 1) is given by r(ek) = lip(fk) for every k ∈ {1, . . . , q}.

Additional notation

For a given g-dGIFS S =((Xj , dj)j∈{1,...,p}, (fi)i∈{1,...,q}), let us consider
the fixed elements xj ∈ Xj , where j ∈ {1, . . . , p} and L ∈ [2max{ε1, . . . , εp},∞).
In the sequel, we shall use the following notations:

–

{(x, j) | x ∈ Xj} not= X j ,

for every j ∈ {1, . . . , p}
–

p∪
j=1

X j not= X

–

K ∩ X j not= Kj ,

for every K ⊆ X and every j ∈ {1, . . . , p};
–

{K ∈ Pcp(X) | Kj �= ∅ for every j ∈ {1, . . . , p}} not= PS
cp(X),

where (see Lemma 3.1, a)) X is endowed with the metric d : X × X →
[0,∞) described by

d((x, k), (y, l)) =

{
dk(x, y), if l = k

dk(x, xk) + dl(y, xl) + L, if l �= k
,
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for every (x, k), (y, l) ∈ X.

Remark 2.8. X is the disjoint union of the sets Xj . It is also denoted by
p�

j=1
Xj .

Remark 2.9. For every K ⊆ X, we have

K =
p∪

j=1
Kj .

If K ∈ PS
cp(X), then Kj ∈ Pcp(X j) for every j ∈ {1, . . . , p} .

Remark 2.10. For every Kj ∈ Pcp(Xj), where j ∈ {1, . . . , p}, we have

p∪
j=1

Kj
j ∈ PS

cp(X).

Definition 2.11. Given a g-dGIFS S =(((Xj , dj))j∈{1,...,p}, (fi)i∈{1,...,q}) of or-
der m, one can consider the fractal operator FS : (PS

cp(X))m → PS
cp(X) given

by

FS(K1, . . . ,Km) =
q∪

i=1
fi(KD(i)

1 × ... × KD(i)
m ),

for every K1, . . . ,Km ∈ PS
cp(X), where fi : (X D(i))m → X C(i) is described

by

fi((x1,D(i)), . . . , (xm,D(i))) = (fi(x1, . . . , xm), C(i)),

for every x1, . . . , xm ∈ XD(i).

Remark 2.12. For every i ∈ {1, . . . , q}, lip(fi) = lip(fi).

Remark 2.13. FS is well defined since:

a) Taking into account Remark 2.9 and Tikhonov’s theorem, KD(i)
1 × ... ×

KD(i)
m is compact. Since fi is continuous (see Remark 2.12), we infer that

fi(KD(i)
1 × ... × KD(i)

m ) is a compact subset of X C(i), so it is a compact
subset of X. Therefore

q∪
i=1

fi(KD(i)
1 × ... × KD(i)

m ) ∈ Pcp(X).

b) In addition,

q∪
i=1

fi(KD(i)
1 × ... × KD(i)

m ) ∈ PS
cp(X)

since, as C is onto, we have (
q∪

i=1
fi(KD(i)

1 × ... × KD(i)
m )) ∩ X j �= ∅ for

every j ∈ {1, . . . , p}.
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3. The main result

Lemma 3.1. Let S =((Xj , dj)j∈{1,...,p}, (fi)i∈{1,...,q}) be a g-dGIFS. Let us
also consider the fixed elements xj ∈ Xj, where j ∈ {1, . . . , p} and L ∈
[2max{ε1, . . . , εp},∞). Then:

a) d : X × X → [0,∞), given by

d((x, k), (y, l)) =
{

dk(x, y), if l = k

dk(x, xk) + dl(y, xl) + L, if l �= k
,

for every (x, k), (y, l) ∈ X, is a metric on X.
b) (X, d) is a complete metric space.

Moreover, if h is the Hausdorff–Pompeiu metric associated with d, we
have:

c)

h(Kj
1,Kj

2) ≤ h(K1,K2),

for every j ∈ {1, . . . , p} and every K1,K2 ∈ PS
cp(X) such that h(K1,K2)

< L.
d) (PS

cp(X), h) is a complete metric space.
e) (PS

cp(X), h) is a L-chainable metric space.

Proof. a) It is clear that, for every (x, k), (y, l) ∈ X, we have

d((x, k), (y, l)) ≥ 0;
d((x, k), (y, l)) = 0 if and only if (x, k) = (y, l);
d((x, k), (y, l)) = d((y, l), (x, k)).

To conclude that d is a metric, we have to check that

d((x, k), (y, l)) ≤ d((x, k), (z,m)) + d((z,m), (y, l)),

for every (x, k), (y, l), (z,m) ∈ X.
The justification of the above inequality is divided into three situations,

according to the cardinality of the set {k, l,m}.
If card{k, l,m} = 1, the inequality is obvious as it takes the form

dk(x, y) ≤ dk(x, z) + dk(z, y),

for every x, y, z ∈ Xk.
If card{k, l,m} = 2, we have the following cases:

j) k = l �= m
jj) l = m �= k
jjj) k = m �= l.

In the first case, we have

d((x, k), (y, l)) = dl(x, y) ≤ dl(x, xl) + dl(xl, y)
≤ dk(x, xk) + dm(z, xm) + L + dl(y, xl) + dm(z, xm) + L

= d((x, k), (z,m)) + d((z,m), (y, l)).

In the second case, we have

d((x, k), (y, l)) = dk(x, xk) + dl(y, xl) + L
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≤ dk(x, xk) + dl(y, z) + dm(z, xm) + L

= d((x, k), (z,m)) + d((z,m), (y, l)).

The third case is similar to the second one.
If card{k, l,m} = 3, then we have

d((x, k), (y, l)) = dk(x, xk) + dl(y, xl) + L

≤ dk(x, xk) + dm(z, xm) + L + dl(y, xl) + dm(z, xm) + L

= d((x, k), (z,m)) + d((z,m), (y, l)).

Hence, the proof of a) is complete.
b) Let us consider a Cauchy sequence ((xn, kn))n∈N of elements from

X.
Then for each ε > 0 there exists nε ∈ N such that

d((xn, kn), (xm, km)) < ε, (1)

for every m,n ∈ N, m,n ≥ nε.
In particular, there exists n0 ∈ N such that

d((xn, kn), (xm, km)) < L,

for every m,n ∈ N, m,n ≥ n0 which means that one can find j ∈ {1, . . . , p}
having the property that kn = km = j for every m,n ∈ N, m,n ≥ n0.

Then, (1) takes the form

dj(xn, xm) < ε,

for every m,n ∈ N, m,n ≥ max{n0, nε}, so (xn)n∈N turns out to be a Cauchy
sequence of elements from the complete metric space (Xj , dj).

Consequently there exists x∗ ∈ Xj such that lim
n→∞dj(xn, x∗) = 0 which

implies that lim
n→∞d((xn, kn), (x∗, j)) = 0, i.e., ((xn, kn))n∈N is convergent.

c) Let us consider j ∈ {1, . . . , p} and K1,K2 ∈ PS
cp(X) such that

h(K1,K2) < L.
For x ∈ Kj

1 arbitrarily chosen, the compactness of K2 ensures the exis-
tence of yx ∈ K2 such that

d(x, yx) = d(x,K2) ≤ sup
u∈Kj

1

d(u,K2)
Remark 2.9≤ sup

u∈K1

d(u,K2) ≤ h(K1,K2).

(2)

Then,

yx ∈ Kj
2, (3)

because otherwise we get the contradiction L ≤ d(x, yx)
(2)

≤ h(K1,K2) < L.

Consequently, we get d(x,Kj
2)

(3)

≤ d(x, yx)
(2)

≤ h(K1,K2) and hence

sup
x∈Kj

1

d(x,Kj
2) ≤ h(K1,K2). (4)
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In a similar manner, we get

sup
x∈Kj

2

d(x,Kj
1) ≤ h(K1,K2). (5)

Therefore, via (4) and (5), we infer that

h(Kj
1,Kj

2) = max{ sup
x∈Kj

1

d(x,Kj
2), sup

x∈Kj
2

d(x,Kj
1)} ≤ h(K1,K2).

d) Let us consider a Cauchy sequence (Kn)n∈N of elements from PS
cp(X).

Then, (Kn)n∈N is a Cauchy sequence of elements from the complete
metric space (Pcp(X), h), so there exists K ∈ Pcp(X) such that

lim
n→∞h(Kn,K) = 0. (6)

As Kn ∈ PS
cp(X) for every n ∈ N, we have ∅ �= Kj

n for every j ∈
{1, . . . , p} and every n ∈ N.

Using c), the sequence (Kj
n)n∈N is Cauchy for every j ∈ {1, . . . , p}.

As (X j , d) is complete (since it is isometric with the complete metric
space (Xj , dj)), we infer that (Pcp(X j), h) (which is a subspace of (Pcp(X), h))
is complete, so there exists Cj ∈ Pcp(X j) ⊆ Pcp(X) such that

lim
n→∞h(Kj

n, Cj) = 0, (7)

for every j ∈ {1, . . . , p}.
We have

h(Kn,
p∪

j=1
Cj)

Remark 2.9= h(
p∪

j=1
Kj

n,
p∪

j=1
Cj) ≤ p

max
j=1

h(Kj
n, Cj),

for every n ∈ N, so, via (7), we get

lim
n→∞h(Kn,

p∪
j=1

Cj) = 0. (8)

In view of (6) and (8), we get
p∪

j=1
Cj = K and therefore

Kj = Cj �= ∅,

for every j ∈ {1, . . . , p}, so K ∈ PS
cp(X). In view of (6), this ends the proof.

e) Let A,B ∈ PS
cp(X) fixed, but arbitrarily chosen.

Then, Aj �= ∅ and Bj �= ∅ for every j ∈ {1, . . . , p}.
As (X j , d) is εj-chainable (since it is isometric with the εj-chainable

metric space (Xj , dj) ), taking into account Proposition 2.2, there exist n ∈ N

and the finite subsets Cj
1 , . . . , C

j
n of X j such that for every k ∈ {1, . . . , n−1}

and every j ∈ {1, . . . , p},

h(Aj , Cj
1) < 2εj ≤ L, h(Cj

n,Bj) < 2εj ≤ L (9)

and

h(Cj
k, Cj

k+1) < 2εj ≤ L. (10)

One should note that we used the fact that, via a possible repetition of the
elements Cj

k, the number n (which basically depends on Aj and Bj) can be
chosen to be the same for all j ∈ {1, . . . , p}.
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Now, for every k ∈ {1, . . . , n}, let us consider the sets

Ck =
p∪

j=1
Cj

k.

Since each Ck is finite and ∅ �= Cj
k = Cj

k for every j ∈ {1, . . . , p}, we
note that Ck ∈ PS

cp(X).
Moreover we have

h(A,C1)
Remark 2.9= h

(
p∪

j=1
Aj ,

p∪
j=1

Cj
1

)
≤ p

max
j=1

h(Aj , Cj
1)

(9)
< L,

h(Cn, B) Remark 2.9= h

(
p∪

j=1
Cj

n,
p∪

j=1
Bj

)
≤ p

max
j=1

h(Cj
n,Bj)

(9)
< L

and for every k ∈ {1, . . . , n − 1},

h(Ck, Ck+1)
Remark 2.9= h

(
p∪

j=1
Cj

k,
p∪

j=1
Cj

k+1

)
≤ p

max
j=1

h(Cj
k, Cj

k+1)
(10)
< L.

We conclude that (PS
cp(X), h) is a L-chainable metric space. �

Proposition 3.2. For every g-dGIFS S =(((Xj , dj))j∈{1,...,p}, (fi)i∈{1,...,q}) we
have

h(FS(M1, . . . ,Mm), FS(N1, . . . , Nm)) ≤ C max{h(M1, N1), . . . , h(Mm, Nm)},
for every M1, . . . ,Mm, N1, . . . , Nm ∈ PS

cp(X) such that

max{h(M1, N1), . . . , h(Mm, Nm)} < L,

where C =
q

max
i=1

lip(fi).

Proof. We have

h(FS(M1, . . . ,Mm), FS(N1, . . . , Nm))

= h
( q∪

i=1
fi(MD(i)

1 × ... × MD(i)
m

)
,

q∪
i=1

fi(N D(i)
1 × ... × N D(i)

m )

≤ q
max
i=1

h(fi(MD(i)
1 × ... × MD(i)

m ), fi(N D(i)
1 × ... × N D(i)

m ))
(∗)
≤

≤ q
max
i=1

lip(fi)max{h(MD(i)
1 ,N D(i)

1 ), . . . , h(MD(i)
m ,N D(i)

m )} Remark 2.12.≤

≤ C
q

max
i=1

max{h(MD(i)
1 ,N D(i)

1 ), . . . , h(MD(i)
m ,N D(i)

m )}

= C max{ q
max
i=1

h(MD(i)
1 ,N D(i)

1 ), . . . ,
q

max
i=1

h(MD(i)
m ,N D(i)

m )}
Lemma 3.1, c)

≤
≤ C max{h(M1, N1), . . . , h(Mm, Nm)},

for every M1, . . . ,Mm, N1, . . . , Nm ∈ PS
cp(X) such that

max{h(M1, N1), . . . , h(Mm, Nm)} < L.

Note that the details concerning the validity of (∗) are given in the proof
of Theorem 3.5 from [15]. �
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Theorem 3.3. The fractal operator FS associated with every g-dGIFS S =
((Xj , dj)j∈{1,...,p}, (fi)i∈{1,...,q}) has a unique fixed point. Moreover,

lim
n→∞G

[n]
S (K) = AS ,

for every K ∈ PS
cp(X), where the function GS : PS

cp(X) → PS
cp(X) is given

by

GS(K) = FS(K, . . . , K),

for every K ∈ PS
cp(X).

Proof. By Proposition 3.2, the operator GS is (L,C)-uniformly locally con-
tractive for C =

q
max
i=1

lip(fi).

Therefore, taking into account Lemma 3.1, d) and e) and Edelstein’s
contraction principle, we infer that GS has a unique fixed point, so, via
Remark 2.6, FS has a unique fixed point and

lim
n→∞G

[n]
S (K) = AS ,

for every K ∈ PS
cp(X). �

Definition 3.4. The unique fixed point of FS is called the attractor of the
g-dGIFS S and we denote it by AS .

Remark 3.5. In the framework of Theorem 3.3, if p = 1 , then C is onto and,
in this case, we obtain (a particular case of) the result from [34].

Proposition 3.6. Let S =((Xj , dj)j∈{1,...,p}, (fi)i∈{1,...,q}) be a g-dGIFS and
K1, . . . ,Km ∈ PS

cp(X). Then

lim
n→∞Kn = AS ,

where the sequence (Kn)n∈N is defined inductively by the relation

Kn+m = FS(Kn+m−1, . . . ,Kn),

for every n ∈ N.

Proof. We start with the following:
Claim. Let M1, . . . ,Mm, N1, . . . , Nm ∈ PS

cp(X) such that

h(Mk, Nk) < L,

for every k ∈ {1, . . . , m}.
Then,

lim
n→∞h(Mn, Nn) = 0,

where the sequences (Mn)n∈N and (Nn)n∈N are defined inductively by the
relation from the assertion.

Justification of the claim. We are going to use the following notation:
–

h(Mn, Nn) not= dn
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–

max{dn, . . . , dn+m−1} not= en

–
q

max
i=1

lip(fi)
not= C < 1 .

Since

dn+m = h(Mn+m, Nn+m)

= h(FS(Mn+m−1, . . . , Mn), FS(Nn+m−1, . . . , Nn))
Proposition 3.2

≤
≤ C max{h(Mn+m−1, Nn+m−1), . . . , h(Mn, Nn)} = C max{dn+m−1, . . . , dn},

provided that dn+m−1, . . . , dn < L, we obtain, by mathematical induc-
tion, that

dn < L,

for all n ∈ N.

Hence, for every n ∈ N,

dn+m ≤ Cen < en, (1)

As

dn+k ≤ en, (2)

for every n ∈ N and k ∈ {1, . . . , m − 1}, via (1) and (2), we get

en+1 = max{dn+1, . . . , dn+m} ≤ en, (3)

for every n ∈ N. Consequently, for every n ∈ N,

en+m = max{dn+m, . . . , dn+2m−1}
(1)

≤ C max{en, . . . , en+m−1} (3)
= Cen. (4)

Taking into account (4), we conclude that

lim
n→∞en = 0. (5)

As 0 ≤ dn ≤ en for every n ∈ N, relation (5) ensures lim
n→∞dn = 0, so the

justification of the Claim is complete.
Since (PS

cp(X), h) is L-chainable (see Lemma 3.1, e)), there exists u ∈ N

and Cl
v ∈ PS

cp(X), l ∈ {0, . . . , u}, v ∈ {1, . . . , m}, such that

C0
v = Kv, Cp

v = AS and h(Cl
v, Cl+1

v ) < L, (6)

for every l ∈ {0, . . . , u − 1} and v ∈ {1, . . . , m}.
For every l ∈ {0, . . . , u}, we consider the sequence (Kl

n)n∈N defined
inductively by the relation

Kl
n+m = FS(Kl

n+m−1, . . . ,K
l
n),

for every n ∈ N and Kl
1 = Cl

1, . . . ,K
l
m = Cl

m.
Note that, in view of (6) and the Claim, we have

lim
n→∞h(Kl

n,Kl+1
n ) = 0, (7)

for every l ∈ {0, . . . , u − 1}.
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Taking into account that (K0
n)n∈N = (Kn)n∈N and (Ku

n)n∈N = (AS)n∈N,
we get

0 ≤ h(Kn, AS) = h(K0
n,Ku

n) ≤
u−1∑
l=0

h(Kl
n,Kl+1

n ), (8)

for every n ∈ N.
From (7) and (8), we conclude that

lim
n→∞h(Kn, AS) = 0.

�

4. Examples

A. Let us consider the g-dGIFS S =(((Xj , dj))j∈{1,2,3}, (fi)i∈{1,...,5}), where:

– (Xj , dj) = (C, |.|) for each j ∈ {1, 2, 3}
– D,C : {1, 2, 3, 4, 5} → {1, 2, 3} are given by

D(1) = D(2) = D(3) = 1, D(4) = 2, D(5) = 3

and

C(1) = 1, C(2) = 2, C(3) = 3, C(4) = 1, C(5) = 1

– f1 : X2
1 → X1, f2 : X2

1 → X2, f3 : X2
1 → X3, f4 : X2

2 → X1 and
f5 : X2

3 → X1 are given by

f1(z1, z2) = 0, 2x1 + 0, 2y2 + i(0, 2x2 + 0, 1y2),

f2(z1, z2) =
3
2
[0, 15x1 + 0, 07x2 + 0, 4 + i(0, 15y1 + 0, 07y2)],

f3(z1, z2) =
3
2
[0, 15y1 + 0, 07x2 + i(0, 15x1 + 0, 07y2 + 0, 4)],

f4(z1, z2) =
2
3
z1

and

f5(z1, z2) =
2
3
z2,

for every z1 = x1 + iy1, z2 = x2 + iy2 ∈ C.

Using an algorithm similar to the one described in [29], we get the
graphic representations of A1, A2 and A3 indicated in Figs. 1, 2 and respec-
tively 3, where by A we designate the attractor of the g-dGIFS S.

B. Let us consider the g-dGIFS S =(((Xj , dj))j∈{1,2}, (fi)i∈{1,2,3}), where:

– (X1, d1) = (R, |.|) and (X2, d2) = (R2, ‖.‖1)
– D,C : {1, 2, 3} → {1, 2} are given by

D(1) = D(2) = 1, D(3) = 2, C(1) = C(3) = 1, C(2) = 2
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Figure 1. The graphic representation of A1

Figure 2. The graphic representation of A2

Figure 3. The graphic representation of A3

– f1 : X2
1 → X1, f2 : X2

1 → X2 and f3 : X2
2 → X1 are given by

f1(x, y) =
5
18

x +
5
18

y +
4
9
,

f2(x, y) =
(

x + y

3
, 0

)
,



Vol. 24 (2022) An application of Edelstein’s contraction principle Page 15 of 18 63

and

f3((x1, x2), (y1, y2)) =
x1 + y1

3
+

x2 + y2
10

,

for every x, y, x1, x2, y1, y2 ∈ R.

Then, one can easily check that

AS = ([0, 1] × {1}) ∪
([

0,
2
3

]
× {0} × {2}

)
.
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[19] Garćıa, G.: Approximating the attractor set of iterated function systems of
order m by α-dense curves. Mediterr. J. Math. 17 (2020) (paper No. 147)
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