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Abstract. We prove that under certain conditions, the quantum coho-
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formation of the symplectic cohomology of the complement of a simple
crossings symplectic divisor. We also prove rigidity results for the skele-
ton of the divisor complement.

Mathematics Subject Classification. 53D37, 53D40.

1. Introduction

1.1. Geometric setup

Let (M,ω) be a compact symplectic manifold satisfying the monotonicity
condition:

2κc1(TM) = [ω], for some κ > 0

in H2(M ; R).
Let D = ∪N

i=1Di ⊂ M be an SC symplectic divisor (in the sense of [36,
Section 2]) and set X = M\D.1

We assume that there exist positive rational numbers λ1, . . . , λN called
weights such that

2c1(TM) =
∑

i

λi · PD(Di) in H2(M ; R).

Note that the number of weights in the setup depends on the divisor. If
PD(Di) are linearly independent classes in H2(M ; R) (e.g., if D is smooth),
the weights are canonically determined. Otherwise, the choice of weights is
extra data.

1From now on, we systematically shorten SC symplectic divisor to SC divisor as we believe
this will not cause confusion.

This article is part of the topical collection “Symplectic geometry—a Festschrift in honour

of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs

Frauenfelder and Felix Schlenk.
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The classes PD(Di) have canonical lifts to the relative cohomology group
H2(M,X; R) along the canonical map

H2(M,X; R) → H2(M ; R),

see Sect. 2.1 for more details. Let us denote these classes by PDrel(Di) and
note that they form a basis of H2(M,X; R). We define the class

λ :=
∑

i

λi · PDrel(Di) ∈ H2(M,X; R),

which is a lift of 2c1(TM) by construction. Consequently, κλ is a lift of [ω].
Let us denote by Ω∗(M,X) the relative de Rham complex, which is by

definition the cone of the restriction map Ω∗(M) → Ω∗(X). Note that there
is a relative de Rham isomorphism

H∗(Ω∗(M,X)) → H∗(M,X; R),

which in particular tells us that there exists a one-form θ ∈ Ω1(X) satisfying

ω|X = dθ, and
∫

u

ω −
∫

∂u

θ = κλ · u for all u ∈ H2(M,X).

Using that κλi > 0 for all i, we may arrange that (X, θ) is a finite type
convex symplectic manifold. Moreover c1(TX) = 0, and a preferred homotopy
class of trivializations of a power of the canonical bundle of X is determined
by the choice of weights λi (see Sect. 3.3 for details).

Example 1.1. Suppose that M is a smooth complex projective variety, D a
simple normal crossings divisor, and Dλ =

∑
i λiDi is an effective ample

Q-divisor whose class in CH∗(M)Q is twice the anticanonical class:

[Dλ ] = −2KM .

Let us also choose an arbitrary κ > 0.
Choose a positive integer k such that kDλ has integral coefficients, and

let L be the corresponding complex line bundle with section s. Ampleness
implies that we can choose a positive Hermitian metric ‖·‖ on L with curva-
ture 2-form F . We define the symplectic form ω := −iκ

k F on M . We can also
define the primitive θ := κ

k dc log ‖s‖ of ω on X. Using D as our SC divisor
and λi as the weights, this puts us in the geometric set-up described above.
Note that in this case X is an affine variety.

The setup that we described thus far is among the most studied in
symplectic geometry. Now, we introduce an hypothesis which is less common,
but which is very crucial for our results.

Hypothesis A. We have λi ≤ 2 for all i = 1, . . . , N .

Remark 1.2. Recalling that [Dλ ] = −2KM , we note that the extreme case
of Hypothesis A, namely λi = 2 for all i, corresponds to (M,D) being log
Calabi–Yau. If we in addition assume that each irreducible component of D
is ample, then Hypothesis A implies that (M,D) is either log Calabi–Yau or
log general type.
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Example 1.3. Consider the setup of Example 1.1. Let us take M = CP
n, D

a simple normal crossings divisor of degree d. Then we may choose weights
λi such that Hypothesis A holds if and only if d ≥ n + 1. Note that (M,D)
is log Calabi–Yau if d = n + 1, and log general type if d > n + 1. To see
one direction of the implication, assume that D = ∪N

i=1Di with Di smooth
of degree di and Hypothesis A holds. Then we have

2(n + 1) =
∑

i

λidi ≤
∑

i

2di = 2d.

Note that in the log Calabi–Yau case d = n + 1, all weights λi must be equal
to 2.

1.2. Quantum cohomology is a deformation of symplectic cohomology

We fix, once and for all, a commutative ring k. Let A ⊂ Q be the subgroup
generated by the weights λi, and set Λ = k[A] to be the group algebra of A.2

We define a Q-grading on Λ by putting ea in degree i(ea) = a. Let a0 > 0
be a generator of A, and define q := ea0 . Hence, we have an isomorphism of
algebras Λ ∼= k[q, q−1].

Throughout the paper, we will consider various filtrations associated
with filtration maps (see Sect. A.1 for a review of this notion). We will abuse
notation using the same symbol for the filtration map and the associated
filtration. In the first instance of this abuse of notation, we introduce the
filtration Q≥• on Λ associated with the filtration map Q : Λ → Z induced by
Q(qa) = a. Thus, Q≥pΛ consists of all linear combinations of monomials qa

with a ≥ p.
We define the graded Λ-module QH∗(M ; Λ) := H∗(M ; k)⊗kΛ, equipped

with the tensor product grading.3 We are concerned with the following ide-
alized and vague conjecture:

Conjecture 1.4. Under certain hypotheses:
(a) QH∗(M ; Λ) is the cohomology of a natural deformation of the symplectic

cochain complex SC∗(X; k) over Λ;
(b) Furthermore, the associated spectral sequence converges: E1 = SH∗

(X; k) ⊗k Λ ⇒ QH∗(M ; Λ).

We will prove a modified version of Conjecture 1.4 in the setup described
in Sect. 1.1. Notably, for the analogue of part (b) we will need Hypothesis A.

Remark 1.5. Conjecture 1.4 part (b) is not true in general. For example, if we
take M = CP

n and D a hyperplane, then X = M\D = C
n has vanishing sym-

plectic cohomology. But we cannot have a spectral sequence with vanishing
E1 page, converging to the non-vanishing cohomology of CP

n! Note that Hy-
pothesis A is not satisfied in this case by Example 1.3. More generally, it is not
satisfied for D a union of N ≤ n hyperplanes; and X = C

n+1−N × (C∗)N−1

still has vanishing symplectic cohomology in these cases.

2Explicitly, Λ is the k-algebra of k-linear combinations of the symbols ea where a ∈ A, and
ea · eb = ea+b.
3Our main results do not concern the quantum cup product on QH∗(M ; Λ), but it plays
a role in some of the conjectures in Sect. 1.6.
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Note that Conjecture 1.4 (a) is a statement about the chain complex
SC∗(X; k), which depends on various auxiliary data which we have not in-
cluded in the notation. Given such a choice, we consider the chain complex

SC∗
Λ := (SC∗(X; k) ⊗k Λ, d ⊗ idΛ) (1.1)

with the tensor product grading.4 It admits a Q-filtration induced by the
filtration map Q(γ ⊗ r) = Q(r). In the modified version of Conjecture 1.4
(a) that we prove, we will need to replace SCΛ with an ‘equivalent’ filtered
complex S̃CΛ:

Theorem B (a modified version of Conjecture 1.4 (a)). Assume that we are
in the setup described in Sect. 1.1. Then there exists a choice of the auxiliary
data needed to define SC∗(X; k), and a filtered cochain complex of Q≥0Λ-

modules, S̃CΛ :=
(
S̃C

∗
Λ, d̃, Q̃≥•

)
, with the following properties:

(1)
(
S̃C

∗
Λ, d̃, Q̃≥•

)
is filtered quasi-isomorphic to (SC∗

Λ, d ⊗ idΛ,Q≥•) (see
Sect. 5.2 for the precise meaning of this statement).

(2) There exists a second Q≥0Λ-linear differential ∂ on S̃C
∗
Λ, such that ∂−d̃

strictly increases the Q̃-filtration. We call ∂ the deformed differential.
(3) We have H∗

(
S̃C

∗
Λ, ∂

) ∼= QH∗(M ; Λ).

By considering the spectral sequence associated with the deformed fil-
tered complex

(
S̃C

∗
Λ, ∂, Q̃≥•

)
, we then obtain:

Theorem C (Conjecture 1.4 (b)). Assume now that Hypothesis A holds. Then
the spectral sequence associated with the filtered complex (S̃CΛ, ∂, Q̃≥•) con-
verges, and has

Ej,k
1 = SHk+j(1+a0)(X; k) ⊗k k · q−j ⇒ QHj+k(M ; Λ),

where j ∈ Z and k ∈ Q.

Remark 1.6. Because our Floer complexes are Q-graded, our spectral se-
quence (Ej,k

i , dj,k
i ) has i, j ∈ Z and k ∈ Q, rather than the usual k ∈ Z.

All the standard theory of spectral sequences goes through in this slightly
more general context. Indeed, one can think of such a spectral sequence as a
collection of ordinary spectral sequences indexed by {c ∈ Q : 0 ≤ c < 1}, by
setting E(c)j,k

i = Ej,k−c
i .

Let us note an immediate corollary:

Corollary 1.7. Under Hypothesis A, the affine variety X from Example 1.1
has non-vanishing symplectic cohomology. In particular, it is not flexible.

Remark 1.8. We expect that analogues of Theorems B and C hold also under
the assumption that M is Calabi–Yau, i.e., c1(TM) = 0. Indeed, Yuhan
Sun has recently proved very closely related results [35]. In this case, the
key notion is ‘index boundedness’, as used by McLean in [25], together with
certain lower bounds on the indices of the one-periodic orbits ‘on the divisor’.
We refer the reader to [35] for more details.

4In general this will be a Q-grading.
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1.3. Rigidity results

By applying the same techniques as those used to prove Theorems B and C,
we will prove a rigidity result for certain subsets of M .

The main tool used to prove the result is a version of the relative sym-
plectic cohomology developed by the third author in [40] (with which we
assume some familiarity). Slightly modifying the construction there, for any
compact K ⊂ M , we can define a Q-graded Λ-module SH∗

M (K; Λ). The def-
inition of this invariant involves choosing acceleration data to define a Floer
1-ray, and then the chain-level invariant is defined to be not the telescope
but a degreewise-completed telescope. More details are given in Sect. 3.2.5

Following [38], we say that K is SH-invisible if SH∗
M (K; Λ) = 0, and

SH-visible otherwise. One can prove that SH-visible subsets are not stably
displaceable (see Theorem 3.6).6 For example, PSS isomorphisms imply that
QH∗(M ; Λ) ∼= SHM (M ; Λ), so M is SH-visible; and as a result M is not
stably displaceable (as a subset of itself). Moreover, there are restriction
maps SH∗

M (K ′; Λ) → SH∗
M (K; Λ), whenever K ′ contains K. By a unitality

argument, it follows that any compact subset of an SH-invisible subset is
SH-invisible (see Theorem 3.7).

We say that K is nearly SH-visible if any compact domain that contains
K in its interior is SH-visible. As straightforward consequences of the previ-
ous paragraph, one can show that SH-visible subsets are nearly SH-visible,7

and nearly SH-visible subsets are not stably displaceable.
We say that K is SH-full if for any compact K ′ contained in M\K,

SH∗
M (K ′; Λ) = 0. SH-full subsets are nearly SH-visible, as a consequence of

the Mayer–Vietoris property of relative symplectic cohomology [40]. One can
prove that an SH-full subset cannot be displaced from a nearly SH-visible
subset by a symplectomorphism. It is also the case that SH-full subsets are
not stably displaceable from themselves (see [38, Corollary 1.9]). By a closed–
open map plus unitality argument (see [38, proof of Theorem 1.2 (6)]), it can

5 The construction that we give here can be generalized to all symplectic manifolds with
the property

2c1(TM) = η[ω] for some η ∈ R,

and subgroup B ⊂ R which contains ω(π2(M)). Namely, we define the filtered graded
algebra k[B] where i(eb) = ηb and the filtration level of eb is b. We then define the Novikov-
type algebra

ΛB,η := k̂[B],

where the completion is degreewise. Our Λ in this paper is nothing but ΛκA,κ−1 , whereas

the Novikov field used in e.g. [38] is ΛR,0. The construction produces a Z + ηB-graded
ΛB,η-module SH∗

M (K; ΛB,η). When c1(M) = 0, and taking into account only the con-
tractible orbits, the invariant that is denoted by SH∗

M (K; Λ) in [38] is a special case of this
construction as well. It would have been called SH∗

M (K; ΛR,0) in our notation here, and

a capped orbit (γ, u) here would be interpreted as T A(γ,u)γ in that paper’s notation. Let
us also note that η < 0 requires using virtual techniques, which forces us to make certain
assumptions on k.
6Stably displaceable means K×Z ⊂ M ×T ∗S1 is displaceable from itself by a Hamiltonian

diffeomorphism, where Z is the zero section of T ∗S1.
7We do not have examples of nearly SH-visible subsets which are not SH-visible.
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be shown that Floer-theoretically essential (over k) monotone Lagrangians
cannot be displaced from SH-full subsets by a symplectomorphism.

Now we state our result, which will need some extra hypotheses beyond
those already mentioned in Sect. 1.1. First of all, we assume that D is an
orthogonal SC divisor. Then there exist Hamiltonian circle actions rotating
about the Di, and commuting on the overlaps, by [23]; we assume that θ is
‘adapted’ to such a system of commuting Hamiltonians, in an appropriate
sense. We make these notions precise in Sect. 2 below. We remark that the
data we need is weaker than what McLean calls a ‘standard tubular neigh-
bourhood’ in [25].

Let Z be the Liouville vector field of (X, θ). We define the continuous
function ρ0 : X → R, so that the Liouville flow starting at x is defined
precisely for time t < − log(ρ0(x)). Note that L = {ρ0 = 0} is the Lagrangian
skeleton of (X, θ). We extend the function to ρ0 : M → R by setting ρ0|D = 1.

Definition 1.9. We define

σ̃crit := 1 − 2
maxi λi

, σcrit := max(0, σ̃crit),

and set

Kcrit := {ρ0 ≤ σcrit} ⊂ M.

Note that σcrit = 0, and hence Kcrit = L, if and only if Hypothesis A is
satisfied.

Equivalently, Kcrit is the image of the Liouville flow for time log(σcrit).

Theorem D. The subset Kcrit ⊂ M is SH-full. In particular, if Hypothesis A
is satisfied, then L is SH-full.

For example, this means that when Hypothesis A is satisfied, L can-
not be displaced from any Floer-theoretically essential (over k) monotone
Lagrangian.

Remark 1.10. It is possible for a compact subset to be SH-full for one choice
of k but not for another. We did not make a big deal about this as our result
is uniform for all ground fields. We expect this to play a real role in the
context of Conjecture 1.20. We also refer the reader to Remark 1.8 of [38] for
another weakening of the notion of SH-fullness.

Remark 1.11. An analogue of Theorem D, in the case that M is Calabi–Yau,
was proved in [38].

1.4. Floer theory conventions

We give a quick outline of our conventions for Hamiltonian Floer theory on
M , for the purposes of giving an overview of the proofs of our main results in
the following section (see Sect. 3 for more details). Let A′ ⊂ Z be the image
of 2c1(TM) : π2(M) → Z, and set Λ′ := k[A′]. Note A′ ⊂ A, so Λ′ ⊂ Λ.

A ‘cap’ for an orbit γ : S1 → M of a Hamiltonian H : S1 × M → R

is an equivalence class of discs u bounding γ, where two discs are considered
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equivalent if they have the same symplectic area. One can associate an in-
dex i(γ, u) and action A(γ, u) to a capped orbit (γ, u) of a non-degenerate
Hamiltonian. The ‘mixed index’

imix(γ) = i(γ, u) − κ−1A(γ, u)

is independent of the cap u.
We define CF i(M,H) to be the free Z-graded k-module generated by

capped orbits (γ, u) of H satisfying i(γ, u) = i. This becomes a graded Λ′-
module, where ea · (γ, u) = (γ, u#B) where 2c1(TM)(B) = a. It also admits
an action filtration, associated with the filtration map induced by A(γ, u).
We define CF ∗(M,H; Λ) := CF ∗(M,H)⊗Λ′ Λ. It has a k-basis of ‘fractional
caps’: a fractional cap for γ is a formal expression u + a, where u is a cap
for γ and a ∈ A, and we declare u + a ∼ u′ + a′ iff a − a′ ∈ A′ and (γ, u′) =
ea−a′ · (γ, u).

The Floer differential increases degree by 1, and respects the action
filtration (i.e., it does not decrease action). The PSS isomorphism identifies
HF ∗(M,H; Λ) ∼= QH∗(M ; Λ). If H1 ≤ H2 pointwise, then there exists a
continuation map CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) which respects action
filtrations.

We now explain our conventions for relative symplectic cohomology.
Given K ⊂ M compact, a choice of acceleration data (Hτ , Jτ ) is the data
required to define a Floer 1-ray

C(Hτ , Jτ ) := CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) → · · ·
consisting of Floer cohomology groups and continuation maps, where the
monotone sequence of Hamiltonians H1 ≤ H2 ≤ · · · converges to 0 on K
and +∞ outside of K. We consider the telescope complex tel(C), which is
constructed so that

H∗(tel(C)) = lim−→
i

HF ∗(M,Hi; Λ) = QH∗(M ; Λ).

We define t̂el(C) to be the degreewise completion of tel(C) with respect to
the action filtration, and SH∗

M (K; Λ) := H∗(t̂el(C)).

1.5. Outline of proofs

In this section, we give an extended overview of the proofs of our main results,
trying to convey the main ideas while avoiding technicalities. We assume
that we are in the geometric setup described in Sect. 1.1, with the additional
properties and data explained in Sects. 1.2 and 1.3.

We will construct a function ρ : M → R which is a smoothing of ρ0

(really, a family of smoothings ρR for R > 0 sufficiently small) with the
following properties:

• it will be continuous on M , and smooth on the complement of L;
• ρ|L = 0 and ρ|D ≈ 1;8

8If D is smooth then we can arrange that ρ|D = 1; if D is normal crossings then ρ|D
will be equal to 1 away from a neighbourhood of the singularities of D, where an error is
introduced by ‘rounding corners’.
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• it will satisfy Z(ρ) = ρ on X\L.

It also has the property that Kσ := {ρ ≤ σ} is a Liouville subdomain of X
for any σ ∈ (0, 1). Because Z(ρ) = ρ, Kσ → L as σ → 0.

1.5.1. Theorem B. We choose σ ∈ (σcrit, 1), and construct acceleration data
(Hτ , Jτ ) for Kσ ⊂ M as follows. Fix 0 < �1 < �2 < · · · such that the Reeb flow
on Y = ∂Kσ has no �n-periodic orbits for all n, and �n → ∞ as n → ∞. We
choose an increasing family of smooth functions hn : R → R, approximating
the piecewise-linear functions max(0, �n(ρ − σ)) with increasing accuracy as
n → ∞, and being linear with slope �n for ρ ≥ σ (see Fig. 2). We consider
acceleration data (Hτ , Jτ ) for Kσ ⊂ M such that Jτ is of contact type near
∂Kσ and Hn is equal to a carefully chosen perturbation of hn ◦ ρ. The 1-
periodic orbits of Hamiltonians Hn then fall into two groups (1) SH-type:
contained in Kσ and (2) D-type: outside of Kσ. We also make sure that the
SH-type orbits that are not “Reeb type” are constant.

We now consider the Floer 1-ray

C(Hτ , Jτ ) := CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) → · · ·
associated with our choice of acceleration data. We decompose the associated
telescope complex as a direct sum of the SH-type generators and the D-type
generators:

tel(C) = tel(C)SH ⊕ tel(C)D.

This is a direct sum as Λ-modules, not as cochain complexes: the differential,
which we denote by ∂, mixes up the factors.

By restricting the acceleration data with Kσ, we also obtain a Floer
1-ray of k-cochain complexes

CSH(Hτ , Jτ ) := CF ∗(Kσ,H1|Kσ
; k) → CF ∗(Kσ,H2|Kσ

; k) → · · ·
and we set

SC∗(X; k) := tel(CSH).

We denote the differential by d. Strictly speaking, this is the cochain complex
defining the symplectic cohomology of the Liouville domain Kσ à la Viterbo
[45]. Our notation is justified by the fact that in [23, Section 4], McLean
shows that H∗(SC∗(X; k)) only depends on X.

We associate a canonical fractional cap uin to each SH-type orbit γ,
by setting uin := u − u · λ for an arbitrary cap u (one easily checks that
uin is independent of u). There is then an isomorphism of Λ-modules (recall
Equation (1.1))

SC∗
Λ

∼−→ tel(C)SH

γ ⊗ qa �→ qa · (γ, uin). (1.2)

However, this is not a chain map: indeed, the matrix component ∂SH,SH need
not even be a differential.

Proposition 1.12 (= Proposition 5.10). For any Floer solution u that con-
tributes to C(Hτ , Jτ ) with both ends asymptotic to SH-type orbits, we have
u · λ ≥ 0. In case of equality, u is contained in Kσ.
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One could think of Proposition 1.12 as a manifestation of positivity of
intersection of Floer trajectories with the components of the divisor D (c.f.
[37, Lemma 4.2]), although we actually prove it using an argument related
to Abouzaid–Seidel’s ‘integrated maximum principle’ [2, Lemma 7.2].

The consequence of Proposition 1.12 is that d ⊗ idΛ − ∂SH,SH strictly
increases the Q-filtration. Using PSS isomorphisms, we also see that the ho-
mology of tel(C) is isomorphic to QH∗(M ; Λ). Thus, we are some way towards
proving Theorem B, but we are troubled by the existence of D-type orbits.
The following proposition is the most important ingredient in the proof of
Theorem B, as it allows us to ‘throw out’ the D-type orbits.

Proposition 1.13. There exists δ > 0 such that

imix(γ) ≥ κ−1δ�n

for any D-type orbit γ of Hn.

Sketch of proof when D is smooth. The Hamiltonian Hn is approximately
equal to �n (ρ − σ) near D. When D is smooth we have ρ = r/κλ, where
r is the moment map for a Hamiltonian circle action rotating a neighbour-
hood of D about D with unit speed. In particular, the Hamiltonian flow of
Hn approximately rotates around D at speed �n/κλ, and the D-type orbits
are approximately constant. (This is in contrast to the Hamiltonians used,
for example, in [37], which are approximately constant near D, and which
have non-constant D-type orbits linking D.)

We compute the mixed index with respect to the approximately constant
cap, which is called uout in the body of the paper. As the Hamiltonian flow
of Hn rotates around D at speed �n/κλ, we have i(γ, uout) ≈ 2�n/κλ. On the
other hand, we have Hn ≈ hn(1) ≈ �n(1 − σ) along D, and ω(uout) ≈ 0, so
A(γ, uout) ≈ �n(1 − σ). Combining we have

imix(γ) = i(γ, uout) − κ−1A(γ, uout)

≈ 2�n

κλ
− κ−1�n(1 − σ)

≥ κ−1�n(σ − σcrit),

which gives the desired result, as we chose σ > σcrit. �

Our first thought, in trying to ‘throw out’ the D-type orbits, might be
to consider the submodule of tel(C) spanned by orbits satisfying imix(γ) <
κ−1δ�n, as that is contained in tel(C)SH by Proposition 1.13. However this
does not behave well with respect to the differential: it is neither subcom-
plex, quotient complex, nor subquotient. Instead, we consider a family of
subquotient complexes (SC

(p)
Λ , ∂p) of tel(C), indexed by p ∈ R, spanned by

generators (γ, u) satisfying

i(γ, u) < p ≤ A(γ, u) + δ�n

κ
.

(Note that these are contained in tel(C)SH by Proposition 1.13, which is
identified with SCΛ by (1.2).)
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To see that this is a subquotient of tel(C), we first observe that the
differential clearly increases the quantity F(γ, u) = A(γ,u)+δ�n

κ : it increases
action, and increases n and hence �n by the definition of the telescope com-
plex. Therefore, it defines a filtration map, so F≥ptel(C) is a subcomplex. On
the other hand, the degree truncation σ<pC

• :=
⊕

i<p Ci is always a quo-

tient complex of any cochain complex. Thus (SC
(p)
Λ , d ⊗ idΛ) = σ<pF≥pSCΛ

is a subquotient of SCΛ, whose generators are all of SH-type by Proposition
1.13.

Proposition 1.14. For any p ∈ R, both F≥ptel(C) ⊂ tel(C) and F≥ptel(CSH) ⊂
tel(CSH) are quasi-isomorphic subcomplexes.

Sketch of proof. We may identify F≥ptel(C) as the telescope complex of the
1-ray of Floer groups A≥κp−δ�n

CF ∗(M,Hn,Λ). The key point is that κp −
δ�n → −∞ as n → ∞, and the action filtration is exhaustive, so the direct
limit ‘eventually catches everything’ (see Appendix A.2). The argument for
F≥ptel(CSH) ⊂ tel(CSH) is identical. �

Because Hj(σ<pC
•) = Hj(C•) for j < p − 1, we have

Hj(σ<pF≥ptel(C), ∂) = Hj(M ; Λ) for j < p − 1.

If we were willing to weaken the statement in Theorem B, and only achieve
the isomorphism of item (3) up to degree p − 1, we would now be done: we
could simply take S̃CΛ = SC

(p)
Λ , with Q̃ equal to the filtration induced by Q.

However, to get the corresponding statement in all degrees, we observe that
there are natural maps SC

(p)
Λ → SC

(q)
Λ for all p ≥ q, induced by the inclusion

F≥p ⊂ F≥q and the projection σ<p � σ<q. We define (S̃CΛ, ∂) to be the
homotopy inverse limit of the inverse system of chain complexes (SC

(p)
Λ , ∂p),

and Q̃ the filtration induced by the Q-filtration on SCΛ. The result is that

H∗(S̃CΛ, ∂) = lim←−
p

H∗(SC
(p)
Λ , ∂p) = QH∗(M ; Λ)

as desired. (We remark that this step requires us to check that lim←−
1 H∗

(SC
(p)
Λ , ∂p) = 0; indeed the inverse system is easily seen to satisfy the Mittag–

Leffler property.) This completes the sketch proof of Theorem B.

1.5.2. Theorem C. To prove Theorem C, it suffices to prove that the Q̃-
filtration is bounded below and exhaustive, by the ‘Classical Convergence
Theorem’ [46, Theorem 5.5.1]. The Q-filtration on each SC

(p)
Λ is exhaustive

by definition, but the Q̃-filtration on S̃CΛ is not exhaustive, due to the di-
rect product taken in the construction. Nevertheless one can show that the
inclusion ∪qQ̃≥qS̃CΛ ⊂ S̃CΛ is a quasi-isomorphism, and the Q̃-filtration on
this quasi-isomorphic subcomplex is exhaustive by construction.

Thus the main thing to prove, to apply the Classical Convergence The-
orem, is that the Q̃-filtration is bounded below. The key ingredient is the
following:
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Proposition 1.15. Suppose that Hypothesis A is satisfied. Then for any SH-
type orbit γ, we have i(γ, uin) ≥ 0.

Sketch of proof when D is smooth. Note that the result is trivial for constant
SH-type orbits, as i(γ, uin) is equal to a Morse index which is non-negative.
For a Reeb-type orbit γ, we define uout be the small cap passing through D.
Then the orbit γ winds ν = uout ·D times around D, so i(γ, uout) ≈ 2ν. Thus
we have

i(γ, uin) = i(γ, uout) − λuout · D = (2 − λ)ν ≥ 0,

as required. �

We now show that the Q̃-filtration is bounded below. To be precise,
we need to show that for any i there exists q(i) such that Q̃≥q(i)S̃C

i

Λ = 0.9

Indeed, we observe that for i(γ ⊗ ea) = i fixed, we have

a0Q̃(γ ⊗ ea) = a = i(γ ⊗ ea) − i(γ, uin) ≤ i

by Proposition 1.15; thus we may take q(i) = i/a0.
The following result is an immediate consequence of Theorem D and the

Mayer–Vietoris property of relative symplectic cohomology [40]. However it
also admits a simple direct proof using Proposition 1.15, which we feel is
illuminating, so we give it here.

Proposition 1.16. Suppose Hypothesis A is satisfied. Then the restriction map

SHM (M ; Λ) → SHM (Kσ; Λ)

is an isomorphism for all σ ∈ (0, 1). In particular, Kσ ⊂ M is SH-visible for
all σ ∈ (0, 1) and L is weakly SH-visible, hence not stably displaceable from
itself.

Proof. Note that we have i(γ, uin) ≥ 0 for any SH-type orbit, by Proposition
1.15. We also have A(γ, uin) = h(ρ) − ρ · h′(ρ) ≤ 0, where ρ = ρ(γ), by
the well-known formula [45, Section 1.2].10 It follows that imix(γ) ≥ 0. This
inequality is satisfied for D-type orbits as well (recall Proposition 1.13), and
therefore it is satisfied for all relevant one periodic orbits.

Now if we fix the index i(γ, u) = i, then the inequality imix(γ) ≥ 0
yields an upper bound on the action: A(γ, u) ≤ κ ·i. Therefore the degreewise
completion of the telescope complex has no effect:

t̂el(C(Hτ , Jτ )) = tel(C(Hτ , Jτ )).

It follows that SH∗
M (M ; Λ) → SH∗

M (Kσ; Λ) is an isomorphism as required. �

9The terminology is counterintuitive as our filtrations are decreasing, whereas the standard

conventions for spectral sequences are for the filtrations to be increasing.
10Note that our conventions are different from Viterbo’s.
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1.5.3. Theorem D. To prove Theorem D, we need to consider the dependence
of our constructions on the ‘smoothing parameter’ R > 0, so we include it
in the notation. The proof starts with the same strategy that was used in
the proof of [38, Theorem 1.24]. For R sufficiently small and σ sufficiently
close to 1, M\KR

σ is stably displaceable (this follows from an h-principle as
popularized by McLean in [25]). Therefore, SHM

(
M\KR

σ ; Λ
)

= 0 for such

R, σ. We then prove that there exists a continuous function σD
crit(R), with

σD
crit(0) = σcrit, such that the following holds:

Proposition 1.17 (Proposition 5.14). Let σcrit(R) < σ1 < σ2 < 1. Then, there
exists an isomorphism

SH∗
M

(
M\KR

σ1
; Λ
) ∼= SH∗

M

(
M\KR

σ2
; Λ
)

.

In particular, SHM

(
M\KR

σ

)
= 0 for all σ ∈ (σD

crit(R), 1); as the com-

pact sets
{

M\KR
σ

}

R>0,σ>σD
crit(R)

exhaust M\Kcrit, this implies that Kcrit is

SH-full.
The proof of Proposition 1.17 uses the ‘contact Fukaya trick’ of [38].

This allows us to set up acceleration data (Hτ , Jτ ) for M\Kσ2 and (H̃τ , J̃τ )
for M\Kσ1 , so that there is an isomorphism of Floer 1-rays C(Hτ , Jτ ) ∼=
C(H̃τ , J̃τ ), which however need not respect action filtrations. The key to
proving the Proposition, then, is to show that the action filtrations on the
corresponding telescope complexes are topologically equivalent. The reason
why this last step worked in [38] was the index-boundedness property (also
popularized in [25]). In our setting we need estimates on the mixed index,
which have a different nature.

1.6. Conjectures

1.6.1. Filtration on QH∗(M ; Λ). Note that, as an immediate corollary of
Theorem B (3), there exists a filtration Q̃≥• on QH∗(M ; Λ) induced by the

Q̃-filtration on
(
S̃CΛ, ∂

)
. (In general this is different from the ‘obvious’ fil-

tration on QH∗(M ; Λ), i.e., the one with filtration map α ⊗ r �→ Q(r) for
α ∈ H∗(M ; k), r ∈ Λ.) We give a conjectural description of this Q̃-filtration.
Consider the function f : M → R defined by

f(x) =
∑

k:x∈Dk

λk − 2,

and set M j := {f < j}.

Conjecture 1.18. We have

Q̃≥jH
i(M ; Λ) ⊃ ker(Hi(M ; Λ) → Hi(M ja0−i; Λ)).

When Hypothesis A holds, this inclusion is an equality.

We first observe that the Conjecture is consistent with the fact that

q · Q̃≥jH
i(M ; Λ) = Q̃≥j+1H

i+a0(M ; Λ).
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It is motivated by this together with the natural expectation that the iso-
morphism of Theorem B (3) sends

PD(C) �→
[
e
∑

i∈I λi · PSSlog(C) + (higher-order terms)
]
,

where C is a cycle contained in DI , and PSSlog is the log PSS map of [14].
Thus we expect Q̃(PD(C)) ≥∑i∈I λi/a0.

Remark 1.19. The filtration in Conjecture 1.18 exhibits intriguing parallels
with the weight filtration in Hodge theory, c.f. [9,19].

1.6.2. Analogue of Theorem C in the absence of Hypothesis A. Let us con-
sider the spectral sequence associated with the filtered complex (S̃CΛ, ∂, Q̃≥•)
of Theorem B. If Hypothesis A holds, then it converges to QH∗(M ; Λ) by
Theorem C; but it is also interesting to study the spectral sequence when
this Hypothesis does not hold.

As we saw in Sect. 1.5.2, the reason Hypothesis A is necessary for The-
orem C to hold is that it guarantees the Q̃-filtration on S̃CΛ is bounded
below, and in particular complete. Let us denote by (SCΛ, ∂) the completion
of (S̃CΛ, ∂) with respect to the Q̃-filtration. Note that taking the completion
does not change the spectral sequence.

We give a conjectural description of H∗(SCΛ, ∂), based on suggestions
made to us independently by Pomerleano and Seidel. For each i ∈ I, define
QH∗(M ; Λ)i to be the 0-generalized eigenspace of the operator PD(Di)� (−)
on QH∗(M ; Λ), where � denotes the quantum cup product. I.e., it is the
subspace of α ∈ QH∗(M ; Λ) such that PD(Di)
k �α = 0 for some k. We then
define

QH∗(M ; Λ)crit :=
⋂

i:λi>2

QH∗(M ; Λ)i.

Conjecture 1.20. We have H∗(SCΛ, ∂) ∼= QH∗(M ; Λ)crit. Furthermore, the
resulting spectral sequence converges to QH∗(M ; Λ)crit.

As evidence for the conjecture, we use Conjecture 1.18 to argue that
whenever λi > 2, the degree-0 class c − e−2PD(Di) is invertible in the Q̃-
completed quantum cohomology, for any c �= 0. Indeed its inverse is

(
c − e−2PD(Di)

)−1
= c−1 ·

∞∑

j=0

(
c−1e−2PD(Di)

)
j
,

which converges because Q̃(e−2PD(Di)) ≥ (λi − 2)/a0 > 0. Therefore, any
c-generalized eigenvector of e−2PD(Di) � (−) dies in the Q̃-completion:

(
c − e−2PD(Di)

)
k
� α = 0 ⇒ α = 0,

by multiplying on the left by the inverse.
Assuming that the k-linear endomorphisms e−2PD(Di)�(−) admit Jor-

dan normal forms, the above argument suggests that only the 0-generalized
eigenspaces can ‘survive’. This gives some evidence for Conjecture 1.20 in the
case that k is an algebraically closed field. It is reasonable to believe that one
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can bootstrap from there to the case of a general commutative ring k. For
the rest of this section we will assume that k is an algebraically closed field.

Remark 1.21. We strongly expect that H∗(SCΛ, ∂) is nothing but the rel-
ative symplectic cohomology of the skeleton of X. There is an intriguing
contrast between Conjecture 1.20 and Ritter’s work [29]: precisely, let us
consider the case that D is smooth and λ > 2, and let N be the total space
of the inverse of the normal bundle to D. Then Conjecture 1.20 (together
with the above expectation) says that QH∗(M)crit, which is the 0-generalized
eigenspace of QH∗(M), ‘lives on the skeleton of X’; whereas Ritter shows that
SH∗(N ) is the quotient of QH∗(N ) by its 0-generalized eigenspace. Note that
we can obtain N from the Liouville completion X̂ of X by replacing a neigh-
bourhood of the skeleton with a copy of D (more precisely, the symplectic
cut of X̂ along the hypersurface {ρ = 1} is M

∐N ).

Remark 1.22. In light of Venkatesh’s quantitative generalization of Ritter’s
results [41], we expect that considering Liouville domain neighborhoods V
of the skeleton of varying sizes (vaguely speaking, ‘in the directions of the
components of the divisors’), one might observe that additional simultaneous
generalized eigenspaces start contributing to SH∗

M (V ; Λ). It might be possible
to interpret Theorem D as the other end of this size dependence: if the size
of V is large enough in all directions (e.g., if it contains Kcrit), then all
simultaneous generalized eigenspaces contribute to SH∗

M (V ; Λ).

Further evidence for Conjecture 1.20 is provided in [8], in the case
M = CP

1 × CP
1, where D is a (1, 1) hypersurface: indeed the conjecture

is confirmed in this case. We discuss further examples in Sects. 1.7.4 and
1.7.5 below.

We now recall a variation on the definition of relative symplectic coho-
mology from [38, Remark 1.8]. The relative symplectic cohomology SH∗

M (K; Λ)
is a module over SH∗

M (M ; Λ) = QH∗(M ; Λ), via the restriction map. For any
idempotent a ∈ QH0(M ; Λ), we define the ‘a-relative symplectic cohomology
of K’ to be a · SH∗

M (K; Λ). We define corresponding properties of subsets of
M : a-SH-visible, a-SH-full, etc.

Lemma 1.23. The subspace QH∗(M ; Λ)crit ⊂ QH∗(M ; Λ) is an ideal which
is generated by an idempotent a.

Proof. We first observe that for any even element α in a supercommutative
Frobenius algebra, the decomposition into generalized eigenspaces of α � (−)
is orthogonal (with respect to the pairing and the algebra structure), and
hence the generalized eigenspaces are ideals generated by idempotents. It
follows for each i, the subspace QH∗(M ; Λ)i is an ideal generated by an
idempotent; so the intersection is an ideal generated by the product of these
idempotents. �

Conjecture 1.24. Under the same hypotheses as for Theorem D (without as-
suming Hypothesis A), the skeleton L is a-SH-full, where a is the idempotent
from Lemma 1.23.
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Conjecture 1.24 implies, for example, that L must intersect every a-
Floer-theoretically essential (over k) monotone Lagrangian, where the latter
condition means that CO(a ⊗Λ k) ∈ HF 0(L; k) is non-zero. (Here we have
used the algebra homomorphism Λ → k, which sends q �→ 1, to define an
idempotent a ⊗Λ k ∈ QH0(M ; k)).

1.6.3. Maurer–Cartan element. For the purpose of this section, we assume
that k is a field of characteristic zero, and we assume that Hypothesis A
holds.

Recall that the symplectic cochain complex SC∗(X; k) carries an L∞
structure [13]. This consists of a sequence of operations �k : SC∗(X; k)⊗k →
SC∗(X; k) of degree 3 − 2k, satisfying the L∞ relations; and �1 = d is the
standard differential. We extend these linearly to make SC∗

Λ into an L∞ alge-
bra. We recall that a Maurer–Cartan element for the L∞ algebra (SC∗

Λ, �k)
is an element β ∈ Q≥1SC2

Λ, satisfying the Maurer–Cartan equation:
∑

k

�k(β, . . . , β)
k!

= 0.

We remark that this is in fact a finite sum, because the terms live in succes-
sively higher levels of the Q-filtration, which Hypothesis A ensures is bounded
below (see Sect. 1.5.3).

A Maurer–Cartan element β can be used to deform the L∞ structure to
get a new one �k

β on SCΛ (see, e.g. [16, Section 4]). In particular, the resulting
operation �1β defines a new differential on SCΛ.

Conjecture 1.25. There exists a Maurer–Cartan element β ∈ SC2
Λ such that

in the statement of Theorem B, we may take S̃CΛ = SCΛ and ∂ = �1β.

Remark 1.26. Cieliebak and Latschev have outlined ideas closely related to
Conjecture 1.25 (but in a more general context) in talks as far back as 2014.

Remark 1.27. Moreover, one expects that Floer-theoretic operations on quan-
tum cohomology of M (such as the quantum cup product) are deformations
of the corresponding operations on symplectic cohomology of X by β, c.f.
[12].

Remark 1.28. In the proof of Theorem B presented in this paper, we need
to replace SCΛ with S̃CΛ. Conjecture 1.25 suggests an alternative proof, in
which no such replacement is necessary. The cost is that the construction is
significantly more elaborate, relying on the L∞ structure and a version of the
homotopy transfer theorem, which makes it harder to see the key geometric
ideas, which are the same in both proofs.

Remark 1.29. It is natural to envision generalizations of our results, as well as
of Conjecture 1.25, where M is allowed to be only a partial compactification
of X; and furthermore, where some of the weights λi are allowed to be equal
to 0. We present several examples in Sect. 1.7 below which illustrate such a
generalization. For example, Remark 1.41 gives evidence for this generalized
conjecture in the case M = T ∗

RP
2, with D ⊂ M a smooth divisor equipped
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with weight λ = 0; the generalized conjecture in this case says that SC∗(M ; k)
is a ‘deformation’ of SC∗(X; k) (note that there is no need for a Novikov ring
in the definition of symplectic cohomology of M , as it is exact). We put scare
quotes around ‘deformation’ because when the weights are 0, the extra terms
in the deformed differential may simply preserve the Q-filtration, rather than
strictly increasing it; so there is no sense in which they are ‘small’. To make
a useful version of the conjecture one would need an alternative to the Q-
filtration, which is strictly increased by the extra terms; it would probably
be defined in terms of the grading.

Note that the projection of β to Gr1SC2
Λ is d-closed, and hence defines

a class [β1] ∈ Gr1SH2(X; Λ). It is immediate from Conjecture 1.25 that the
differential on the E1 page of the spectral sequence is given by [[β1],−], where
[−,−] denotes the Lie bracket on SH∗(X; k).

We now explain how our conjectures connect with work of Tonkonog
[37]. Tonkonog considers the following setup: M̄ is a compact Fano variety
equipped with its monotone Kähler form, D̄ ⊂ M̄ a simple normal crossings
anticanonical divisor, X = M̄\D̄, and M = M̄\ ∪J

i=1 D̄i is a partial com-
pactification of X, with compactifying divisor D = M ∩ D̄. Tonkonog defines
a class BS ∈ SH0(X; k) by counting pseudoholomorphic ‘caps’ in M , such
that the following holds:

Theorem 1.30 (Theorem 6.5 in [37]). For any exact closed Lagrangian L ⊂ X
equipped with a k

∗-local system ξ, we have CO(BS) = m0
(L,ξ), where CO :

SH∗(X; Λ) → H∗(L; Λ) is the closed–open map, and m0
(L,ξ) ∈ H2(L; Λ) is

the disc potential.

This fits into the generalized geometric setup alluded to in Remark 1.29
(we are in the log Calabi–Yau setting, and we equip each component of D
with its canonical weight 2). It connects with our conjectures as follows:

Conjecture 1.31. We have BS = [β1].

In many settings, we can tightly constrain the class β using grading
considerations. For each i we can define a cocycle Bi ∈ SC2−λj (X; k) by
‘counting caps passing through Di’, following [37] or [15]. We define

B :=
∑

i

eλi · Bi ∈ SC2(X; Λ).

Conjecture 1.32. Suppose we are in the log Calabi–Yau case: i.e., λi = 2 for
all i, and furthermore that the minimal Chern number of M is ≥ 2. Then we
have β = B.

Remark 1.33. If the minimal Chern number of M is 1, then we conjecture
that β = B + e2 · B0, where B0 ∈ SC0(X; k) is a multiple of the unit,
and counts certain holomorphic spheres in M of Chern number 1. Note that
the additional term B0 is irrelevant for the purposes of Conjecture 1.25, as
�1B = �1B+B0

using the fact that B0 is a multiple of the unit.
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As evidence for the Conjecture, we first observe that GrQ
1 SC2

Λ is gen-
erated by the classes qBi, together with the unit q · 1; and argue that the
coefficient of the unit in β must count certain Chern-number-1 spheres. We
further observe that Q≥2SC2

Λ = 0. This follows as we have a0 = 2, so any
generator γ ⊗ qj of SC2

Λ with j ≥ 2 must have i(γ) ≤ −2; however, i(γ) ≥ 0
by Proposition 1.15.

Remark 1.34. Based on [34, Lemma 6.4], we also expect Conjecture 1.32 to
hold under either of the following hypotheses:

• D is smooth and Hypothesis A is satisfied.
• M is a projective variety, D a complex divisor, and c1(TM) lies in the

interior of the cone Amp′(M,D) ⊂ H2(M ; R) defined in [34, Definition
3.26].

In settings where Conjecture 1.32 holds, the Maurer–Cartan element β is
determined up to gauge equivalence by the cohomology classes [Bi]. Further-
more, the components of β get ‘turned on’ one by one as the corresponding
divisors get added compactifying X.

1.6.4. Mirror symmetry in the log Calabi–Yau case. Let us consider the log
Calabi–Yau case, where X = M\D and X is equipped with its preferred
Liouville structure and trivialization of canonical bundle. In this case we
have a0 = 2, so Λ = k[q, q−1], where i(q) = 2.

Assume that Y is a mirror scheme to X over k, which is smooth. Even
though we choose to leave what this means vague, we will assume that it
implies

SHi(X; k) �
⊕

p+q=i

Hq(Y,ΛpTY ), (1.3)

and in particular

SH0(X; k) � H0(Y,OY ).

Therefore, the classes Bi ∈ SH0(X; k) are mirror to functions wi ∈ H0(Y,OY ).
We set W :=

∑
i wi. This sum includes the constant term w0, which may be

non-zero in the case that the minimal Chern number of M is 1.
Now let YΛ denote the base change of Y to Λ, and WΛ = qW be a

function on YΛ.

Conjecture 1.35. The Landau–Ginzburg model (YΛ,WΛ) is mirror to M .

Remark 1.36. In fact, Conjecture 1.35 should extend beyond the log Calabi–
Yau case we consider here. However, it becomes difficult (and confusing) to
interpret the mirror in terms of the language of classical algebraic geometry:
the polyvector fields on YΛ are given a non-standard grading, and in general
WΛ may be a polyvector field rather than a function. In contrast, in the log
Calabi–Yau case one can give a transparent interpretation of Conjecture 1.35
in terms of the classical algebraic geometry of the Landau–Ginzburg model
(Y,W ) defined over k, which we now do. (We discuss the non-log-Calabi–Yau
case in Remark 1.39 at the end of this section.)
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We consider the Koszul complex associated with the section dW of T ∗Y :

K(dW ) :=
{

· · · → Λp+1(TY ) dW−−→ Λp(TY ) → · · · → TY
dW−−→ OY

}
.

This is a complex of vector bundles over Y . When the critical locus Z :=
Crit(W ) is isolated, K(dW ) is a resolution of OZ , and therefore, its hyperco-
homology gives the algebra of functions on the critical locus: H

∗(K(dW )) ∼=
O(Z) (the hypercohomology is concentrated in degree ∗ = 0). In general, we
define O(Zh) := H

∗(K(dW )), because this hypercohomology is, essentially
by definition, the graded algebra of functions on the ‘derived critical locus of
W ’ (see e.g. [42]).

Conjecture 1.35 implies, among other things, that we have an isomor-
phism of graded Λ-algebras

O(Zh) ⊗k Λ ∼= QH∗(M ; Λ). (1.4)

We expect that the mirror to the spectral sequence of Theorem C on the
RHS, is the hypercohomology spectral sequence on the LHS, in a sense we
now make clear.

We recall the construction of the hypercohomology spectral sequence
IEp,q

1 = Hq(Λ−pTY ) ⇒ O(Zh),

following [46, Section 5.7]. We take a Cartan–Eilenberg resolution Cp,q of
K(dW ), and consider the resulting bicomplex Cp,q = Γ(Cp,q). We define
a filtration map on this complex by Q(c) = p for c ∈ Cp,q (i.e., we have
Q(c) = −p for c a section of ΛpTY ). The resulting Q-filtration induces the
spectral sequence with E1 page as above. The differential on the E1 page is
given by contracting with dW .

We now consider the bicomplex Cp,q ⊗k Λ, and equip it with the filtra-
tion map Q(c ⊗ r) = Q(c) + Q(r). We conjecture that the resulting filtered
complex is filtered quasi-isomorphic to (S̃CΛ, ∂, Q̃≥•), and in particular the
corresponding spectral sequence is isomorphic to the one from Theorem C.
As evidence, we compute that the spectral sequence has

Ej,k
1 =

⊕

p+q=3j+k

Hq(ΛpTY ) ⊗k k · q−j+p

∼= SH3j+k(X; k) ⊗k k · q−j+p,

which is clearly isomorphic to the E1 page of the spectral sequence from
Theorem C.

Remark 1.37. The attentive reader may notice the presence of an extra ‘p’
in the exponent of q, compared with the E1 page from Theorem C. This is
because the isomorphism of E1 pages

SH ⊗k Λ =
⊕

q,p

Hq(ΛpTY ) ⊗k Λ sends

SH ⊗k k �→
⊕

q,p

Hq(ΛpTY ) ⊗k k · q−p.

This reflects the fact that Q(c) = −p for c ∈ ΛpTY .
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We now explain how this fits with the picture from the previous section.
The isomorphism (1.3) is expected to respect the natural graded Lie algebra
structures on both sides (among other things), where the Lie bracket on
the polyvector field cohomology is given by the Schouten–Nijenhuis bracket.
The differential on the E1 page of the symplectic spectral sequence is given
by [B,−]. The differential on the E1 page of the hypercohomology spectral
sequence is given by contraction with qdW , which coincides with [qW,−] (as
one can see from the definition of the Schouten–Nijenhuis bracket); thus the
two differentials match.

More precisely, we expect that the isomorphism of Lie algebras (1.3) can
be refined to a quasi-isomorphism of L∞ algebras, and the Maurer–Cartan
element β matches with the Maurer–Cartan element qW up to gauge equiv-
alence. This would yield a chain-level quasi-isomorphism underlying (1.4),
which would imply the isomorphism of spectral sequences discussed above.

Note that when Y is affine, there is no need to take a Cartan–Eilenberg
resolution: we may take Cp,0 = Γ(Λ−pTY ) and Cp,q = 0 for q �= 0, with
differential given by contracting with dW , and the bicomplex is simply a
complex. In particular, the hypercohomology spectral sequence degenerates
at E2. This leads us to make the following:

Conjecture 1.38. If X in addition (to the conditions from the first paragraph
of this section) admits a homological Lagrangian section and SH0(X; k) is a
smooth algebra, then the spectral sequence of Theorem C degenerates at E2

page.

Under these assumptions on X one can take Y to be the smooth affine
scheme Spec(SH0(X; k)) (see [27]), which would satisfy (1.3), which is our
reason to make this conjecture.

For example, the conjecture holds in the toric Fano examples (see
Sect. 1.7.1), essentially by the argument given above. This degeneration also
follows from the fact that one can construct SC∗(X; k) with zero differential
in this case!

Remark 1.39. We now discuss the non-log-Calabi–Yau case of Conjecture
1.35, which will appear in several examples in Sect. 1.7 below. There are
three complicating factors:
(1) The mirror to X will in general be a Landau–Ginzburg model (Y,w),

rather than simply a variety Y ;
(2) The algebra of polyvector fields on Y must be equipped with a non-

standard grading;
(3) a priori, β will be mirror to a gauge equivalence class of Maurer–Cartan

elements for the differential graded Lie algebra of polyvector fields on
(Y,w), rather than simply a function W on Y .
Issue (2) is already present if one wants to talk about the mirror of T ∗S1

with a non-standard trivialization of its canonical bundle and then consider
the correspondence between compactifications and deformations. In this case
one cannot use a traditional SYZ approach as the zero section of T ∗S1 does
not even have vanishing Maslov class with respect to such a trivialization.
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It seems that to develop some general geometric intuition in the non-log
Calabi–Yau cases, it would be helpful to use the language of derived algebraic
geometry but we do not feel comfortable enough to do this at this point.

Concerning issue (3), we actually expect that β should be mirror to a
function in broad generality, although it is not clear how to prove this. In
some cases, it follows from grading considerations, as in Conjecture 1.32 and
the ensuing remarks.

Remark 1.40. Even though we avoid a general discussion, we do use our
expectations in the log Fano case in some examples in Sect. 1.7 below. Here
is our starting ansatz in these examples: start with a log Calabi–Yau pair
(M,D′), where

D′ =
N+J⋃

i=1

D′
i, and set D =

N⋃

i=1

D′
i.

Suppose that X ′ = M\D′ is mirror to Y as at the start of this section.
This means that we could choose all weights λ′

i = 2; we assume, however,
that there exists a valid choice of weights with λ′

i > 0 for all 1 ≤ i ≤ N ,
and λ′

i = 0 for N + 1 ≤ i ≤ N + J . We equip X ′ with the trivialization of
its canonical bundle corresponding to these weights, and equip the algebra
SH0(X ′; k) with its induced grading. We posit that this is the graded algebra
of functions on the mirror of X ′ (with the alternative trivialization), which we
regard as a ‘graded scheme’. We set X = M\D, and posit that the mirror to
X is (Y,w) where w =

∑N+J
i=N+1 wi. We furthermore posit that the Maurer–

Cartan element β corresponding to X ⊂ M is mirror to WΛ =
∑N

i=1 eλiwi,
and therefore that the mirror to M is (YΛ, w + WΛ).

1.7. Examples

1.7.1. Fano toric varieties. Let Δ ⊂ R
n be a Fano Delzant polytope. This

means that it is a Delzant polytope equal to the intersection of half-spaces
(with no redundancy)

νi(x) + 2κ ≥ 0, i = 1, . . . ,m

for κ > 0 and νi ∈ (Zn)∨ primitive. Using the symplectic boundary reduction
construction (one of the many options), we construct a symplectic manifold
(MΔ, ω) with a Hamiltonian Tn action and moment map

π : MΔ → R
n.

The image of the moment map is by construction Δ. Finally, note that MΔ

satisfies the monotonicity condition 2κc1(TMΔ) = [ω].
We define the toric SC divisor DΔ as the preimage of the boundary

of Δ under the moment map. Note that DΔ =
⋃m

i=1 Di is automatically
an orthogonal SC divisor. We define XΔ = MΔ\DΔ. Again by construction
XΔ is a product int(Δ) × (Rn)∨/(Zn)∨. Denoting the coordinates on R

n by
x1, . . . , xn and the circle valued coordinates on (Rn)∨/(Zn)∨ by φ1, . . . , φn,
we have

ω|X =
∑

dxidφi.
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We note the short exact sequence

0 �� H1(XΔ; R)
f �� H2(MΔ,XΔ; R)

g �� H2(MΔ; R) �� 0.

A choice of weights is (as always) equivalent to the choice of a rational
class

λ ∈ H2(MΔ,XΔ; R) ∼= R
m,

which is sent to 2c1(TMΔ) by g and which has positive coordinates. We have
a preferred lift given by

λcan = (2, . . . , 2).

Let us also use the natural isomorphism H1(XΔ; R) ∼= R
n. The map f

is easily computed to be

x �→ νi(x).

Hence, the set of all possible positive weights is the image of the rational
points in the interior of 1

κΔ under the map R
n → R

m given by

(x1, . . . , xn) �→ (ν1(x) + 2, . . . , νf (x) + 2).

We see that the only weight that satisfies Hypothesis A is the canonical
weight, which corresponds to 0 ∈ 1

κΔ.
Now let us outline how Theorems B and C work in this context, assum-

ing the conjectural results of Sect. 1.6.3. We can arrange that

SC∗(XΔ; k) ∼= k[z±1
1 , . . . , z±1

n , ∂/∂z1, . . . , ∂/∂zn]

where the variables zi are commuting and have degree 0, and the variables
∂/∂zi are anticommuting and have degree 1 (where the degrees are induced by
λcan). We can also arrange that the L∞ structure is trivial, with the exception
of the Lie bracket �2, which coincides with the Schouten–Nijenhuis bracket.
We can compute, for instance via Theorem 1.30 and Cho–Oh’s computation
of the disc potential of toric Fano varieties [5], that β = qW , where

W =
∑

i

zνi .

Now Conjecture 1.25 says that in the statement of Theorem B, we can take

S̃CΛ = SCΛ = Λ[z±1
1 , . . . , z±1

n , ∂/∂z1, . . . , ∂/∂zn], with

∂ = [qW,−].

As explained in Sect. 1.6.4, this is the Koszul complex for dW , tensored with
Λ. One can show that W has isolated singularities, so the cohomology of the
Koszul complex is

O(Z) =
k[z±1

1 , . . . , z±1
n ]〈

∂W
∂z1

, . . . , ∂W
∂zn

〉 = Jac(W ).

Thus, assuming Conjecture 1.25, Theorem B gives

QH∗(MΔ; Λ) ∼= H∗(SCΛ, [qW,−]) ∼= Jac(W ) ⊗k Λ,
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which is the familiar statement of closed-string mirror symmetry for toric
Fano varieties, c.f. [4]. Note that the spectral sequence of Theorem C has E0 =
E1 = SCΛ, E2 = Jac(W )⊗kΛ, and degenerates at E2 because the differential
on SCΛ vanishes (or alternatively, because Jac(W ) is concentrated in even
degree).

Now let us outline how Theorem D works in this context. For each
i = 1, . . . ,m, we have a Hamiltonian circle action with moment map νi ◦ π,
which rotates around Di, and these actions commute on the overlaps. It
follows that they define a system of commuting Hamiltonians for DΔ, in the
sense of Sect. 2. For any p ∈ int(Δ) we define the corresponding weights
λp := f( p

κ ) + λcan and primitive (of ω|XΔ)

θp =
∑

(xi − pi)dφi.

The relative de Rham class of (ω, θp) is easily seen to be f(p)+κλcan = κλp.
The Liouville vector field corresponding to θp is Zp =

∑
(xi − pi)∂/∂xi.

It follows that θp is adapted to the system of commuting Hamiltonians in
the sense of Sect. 2. The skeleton Lp for θp is nothing but the Lagrangian
torus above p. The corresponding subset Kcrit,p is easily computed to be
π−1(K̃crit,p), where K̃crit,p ⊂ Δ is the smallest rescaling of Δ, centred at p,
which contains the origin. In particular, Kcrit,p coincides with Lp if and only
if λp = λcan, if and only if Hypothesis A is satisfied.

Our Theorem D says that the monotone torus fiber L0 is SH-full. It
follows that it is not stably displaceable. This result can also be obtained
using Lagrangian Floer theory, using the fact that the disc potential always
has a critical point in this case. Our result says nothing about the skeleta Lp

for p �= 0. Indeed it is known that for n ≤ 3 all of these non-monotone fibers
are displaceable by probes [22, Corollary 3.9 and Proposition 4.7].

The fact that L0 is SH-full also implies that it intersects every Floer
theoretically essential (over some commutative ring) monotone Lagrangian.
This result also follows from the fact that L0, equipped with appropriate local
systems, split-generates each component of the monotone Fukaya category
over an arbitrary field [11, Corollary 1.3.1].

1.7.2. Skeleta in S2. Let us move on to a non-toric example. Consider S2

with a symplectic structure ω such that [ω] = 4κPD(pt). Let D be the union
of N distinct points p1, . . . , pN ∈ S2. Consider weights λ1, . . . , λN > 0, which
needs to satisfy

λ1 + · · · + λN = 4.

Let θ be a primitive of ω on S2\D compatible with the weights and
with some choice of local moment maps for the circle actions rotating about
the pi. Let L be the induced skeleton. The complement S2 − L is a disjoint
union of open disks Ui, i = 1, . . . N , one for each point p1, . . . pN . L itself is the
union of all critical points, homoclinical and heteroclinical orbits, and periodic
orbits of the Liouville vector field by the Poincaré–Bendixson theorem. It
is elementary to compute (using the compatibility with weights) that the
symplectic area of Ui is equal to κλi. If we restrict the function ρ : M → R
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to the disc Ui, then it extends continuously to 0 along the boundary of the
closed disk, it is equal to 1 at pi, and it generates a Hamiltonian circle action
rotating Ui about pi.

Hypothesis A is satisfied if and only if no weight is bigger than 2, which
means no disc Ui has area more than half the area of S2. In this case the
subset Kcrit coincides with the skeleton L. Otherwise, we have λi > 2 for
some i, and Kcrit is the union of L with a collar around the boundary of
Ui, so that the rest of Ui has area equal to half the area of S2. Theorem D
says that Kcrit is SH-full. This implies that it is not stably displaceable, and
furthermore that no two such subsets can be disjoint from each other. It is
easy to see explicitly that it is necessary to add the collar to Kcrit in order
for these results to hold.

1.7.3. The case M = S2, D = a point. Let M = S2, and D be a single
point. We start by sketching how Theorem B works in this case. It is possible
to take simpler models for SC∗(X; k) and S̃CΛ than those which appear in
the actual proof of the Theorem.

We take a model for SC∗(X; k) which is isomorphic to k[z, zθ] where z
is a commutative variable of degree −2, and θ is anticommutative of degree
1. The generator 1 corresponds to the unique constant orbit, zj to the funda-
mental cycle of the Reeb orbit going j times around D, and zjθ to the point
class of the same Reeb orbit. The differential d sends zj �→ 0 and zjθ �→ zj−1.
In particular the cohomology vanishes: symplectic cohomology of the disc is
zero.

We have Λ = C[q] with i(q) = 4. We take S̃CΛ = SCΛ, and consider
the deformed differential ∂, where ∂ − d sends zj �→ 0 and zjθ �→ qzj+1. The
cohomology of this differential is free of rank 2 over Λ, with a basis given by
1 and qz. In particular, it is isomorphic to QH∗(M ; Λ), in accordance with
Theorem B: the class 1 corresponds to 1 ∈ QH0(M ; Λ), and the class qz
corresponds to PD(pt) ∈ QH2(M ; Λ).

Theorem C does not apply in this case, because Hypothesis A is not
satisfied: we have λ = 4 > 2. And indeed the conclusion of the Theorem
fails, because we cannot have a spectral sequence with E1 page vanishing,
converging to QH∗(M ; Λ) �= 0. The reason the proof of Theorem C does not
run is that the Q-filtration on SCΛ is not degreewise complete. For example,
the classes qkz2k all have degree 0, but their Q-values go to +∞. The conver-
gence theorems for spectral sequences all require completeness, and indeed it
could not be otherwise: taking the completion does not change the spectral
sequence associated with a filtered complex, by inspection of the construc-
tion. It is easy to verify that the degreewise completion of (SCΛ, ∂) is acyclic:
for example,

1 = ∂

⎛

⎝
∞∑

j=0

(−qz2)j · zθ

⎞

⎠ .

This confirms Conjecture 1.20 in this case, as QH∗(S2; Λ)crit = 0.
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Theorem D simply says in this case that a disc occupying half the area
of the sphere is SH-full, c.f. [39, Section 1.2.2].

We now offer another perspective on this computation following Remark
1.40, which will be useful in the next two sections. First, we take M = S2

and D′ = D′
1 ∪ D′

2 to be an anticanonical divisor on S2, where D′
1 and D′

2

are distinct points. If we equip each point with weight λ′
i = 2, then this is a

special case of Sect. 1.7.1: we see QH∗(M ; Λ′) as a deformation of SC∗(X ′; k)
where X ′ = M\D′. In this case (SCΛ′ , ∂′) is quasi-isomorphic to the complex

Λ′[x, x−1, ∂x],

where ∂2
x = 0, the generator q′ of the Novikov ring is in degree 2, x is in degree

0, and ∂x is in degree 1; the differential ∂ is Λ′[x, x−1]-linear and sends

1 �→ 0, ∂x �→ q′(1 − x−2).

As expected, this chain complex is degree-wise complete with respect to the
Q-filtration and we obtain

QH∗(S2; Λ′) ∼= Λ[x, x−1]/
〈
x2 − 1

〉
.

Now we consider the case that λ1 = 0, λ2 = 4. Following the recipe
of Remark 1.40, if X = M\D′

2 then SC∗(X; k) should be quasi-isomorphic
to k[x, x−1, ∂x], where ∂2

x = 0, x is in degree 2, and ∂x is in degree −1; the
differential d is k[x, x−1]-linear and sends

1 �→ 0, ∂x �→ 1.

As expected, this chain complex is acyclic. The chain complex (SCΛ, ∂) is
quasi-isomorphic to Λ[x, x−1, ∂x], with x and ∂x graded as before, and the
generator q of Λ in degree 4; the differential ∂ sends

1 �→ 0, ∂x �→ 1 − qx−2.

Note that as expected, we have an isomorphism of chain complexes

(SCΛ, ∂) ⊗Λ Λ′ ∼= (SCΛ′ , ∂′) via the algebra map sending

x �→ q′x,

x∂x �→ x∂x.

We learned nothing new so far but we believe that this exercise might help
unraveling the more complicated examples in the next two sections below.

1.7.4. The quadric in CP
2. Consider CP

2 with its Fubini-Study symplectic
form, and D a smooth quadric with its canonical weight 3, which does not
satisfy Hypothesis A. L in this case is the monotone Lagrangian RP

2, which is
known to be stably non-displaceable. On the other hand RP

2 can be displaced
from the Chekanov torus (see [47]), hence it is not SH-full for a general k.
As was pointed out to us by Leonid Polterovich, it is also known that RP

2 is
[CP

2]-superheavy over Z/2, see [10, Example 4.12].
Let us now test Theorem B and Conjecture 1.20 in this case, using the

mirror picture outlined in Remark 1.40. The expectation, following [3, Section
5.2], is as follows.
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Consider the graded ring

R := k[x, y, z]/(z(xy − 1) − 1), where |x| = −1, |y| = 1, |z| = 0,

and consider elements w1 = y2z and w2 = x of R. We set Y = Spec(R).
Then X should be mirror to the Landau–Ginzburg model (Y,w1) while M
should be mirror to (YΛ, w1 + qw2), where |q| = 3.

We expect (SC∗(X; k), d) to be quasi-isomorphic to
(
⊕

p

ΛpTY, [w1,−]

)
, (1.5)

while (SCΛ, ∂) should be filtered quasi-isomorphic to
(
⊕

p

ΛpTY ⊗k Λ, [w1 + qw2,−]

)
,

with the filtration map given by Q(c ⊗ qa) = −p + a for c ∈ ΛpTY . We can
compute the cohomology of this complex: it comes out as the Jacobian ring
of w1 + qw2, which is

Λ[x, y, z]/(q − y3z2, 2yz − xy2z2, z(xy − 1) − 1)
∼= Λ[x, y, z]/(z − 1, x − 2q−1y2, y3 − q)
∼= Λ[y](y3 − q)
∼= QH∗(CP

2; Λ).

This agrees with Theorem B in this case.
Now we turn to Conjecture 1.20. We consider two cases:

Case 1: 2 is invertible in k. We easily deduce that 1 − q(x/2)3 is nullhomol-
ogous; it is also clearly invertible in the Q-completion. This implies that the
cohomology vanishes after Q-completion.
Case 2: 2 = 0 in k. In this case the Jacobian ring is Λ[x, y, z]/(z − 1, x, y3 −
q) = Λ[y]/(y3 − q). It is easy to see that Q-completion does not change the
cohomology.

Both cases are in agreement with Conjecture 1.20: if 2 is invertible, then
PD(D) � (−) is invertible, so QH∗(M ; Λ)crit = 0. On the other hand [D] is
2-divisible, so if 2 = 0, then QH∗(M ; Λ)crit = QH∗(M ; Λ).

This leads us to conjecture that RP
2 ⊂ CP

2 is SH-full if the character-
istic of k is 2, but not otherwise (Entov’s result that RP

2 is [CP
2]-superheavy

over Z/2 can be considered as further evidence for this conjecture). This
would imply that RP

2 is non-stably displaceable (which is known), and inter-
sects any monotone Lagrangian which is Floer-theoretically essential over a
field of characteristic 2 (note that this does not include the Chekanov torus,
as can easily be seen from the superpotential computed in [3]).

Remark 1.41. We sketch some evidence for the mirror symmetry statement
(1.5), in the case that char(k) = 2. Note that the completion of X is sym-
plectomorphic to T ∗

RP
2, so SH∗(X; k) ∼= H∗(LRP

2; k) by Viterbo’s theorem
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[1,43,44]. We can compute

H∗(LRP
2; k) ∼= H∗(RP

2; k) ⊕
⊕

k>1

H∗(S(TRP
2); k)[k]

by [48], where the first factor comes from the manifold RP
2 of constant loops,

and the subsequent factors come from the manifolds S(TRP
2) of ‘length-k’

geodesics. Of course H∗(RP
2; k) ∼= k[y]/y3 with |y| = 1, while H∗(S(TRP

2); k)
has rank 1 in degrees 0, 1, 2, 3. On the other hand, one may compute that

H∗
(
⊕

p

ΛpTY, [w1,−]

)
∼= k[x, y, v]/(y3, y2x, y2v)

= k[y]/y3 ⊕
⊕

k>1

〈xk, xky, xk−1 · v, xk−1y · v〉,

where v = x∂x − y∂y is an anticommuting variable. We identify k[y]/y3 as
corresponding to the constant loops, and the subsequent factors as corre-
sponding to the length-k geodesics. The degrees match up (we observe that
|v| = 1). We remark that x = w2 is the basic loop around D, which corre-
sponds to the family of length-1 geodesics, so it makes sense that multiplying
by x takes us to the next k-value.

1.7.5. Fano hypersurfaces. We consider some examples motivated by [33].
They follow a similar philosophy to Remark 1.40, but are a bit different as
they are obtained by partially compactifying an affine variety which is of log
general type, rather than being log Calabi–Yau.

Let M = Mn,a be a smooth hypersurface of degree a ≤ n + 1 in CP
n+1,

and D = Dn,a,i a union of i ≤ n + 2 generic hyperplanes. This fits into
the setup of Sect. 1.1, and we may take the weights all to be equal to λ =
2(n+2−a)

i . In particular, Hypothesis A is satisfied if and only if n + 2 − a ≤ i.
This corresponds to the variety Xn,a,i = Mn,a\Dn,a,i being log Calabi–Yau
(in the case of equality) or log general type (otherwise). Hypothesis A is not
satisfied precisely when Xn,a,i is log Fano.

We conjecture that the mirror to Xn,a,i is the Landau–Ginzburg model
(Yn,a,i,Wn,a,i), where

Yn,a,i = [kn+2/Gn,a,i] is a stack, where

Gn,a,i = ker
(

Z
n+1
a

∑
−→ Za

)
, and

Wn,a,i = −z1 . . . zn+2 +
n+2∑

j=i+1

za
j , and furthermore that

βn,a,i = q ·
i∑

j=1

za
j .

Here we assume that k contains all ath roots of unity. The group Gn,a,i acts
torically, preserving Wn,a,i. The variables zj have degree (2 − λ)/a for j ≤ i
and degree 2/a for j > i, and q has degree λ.
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Now let us drop the n, a, i from the notation. By taking M to be a
Fermat hypersurface, we obtain a natural action of the dual group G∗ on
M , respecting D. Restricting to the invariant pieces of the relevant group
actions, mirror symmetry predicts that

SH∗(X; k)G∗ ∼= H∗ (k[z1, . . . , zn+2, ∂/∂z1, . . . , ∂/∂zn+2], [W,−])G
,

and in fact that there is an underlying quasi-isomorphism of L∞ algebras. In
accordance with Conjecture 1.25, this gives us

H∗
(
S̃CΛ, ∂

)G∗
∼= H∗ (Λ[z1, . . . , zn+2, ∂/∂z1, . . . , ∂/∂zn+2], [W + β,−])G

,

and hence

QH∗(M ; Λ)G∗ ∼= Jac(W + β)G.

The Jacobian ring has relations

z1 . . . zn+2

zj
= qza−1

j for j ≤ i

z1 . . . zn+2

zj
= za−1

j for j > i.

Multiplying them together we get that

(z1 . . . zn+2)n+1 = qi(z1 . . . zn+2)a−1.

This allows us to compute that

Jac(W + β)G = Λ[H]/
(
Hn+1 − qiHa−1

)
,

where H = z1 . . . zn+2.
The class H corresponds to the hyperplane class (except for the case

n + 2 − a = 1, when it corresponds to the hyperplane class plus a!qi). One
can check that this is the correct answer for QH∗(M ; Λ)G∗

, see [17,20]. This
is in agreement with Theorem B.

We can also check Conjecture 1.20 in this case. We can factor the defin-
ing relation in the Jacobian ring as:

Hn+1 − qiHa−1 = Ha−1
∏

ζn+2−a=1

(
H − ζq

i
n+2−a

)
.

Note that we have H = z1 . . . zn+2 = qza
1 , from the first relation in the

Jacobian ring. Thus Q(H) = 1. On the other hand, Q(qi/(n+2−a)) = i/(n+2−
a). Therefore, precisely when Hypothesis A is not satisfied, the factors (H −
ζqi/(n+2−a)) become invertible in the Q-completion, as argued in Sect. 1.6.2.

The result is that the Q-completion gives Λ[H]/Ha−1, which corre-
sponds to the zero generalized eigenspace (note that Hypothesis A is satisfied
for all i ≥ 1 in the anomalous case n + 2 − a = 1, when this corresponds to
the −a!qi generalized eigenspace.)
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1.8. Outline

In Sect. 2, we examine the structure of our symplectic manifold in a neigh-
bourhood of the divisor D. In particular, we introduce the notion of a ‘system
of commuting Hamiltonians near D’, and say what it means for a Liouville
one-form to be ‘adapted’ to such a system. This completes the statement of
the results in Sect. 1.3, where these notions were used without being defined.

In Sect. 3, we establish our conventions for Hamiltonian Floer theory
and relative symplectic cohomology in M , and explain how they are related
to symplectic cohomology of the exact symplectic manifold X. In particular,
we establish that the map (1.2) respects index and action; and we prove the
‘positivity of intersection’-type result which is used to prove Proposition 1.12.

In Sect. 4, we construct the functions ρR which are smoothings of ρ0. We
consider degenerate Hamiltonians of the form h ◦ ρR, explain how to perturb
them to obtain non-degenerate time-dependent Hamiltonians H, and give
estimates for the index and action of their orbits.

In Sect. 5, we prove our main results.

History of work This paper started with M.S.B. and N.S. trying to prove
Conjecture 1.25. A solution was announced in 2015, but never appeared. The
project languished, until U.V. joined the collaboration in 2019 and pushed
it to completion in its current form. M.S.B. and N.S. apologize for the long
delay between announcement and appearance of the work.

2. Symplectic divisors

2.1. Basics

We recall some notions from [36, Section 2.1]. Let (M,ω) be a 2n-dimensional
closed symplectic manifold and let D = ∪N

i=1Di be a symplectic divisor in
(M,ω). This means that for each i, Di ⊂ M is a connected smooth closed
submanifold with real codimension two and for each subset I ⊂ [N ] the
intersection

⋂
i∈I Di is transverse and

DI :=
⋂

i∈I

Di ⊂ M

is a symplectic submanifold. Since the Di intersect transversally, for each
I ⊂ [N ] there is an isomorphism of vector bundles

NMDI
∼−→
⊕

i∈I

NMDi|DI
(2.1)

over DI , induced by the inclusions TDI ⊂ TDi|DI
. Recall the normal bundle

NMD for any symplectic submanifold D ⊂ (M,ω) has a symplectic orienta-
tion induced by the symplectic orientations of TD and TM .

Definition 2.1. A symplectic divisor D ⊂ (M,ω) is
(i) a simple crossings (SC) divisor if (2.1) is an isomorphism of oriented

vector bundles, where each normal bundle is given its symplectic orien-
tation, for all I.
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(ii) orthogonal if for all i �= j and x ∈ Di ∩ Dj the ω-normal bundle
(TxDi)ω ⊂ TxM is contained in TxDj .

Remark 2.2. In [23, Section 5] McLean proved that any SC divisor D ⊂
(M,ω) can be smoothly isotoped in the space of SC divisors to an orthog-
onal SC divisor D′ ⊂ (M,ω); and that X ′ = M\D′ is convex deformation
equivalent to X = M\D. This implies that SH∗(X; k) ∼= SH∗(X ′; k), by [23,
Lemma 4.11]. These results mean that it suffices to prove Theorems B and
C under the assumption that D is orthogonal.

Setting X = M\D, by Lefschetz duality (e.g. Proposition 7.2 of [7]) we
have

H2(M,X) ∼= Z
N where A �→ (A · Di)N

i=1. (2.2)
The inverse is given by mapping the ith basis vector to a disk ui : (D, ∂D) →
(M,X) that is disjoint from the other Dj and with intersection number ui ·
Di = 1. The dual basis vectors of H2(M,X) ∼= Z

N are what we called
PDrel(Di) in Sect. 1.1.

Assume that

κ =
∑

i

κiPDrel[Di] ∈ H2(M,X; R)

is a lift of [ω] under the map H2(M,X; R) → H2(M ; R) with κi ∈ R.

Remark 2.3. In the setup from Sect. 1.1, κ will be κλ.

Now consider a de Rham representative (ω, θ) for κ consisting of the
symplectic form ω together with a one-form θ ∈ Ω1(X) satisfying dθ = ω|X ,
and

κi =
∫

ui

ω −
∫

∂ui

θ.

Following McLean [23,24] we call κi the wrapping numbers for D with
respect to θ, though we use the opposite sign convention than in [23].

2.2. Systems of commuting Hamiltonians

Definition 2.4. Let D = ∪iDi be an SC divisor in a closed symplectic man-
ifold (M,ω), and R > 0. A system of commuting Hamiltonians (scH) near
D, of radius R, is a collection of open neighborhoods UDi ⊃ Di and proper
smooth functions ri : UDi → [0, R), for each i, with the following properties.
For each i,

• ri generates an R/Z action on UDi, and r−1
i (0) = Di.

• The fixed point set of the R/Z action on UDi is Di.
• The R/Z action on UDi\Di is free.

For all pairs i, j,
• UDi ∩ UDj is invariant under the R/Z action generated by ri.
• The Hamiltonians ri and rj Poisson commute on UDi ∩ UDj .

We will denote a scH near D of radius R with the notation {ri : UDi →
[0, R)}.
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Note that for any scH of radius R, we can ‘shrink’ it to an scH of radius
R′ < R by replacing UDi with {ri < R′} for each i.

Proposition 2.5. Let D be an SC divisor in a closed symplectic manifold
(M,ω). If D admits a scH, then it is orthogonal.

Proof. Assume that {ri : UDi → [0, R)} is a scH near D. We need to show
that for all i �= j and x ∈ Di ∩Dj the symplectic orthogonal (TxDi)ω ⊂ TxM
is contained in TxDj .

We consider the action of S := R/Z on TxM induced by ri. The action
on TxDi ⊂ TxM is trivial, since Di is fixed pointwise under the action of S.
The action on UDi ∩ UDj leaves {rj = 0} ∩ UDi ∩ UDj invariant by the
Poisson commutativity property. Therefore, TxDj is an invariant subspace of
TxM under the S action. Finally, since the action of S on TxM preserves the
symplectic pairing, (TxDi)ω ⊂ TxM is also an invariant subspace.

Note that the action of S on (TxDi)ω cannot be trivial by the Bochner
linearization theorem, as x does not have a neighborhood on which S acts
trivially. Now we finish the proof with the following claim:

• Assume that V is a finite dimensional symplectic representation of S,
which is the direct sum of two representations W ⊕ E, where W is the
trivial representation on a symplectic codimension 2 subspace, E is not
the trivial representation, and E and W are symplectically orthogonal.
Let W ′ be another codimension 2 symplectic subspace of V which is
invariant under the action of S. Then if W ′ is transverse to W , it has
to contain E.

The proof of this statement is as follows. There exists w+e ∈ W ′ with e �= 0,
as W ′ is transverse to W . For any θ ∈ S we have θ · (w + e) ∈ W ′; hence,
θ · (w + e) − (w + e) = θ · e − e ∈ W ′. We may choose θ so that θ · e �= e, so
W ′ ∩ E �= {0}. This implies that E ⊂ W ′ as required. �
Definition 2.6. Let D = ∪N

i=1Di be an SC divisor in a closed symplectic
manifold (M,ω) and let {ri : UDi → [0, R)} be a scH near D. For all I ⊂ [N ],
define UDI := ∩i∈IUDi. We obtain a (R/Z)I action on UDI with a moment
map

rI : UDI → [0, R)I

whose components are given by ri, for i ∈ I.

Proposition 2.7. Let D be an orthogonal SC divisor in a closed symplectic
manifold (M,ω). Then D admits a scH.

Proof. This is an immediate consequence of [23, Lemma 5.14], where for each
i, we use the well-defined radial coordinate of the symplectic disk bundle over
Di in the statement as our ri (the domain is the symplectic disk bundle of
course). It is trivial to see that this gives a scH near D. �
Remark 2.8. It is natural to ask whether all systems of commuting Hamil-
tonians come from standard tubular neighborhoods in the sense of McLean.
Even if this is the case, the extra choice of a standard tubular neighbor-
hood on top of a system of commuting Hamiltonians is not needed for our
constructions and arguments.
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2.3. Adapted Liouville one-forms

Definition 2.9. Let D be an SC divisor in a closed symplectic manifold (M,ω)
and let {ri : UDi → [0, R)} be an admissible scH near D. We call a one-form
θ ∈ Ω1(M\D) satisfying dθ = ω|M\D and with wrapping numbers κi > 0
adapted to {ri : UDi → [0, R)} if the Liouville vector field Z of θ satisfies

Z(ri) = ri − κi

over UDi\D, for all i.

Proposition 2.10. Let D be an orthogonal SC divisor in a closed symplectic
manifold (M,ω). Assume that

[ω] =
∑

i

κi · PD(Di) in H2(M, R),

with κi > 0. Then there exists {ri : UDi → [0, R)} a scH near D for which
there exists an adapted θ ∈ Ω1(M\D) with wrapping numbers κi.

Proof. We use a scH as in the proof of Proposition 2.7. Then, a one-form θ
on M\D produced by [23, Lemma 5.17] is adapted in the sense of Definition
2.9, as we show below. Note that by the relative de Rham isomorphism, there
is a primitive θ′ defined on M\D such that the relative cohomology class in
H2(M,M\D) defined by (ω, θ′) is equal to

∑
κi · PD(Di), which is why we

can use McLean’s lemma.
Using McLean’s notation for the moment, on the fibers of the projections

πI : UDI → DI we have

θ|F ∗
I

=
∑

i∈I

(ri − κi) dφi, (2.3)

where F ∗
I

∼= ∏
i∈I(DR\0) is the product of punctured disks. Using (2.3), we

have

Z(ri) = θ(Xri
) = θ(∂φi

) = ri − κi,

as required. �
Remark 2.11. Again one could ask whether every Liouville one-form adapted
to a system of commuting Hamiltonians is adapted to some compatible stan-
dard tubular neighborhood in the sense of McLean. Whatever the answer
might be, the flexibility that we achieved in these two sections already shows
itself in the toric examples of Sect. 1.7.1.

2.4. Admissibility

Definition 2.12. Let D = ∪N
i=1Di be an SC divisor in a closed symplectic

manifold (M,ω), and let {ri : UDi → [0, R)} be a scH near D. Given I ⊂ [N ],
a standard chart (U, φ) in UDI is an (R/Z)I -invariant open subset U ⊂ UDI

and a (R/Z)I -equivariant symplectic embedding

φ : U → C
I × C

n−|I|,

where we use the action of (R/Z)I on C
I × C

n−|I| given by

θ · ((zi)i∈I , w) = ((e2πiθizi)i∈I , w) for all θ ∈ (R/Z)I

and ((zi)i∈I , w) ∈ C
I × C

n−|I|.
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Lemma 2.13. Let D = ∪N
i=1Di be an SC divisor in a closed symplectic man-

ifold (M,ω) and let {ri : UDi → [0, R)} be a scH near D. For every I ⊂ [N ]
and x ∈ DI , there exists a standard chart (U, φ) in UDI containing x.

Proof. This immediately follows from the equivariant Darboux theorem [18,
Theorem 22.1]. �

We now choose an arbitrary Riemannian metric on M , and let inj(M)
be the injectivity radius with respect to this metric. We call a standard chart
(U, φ) in UDI admissible if U is contractible and has diameter < inj(M)/2.
The significance of admissibility for us is that it guarantees uniqueness of
caps:

Lemma 2.14. If γ : S1 → M is a loop contained in some admissible standard
chart, then there exists a disc bounding γ, whose image is contained inside
an admissible chart. Moreover, such a disc is independent of the choice of
admissible chart containing γ, up to homotopy rel. boundary in M .

Proof. The existence is clear, as admissible standard charts are contractible.
The uniqueness follows as the union of two admissible standard charts con-
taining γ has diameter < inj(M), hence is contained in a ball of radius
< inj(M). As the ball is contractible, the caps in the two charts are ho-
motopic rel. boundary in M . �
Definition 2.15. Let D = ∪N

i=1Di be an SC divisor in a closed symplectic
manifold (M,ω). We call a scH near D admissible if for every I ⊂ [N ] and
y ∈ UDI , there exists an admissible standard chart (U, φ) in UDI with y ∈ U .

Lemma 2.16. Let D be an SC divisor in a closed symplectic manifold (M,ω),
and {ri : UDi → [0, R)} a scH near D. Then any sufficiently small shrinking
of the scH is admissible.

Proof. First note that any standard chart around x ∈ DI can be shrunk so
that it is admissible. Therefore, we have a neighbourhood of DI given by the
union of all admissible standard charts. By shrinking the scH sufficiently, we
may ensure that UDI is contained in the neighbourhood, for all I. �
Remark 2.17. In Sect. 3.1, we will define a cap for a loop γ : S1 → M to
be an equivalence class of discs u bounding γ under the equivalence relation
u1 ∼ u2 if

∫
u∗

1ω =
∫

u∗
2ω. Therefore, we could get away with the following

weaker notion of admissibility for the purposes of the present paper. We call
a standard chart weakly admissible if it is simply connected. Assume that we
have a loop γ inside UDI that is the orbit of a point under the action of a
one dimensional subgroup S of (R/Z)I . We claim that the symplectic area
of a cap of γ that is contained inside a weakly admissible standard chart U
(assuming such charts exist) only depends on γ, i.e. it is independent of U and
the cap chosen inside of U . The reason is because we can then compute the
symplectic area by transporting everything into C

I × C
n−|I| and see that it

is equal to l(0) − l(p), where l : R
I → R is a function whose pre-composition

with rI generates the action of S and p is the point of R
I
≥0 above which

γ lives. Hence, for such γ existence of a weakly admissible standard chart
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determines uniquely an equivalence class of caps. This would be enough for
our purposes.

3. Quantum, Hamiltonian Floer, and symplectic cohomology

3.1. Quantum and Hamiltonian Floer cohomology

In this section, (M,ω) will be a closed symplectic manifold such that 2κc1

(TM) = [ω] on π2(M) for some κ > 0.
Let A′ be the subgroup {2c1(TM)(B) : B ∈ π2(M)} ⊂ Z and set

Λ′ = k[A′], graded by i(ea) = a.
Let γ : S1 → M be a nullhomotopic loop in M . A cap for γ is an

equivalence class of disks u : D → M bounding γ, where u ∼ u′ if and only if
the Chern number of the spherical class [u−u′] vanishes: c1(TM)(u−u′) = 0.
The set of caps for γ is a torsor for A′, which acts via

a · (γ, u) = (γ, u#C) where 2c1(TM)(C) = a.

Given a non-degenerate Hamiltonian F : S1 × M → R, let PF denote
the set of contractible one-periodic orbits of F , and let P̃F be the set of
orbits equipped with a cap. Elements γ̃ = (γ, u) ∈ P̃F have a Z-grading and
an action

i(γ, u) = CZ(γ, u) +
dim(M)

2
and AF (γ, u) :=

∫

S1
F (t, γ(t)) dt +

∫

D

u∗ω,

and these are compatible with the action of A′ in that

i(a · (γ, u)) = i(γ, u) + a and A(a · (γ, u)) = A(γ, u) + κa .

Note that the ‘mixed index’

imix(γ) := i(γ, u) − κ−1A(γ, u)

is independent of the cap u.
Define CF ∗(M,F ) to be the free Z-graded k-module generated by P̃F .

It is naturally a graded Λ′-module, via ea · (γ, u) := a · (γ, u). It also admits
a Floer differential after the choice of a generic S1-family of ω-compatible
almost complex structures (which we suppress from the notation). The dif-
ferential is Λ′-linear, increases the grading by 1, does not decrease action,
and squares to zero.

One can also define continuation maps CF (M,F0) → CF (M,F1) in
the standard way by choosing a smooth function F : Rs × S1 × M → R,
which is equal to F0 for s � 0 and to F1 for s � 0, as well as an R × S1

dependent family of ω-compatible almost complex structures, which together
satisfy a regularity condition. Continuation maps are Λ′-linear chain maps. If
the continuation maps are defined using monotone Floer data, which means
∂F
∂s ≥ 0, then the continuation map CF (M,F0) → CF (M,F1) does not
decrease action.

Remark 3.1. We would like to stress that the discussion of Hamiltonian Floer
theory that we gave here is slightly simpler than the general theory due to our
positive monotonicity assumption. In particular, we did not need to complete



48 Page 34 of 77 M. S. Borman et al. JFPTA

Λ or our Hamiltonian Floer groups, which is necessary in general for the
potential infinite sums to make sense. For details, we refer the reader to [31].
Apart from the ones that we have explicitly stated above, our conventions
for Hamiltonian Floer theory agree with (1), (2), (3) and (5) of Section 3.1
in [40].

Let A ⊂ Q be a subgroup such that A′ ⊂ A. Let Λ = k[A], with the
same grading convention i(ea) = a ∈ Q; then we have an inclusion Λ′ ⊂ Λ.
(Eventually we will take A and Λ to be as defined in the beginning of Sect. 1.2
but we choose to be more general for a while.)

Let us define the Λ-cochain complex

CF ∗(M,F ; Λ) := CF ∗(M,F ) ⊗Λ′ Λ.

We denote the cohomology of this cochain complex by HF ∗(M,F ; Λ) :=
H∗(CF ∗(M,F ; Λ), ∂). There exists a natural PSS chain map:

C∗(M ; k) ⊗k Λ → CF ∗(M,F ; Λ),

which is known to be a quasi-isomorphism [28]. The PSS map is well defined
up to chain homotopy and compatible with chain level continuation maps up
to chain homotopy.

We now introduce the notion of ‘fractional caps’ of orbits. A fractional
cap for γ is a formal expression u + a, where u is a cap for γ and a ∈ R, and
we declare u + a ∼ u′ + a′ if and only if a − a′ ∈ A′ and u′ = (a − a′) · u.
There is a well-defined index and action associated with a fractional cap:

i(γ, u + a) := i(γ, u) + a, A(γ, u + a) := A(γ, u) + κa.

There is a natural bijection between the k-basis (γ, u)⊗ ea of CF ∗(M,F ; Λ),
and the set of fractionally capped orbits (γ, u + a) with a ∈ A.

3.2. Relative symplectic cohomology

Let M,ω, κ,Λ be as in Sect. 3.1. We now define relative symplectic coho-
mology for compact subsets of M over Λ, referring to [40] for the details.
As briefly mentioned in the introduction (see Sect. 1.3, especially the foot-
note on pages 4-5), the construction below is slightly different than the one
in [40]. Namely, here we use capped orbits (in particular we only consider
contractible orbits) and keep track of the caps rather than weighting Floer
solutions using a formal variable.

Let K ⊂ M be compact. We call the following data a choice of acceler-
ation data for K:

• H1 ≤ H2 ≤ · · · a monotone sequence of non-degenerate one-periodic
Hamiltonians Hi : S1 × M → R cofinal among functions satisfying
H |S1×K< 0. In other words, for every (t, x) ∈ S1 × M ,

Hi(t, x) −−−−→
i→+∞

{
0, x ∈ K,

+∞, x /∈ K.

• A monotone homotopy of Hamiltonians Hi,i+1 : [i, i+1]×S1 ×M → R,
for all i, which is equal to Hi and Hi+1 at the corresponding end points.

• A R≥1 × S1-family of ω-compatible almost complex structures.
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We denote the acceleration data as a single family of time-dependent
Hamiltonians and almost complex structures (Hτ , Jτ ), τ ∈ R≥1. We also fix
an non-decreasing surjective smooth map (−∞,∞) → [0, 1]. Given a [i, i+1]-
dependent family of Hamiltonians and almost complex structures, we use this
map to write down a Floer equation for maps from R × S1 to M . Let us call
the resulting R × S1-family of Hamiltonians and almost complex structures
the associated Floer data.

We require the acceleration data (Hτ , Jτ ) to satisfy the following two
assumptions:

(1) For each i ∈ N, (Hi, Ji) is regular.
(2) For each i ∈ N, the Floer data associated with (Hτ , Jτ )τ∈[i,i+1] is regu-

lar.

Given acceleration data (Hτ , Jτ ), Hamiltonian Floer theory provides a
1-ray of Floer Λ-cochain complexes, called a Floer 1-ray:

C(Hτ , Jτ ) := CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) → · · · .

The horizontal arrows are Floer continuation maps defined using the
monotone homotopies appearing in the acceleration data. Recall that a cylin-
der u contributing to a Floer differential or a continuation map has non-
negative topological energy

Etop(u) =
∫

S1
γ∗
outHout dt −

∫

S1
γ∗
inHin dt +

∫

R×S1
u∗ω ≥ 0, (3.1)

where γout, γin are the asymptotic orbits of u, and Hout, Hin are the Hamil-
tonians at the corresponding ends. (For Floer differentials, Hout = Hin = Hi

and for continuation maps, Hout = Hi+1, Hin = Hi for some i.)

Remark 3.2. We also note that the inequality in (3.1) comes from the more
general inequality

Etop(u) ≥
∫

R×S1

(
∂H

∂s

)
(u(s, t), s, t)dsdt, (3.2)

where u is a solution of the Floer equation for an arbitrary H : R×S1×M →
R which is s-independent at the ends.

From now on, we will use the terminology introduced in Sect. A.3 freely.
We apologetically ask the reader to take a look at it before moving further.
Using the grading and action considerations from Sect. 3.1, C(Hτ , Jτ ) be-
comes a 1-ray in FiltChΛ. We define the Λ-cochain complexes tel(C(Hτ , Jτ ))
and t̂el(C(Hτ , Jτ )) as in Sect. A.3. We can now repeat Section 3.3.2 of [40]
in this set-up.

Proposition 3.3. For two different choices of acceleration data for K, (Hτ , Jτ )
and (H ′

τ , J ′
τ ), there is a canonical isomorphism

H∗
(
t̂el(C(Hτ , Jτ ))

) ∼= H∗
(
t̂el(C(H ′

τ , J ′
τ ))
)

of Q-graded Λ-modules.
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Hence, we define

SH∗
M (K; Λ) := H∗

(
t̂el(C(Hs, J))

)
.

Proposition 3.4. There are canonical restriction maps of Q-graded Λ-modules
for K ⊂ K ′:

SH∗
M (K ′; Λ) → SH∗

M (K; Λ).

�

We finally list the three properties we will need of relative symplectic
cohomology. Here is the first one.

Theorem 3.5. Assume that tel(C(Hτ , Jτ )) is degreewise complete. Then
SH∗

M (K; Λ) = QH∗(M ; Λ).

Proof. Follows from the basic properties of the PSS maps discussed at the
end of Sect. 3.1 along with the diagram (A.2) and the fact that a direct limit
of quasi-isomorphisms is a quasi-isomorphism. �

Before we state the second property, we note the following important
statement from Hamiltonian Floer theory.

Let H : S1 × M → R a non-degenerate Hamiltonian and J an S1-
dependent almost complex structure compatible with ω. Assume that (H,J)
is regular and fix Δ ≥ 0.

• The Floer data (Hs := H + Ψ(s)Δ, Js := J), where Ψ : R → R is
a smooth function that is equal to 0 for s < −1 and to 1 for s > 1,
is regular. This is a standard fact in Floer theory noting that adding
Ψ(s)Δ does not change the Floer equation.

• The resulting continuation map

cΨ : CF ∗(M,H) → CF ∗(M,H + Δ)

is the naive map which sends each capped orbit to itself. Yet, note that
the action of the capped orbit for H + Δ is Δ more than its action for
H.

Let us fix a non-decreasing Ψ for the proof below. Let us denote the contin-
uation map above for any H and Δ by cΨ by abuse of notation.

Theorem 3.6. If K is stably displaceable, then SH∗
M (K; Λ) = 0.

Sketch of proof. The proof is identical to that in the Section 4.2 of [39] up to
minor modifications. We provide an overview of the proof for completeness.

Let us first prove the result when K is displaceable. Let (Hτ , Jτ ) be
a choice of acceleration data for K and H : [0, 1] × M → R be a function
whose time-1 Hamiltonian flow φ : M → M displaces K. In fact, φ displaces
a domain neighborhood D of K. Assume that Hτ ’s are so that ∂D is a level
set of H1 for all t ∈ S1, and Hτ = H1 + τ − 1 on M − int(D) for all τ .

We recall an elementary construction for reparametrizing Hamiltonian
flows . Let I = [0, T ] and I ′ = [0, T ′] be closed intervals, and ψ : I ′ → I be
a smooth map which sends 0 to 0 and T ′ to T . Then, the time T -flow of the
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time dependent Hamiltonian vector field Xt, t ∈ I of h : I × M → R and the
time-T ′ flow of X ′

t, t ∈ I ′ of (h ◦ (ψ × id)) · dψ
dt : I ′ × M → R are the same

map M → M .11

Let us fix a non-decreasing function ψ : [0, 1/2] → [0, 1], which is locally
constant in a neighborhood of the endpoints of [0, 1/2].

Using the reparametrization construction with ψ, starting with HL,HR :
M × [0, 1] → R we can cook up a new Hamiltonian HLφHR : M × R/Z →
R, such that the HL and HR parts are supported in (1/2, 1) and (0, 1/2)
respectively. The Hamiltonian flow of HLφHR is tangent to XHR

first. After
not moving for a short period, it arrives at φ1

HR
in less than 1/2-time, and

stops for a while. At some point after time 1/2, it starts moving again, this
time being tangent to XHL

, and reaches to φ1
HL

◦ φ1
HR

before time-1. It then
stops for a little until time 1, after which it repeats this flow.

We define SH∗
M (K,H; Λ) via the family HφHs in the same way we de-

fined SH∗
M (K; Λ). Note that this construction does not use that H displaces

K. In particular, we can define SH∗
M (K, 0; Λ), and it follows from Lemma

4.2.1 of [39] that SH∗
M (K, 0; Λ) is isomorphic (as a graded Λ−module) to

SH∗
M (K; Λ). Here and in the future, by abuse of notation, we denote the

constant function M × [0, 1] → R, sending everything to Δ ∈ R by Δ.
The next step is to show that SH∗

M (K,H; Λ) is isomorphic to SH∗
M

(K, 0; Λ), which is true for arbitrary H. We can find a Δ ≥ 0 such that

−Δ ≤ H(x, t) ≤ Δ,

for all (x, t) ∈ M × [0, 1]. This implies that for any G : M × [0, 1] → R, we
have

−cΔ + 0φG ≤ HφG ≤ cΔ + 0φG ≤ 2cΔ + HφG,

where c > 0 is a constant that depends on our choice of ψ.
Hence we obtain filtered chain maps

tel(C(−cΔ + 0φHs)) → tel(C(HφHs)) → tel(C(cΔ + 0φHs))
→ tel(C(2cΔ + HφHs)).

The composition of the first two maps is filtered chain homotopic to the
map obtained from c′

Ψs as explained right before the theorem using a filling
in 3-slits argument. The same result is true for the composition of last two
maps.

Using Lemma A.2’s last statement and the second bullet point of Lemma
A.3, we obtain that there is a chain of maps

SH∗
M (K, 0; Λ) → SH∗

M (K,H; Λ) → SH∗
M (K, 0; Λ) → SH∗

M (K,H; Λ),

where the composition of the first two and the last two maps are isomor-
phisms. This implies the result.

The main point of the proof is to show that SH∗
M (K,H; Λ) = 0 for

the displacing Hamiltonian H from the beginning of the argument. This uses
Lemma A.5. The more detailed claim is that a slightly modified version of
the family HφHs gives rise to a 1-ray that satisfies the conditions of Lemma

11We warn the reader that there is a typo in the relevant formula in [39].
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A.5. The actual proof of this is too long to include here (see Section 4.2.3 of
[39]). Let us instead explain the intuition behind the proof. Let γ : S1 → M
be a 1-periodic orbit of HφHs for some s. Because φ displaces D, either
γ(0) or γ(1/2) = φ−1(γ(0)) needs to lie outside of D. Then conservation of
energy and that ∂D is a level set of Hs for all times shows that in fact we
have γ([0, 1/2]) ⊂ M\D. Now if we could use parametrized moduli spaces
and cascades instead of continuation maps, we would have our proof. This
relies in the fact that γ([0, 1/2]) ⊂ M\D holds for all 1-periodic orbits of all
HφHs and that ∂Hs

∂s = 1 in M\D: the actions increase with a constant rate
as we follow the orbits and accidental solutions can only further increase the
action. There are technical difficulties in making this work, so we refer the
reader to [39] for the actual proof.

We move on to the case when K is only stably displaceable. Let T 2 be
a symplectic torus such that

K̃ := K × γ ⊂ M × T 2

is displaceable inside M × T 2, where γ is a meridian in T 2. Note that M ×
T 2 also satisfies the conditions of our construction of relative symplectic
cohomology over Λ as T 2 is aspherical.

We will prove that SH∗
M (K; Λ) naturally injects into SH∗

M×T 2(K̃; Λ),
which finishes the proof. It is easy to see that acceleration data can be chosen
for γ ⊂ T 2 where each Hamiltonian in the cofinal family has exactly 4 con-
tractible orbits, and the differentials on each of the corresponding Hamilton-
ian Floer groups vanish. Using the the chain level Künneth isomorphism for
Hamiltonian Floer theory and that completion commutes with tensor product
with a finite dimensional Λ-module, we easily prove the desired claim. �

We come to the third and final property of relative symplectic cohomol-
ogy that we will discuss in this section. Recall from the introduction that a
compact set K ⊂ M is called SH-invisible if SH∗

M (K; Λ) = 0.

Theorem 3.7. If a compact subset K ⊂ M is SH-invisible, then any compact
subset K ′ ⊂ K is also SH-invisible.

Proof. The proof is identical to that of Theorem 1.2 (4) in [38]. The key
point (Proposition 2.5 of [38]) is that there is a distinguished element 1K ∈
SHM (K,Λ), called the unit, with the following properties.

• SHM (K,Λ) = 0 if and only if 1K = 0.
• Restriction maps send units to units.

The element 1K is constructed so that it is the unit of a pair-of-pants type
product structure on SHM (K,Λ). The details are in Section 5 of [38]. �
3.3. Towards the symplectic cohomology of the divisor complement

We return to the geometric setup of Sect. 1.1: (M,ω) will be a closed sym-
plectic manifold that is monotone

2κcM
1 = [ω] ∈ H2(M ; R) with κ > 0,

D = ∪N
i=1Di ⊂ (M,ω) will be a simple crossings divisor and λ1, . . . , λn ∈ Q>0

will be the weights. We will denote X = M\D, λ ∈ H2(M,X; R) will be the
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associated lift of 2cM
1 , and θ ∈ Ω1(X) will be a primitive of ω|X such that

the relative de Rham cohomology class of (ω, θ) is κλ.
First we recall the action and index of orbits in the exact symplectic

manifold (X, θ). Let F : S1 × X → R be a Hamiltonian, and γ : S1 → X a
non-degenerate orbit of F . Its action is defined to be

AF (γ) :=
∫

S1
F (t, γ(t)) dt +

∫

S1
γ∗θ.

To associate an index to orbits, we require an additional piece of data: a
homotopy class of trivializations η of Λtop

C (TX)⊗2N , for some integer N > 0.
To define the index iη(γ) of an orbit γ, we first choose a trivialization Φ of
γ∗TX; we denote the Conley–Zehnder index with respect to this trivialization
by CZ(γ,Φ). The trivialization Φ induces a trivialization of Λtop

C (γ∗TX)⊗2N ,
and we define w(Φ, η) ∈ Z to be the winding number of

η−1 ◦ Λtop
C (Φ)⊗2N : S1 → C

∗.

We then define

iη(γ) = CZ(γ,Φ) +
dim(X)

2
− w(Φ, η)

N
.

One easily checks that the index is independent of the trivialization Φ. Note
that it is fractional: iη(γ) ∈ 1

N Z.
In our setting, the relevant choice of trivialization η is determined by

λ. Let N be an integer such that Nλi ∈ Z for all i. Then
∑

i Nλi[Di] is
Poincaré dual to c1(Λ

top
C (TM)⊗2N ) by definition, so we may choose a section

of Λtop
C (TM)⊗2N which is non-vanishing over X, and vanishes with multi-

plicity Nλi along Di. Restricting this section to X defines a homotopy class
of trivializations of Λtop

C (TX)⊗2N , which we denote by ηλ . We will write i(γ)
for iηλ

(γ).
Now let F : S1 × M → R be a Hamiltonian, and γ : S1 → X a non-

degenerate orbit of F which is contractible in M , and contained inside X.
We define a canonical fractional cap uin for γ, by setting uin := u − u · λ for
an arbitrary cap u; the result is clearly independent of u. One should think of
uin as a ‘cap inside X’: indeed, if u were a cap contained inside X, we would
have uin = u.

Lemma 3.8. We have

i(γ) = i(γ, uin) and AF (γ) = AF (γ, uin).

Proof. Let us choose an arbitrary u : D → M capping γ. We start with the
action. Directly from the definitions:

AF (γ) =
∫

S1
F (t, γ(t)) dt +

∫

S1
γ∗θ

and AF (γ, uin) =
∫

S1
F (t, γ(t)) dt +

∫

D

u∗ω − κu · λ.

Therefore, the result follows from the assumption that the relative de Rham
cohomology class of (ω, θ) is κλ.
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Recalling definitions for indices:

i(γ) = CZ(γ,Φ) +
dim(X)

2
− w(Φ, ηλ)

N
,

where we choose Φ to be the trivialization of γ∗TX induced by the cap u,
and

i(γ, u) = CZ(γ, u) +
dim(M)

2
− u · λ.

Therefore, we need to show that

w(Φ, ηλ) = Nu · λ.

This follows because ηλ actually induces a section of Λtop
C (u∗TM)⊗2N . Using

any trivialization of Λtop
C (u∗TM)⊗2N , we can think of this section as a map

D → C, which does not vanish along the boundary. The degree of this map at
0 ∈ C is easily computed to be Nu ·λ using that ηλ vanishes with multiplicity
Nλi along Di. It is an elementary fact that the same degree is also equal to
the winding number that we are interested in, so the result follows. �

3.4. Positivity of intersection

In this section, we prove a result based on Abouzaid–Seidel’s ‘integrated
maximum principle’. We will later use it to prove Proposition 1.12, although
the result is more broadly applicable.

Let (W,ω) be a symplectic manifold with a concave boundary modelled
on the contact manifold (Y, θ). This means that ∂W = Y , and there is a
symplectic embedding of the symplectization (Y × [c, c + ε), d(ρ · θ)) onto a
neighbourhood of the boundary, where ρ ∈ [c, c + ε) is the Liouville coor-
dinate. Note that as ω|Y = cdθ, we have a relative de Rham cohomology
class [ω; cθ] ∈ H2(W,Y ). We will consider u : (Σ, ∂Σ) → (W,Y ) satisfying
the pseudoholomorphic curve equation for a certain class of almost-complex
structures and Hamiltonian perturbations, and give a criterion guaranteeing
that [ω; cθ](u) ≥ 0, with equality if and only if u ⊂ Y .

To define our pseudoholomorphic curve equation, we choose a com-
plex structure j on Σ, a family J of ω-compatible almost-complex struc-
tures Jz parametrized by z ∈ Σ, and a Hamiltonian-valued one-form K ∈
Ω1(Σ;C∞(W )). Note that differential forms on Σ×W decompose into types:

Ω•(Σ × W ) =
⊕

j+k=•
Ωj(Σ,Ωk(W )),

so we may interpret K as a one-form on Σ × W . The de Rham differential
decomposes as d = dΣ + dW , where

dΣ : Ωj(Σ,Ωk(W )) → Ωj+1(Σ,Ωk(W )) and

dW : Ωj(Σ,Ωk(W )) → Ωj(Σ,Ωk+1(W )).

The isomorphism C∞(TW ) → Ω1(W ) sending v �→ ω(v,−) allows us to
turn dW K into a Hamiltonian-vector-field-valued one-form XK ∈ Ω1(Σ;C∞

(TW )). We will consider the pseudoholomorphic curve equation

(du − XK)0,1 = 0.
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Note that the (0, 1)-projection of v ∈ Ω1(Σ;C∞(TW )) is given by 1
2

(v + J ◦ v ◦ j).
We introduce the geometric energy of a pseudoholomorphic curve u:

Egeom(u) =
1
2

∫

Σ

‖du − XK‖2
.

It is manifestly non-negative. Let ũ : Σ → Σ × W denote the graph of u. We
have the standard computation (e.g. Equation (8.12) of [32]):

Egeom(u) =
∫

Σ

u∗ω + ũ∗ (dW K + {K,K}) ,

where the final term lives in Ω2(Σ, C∞(W )) and is defined by {K,K}(v, w) :=
{K(v),K(w)}, where {−,−} is the Poisson bracket.

We also introduce the topological energy

Etop(u) :=
∫

Σ

u∗ω + ũ∗dK.

Note that

Etop(u) = Egeom(u) +
∫

Σ

ũ∗ (dΣK − {K,K}) .

Proposition 3.9. Suppose that
(1) Jz is of contact type along Y , for all z ∈ ∂Σ:

dρ ◦ Jz = −ρθ.

(2) There exist one-forms α, β ∈ Ω1(Σ) such that K = α · ρ + β in a neigh-
bourhood of Y

(3) We have dΣK − {K,K} − dβ ≥ 0.12

Then any smooth map u : (Σ, ∂Σ) → (W,Y ) satisfying (du − XK)0,1 = 0,
with ∂Σ �= ∅, will satisfy [ω; cθ](u) ≥ 0, with equality if and only if u ⊂ Y .

Proof. We have

[ω; cθ](u) =
∫

Σ

u∗ω −
∫

∂Σ

u∗cθ

= Egeom(u) −
∫

Σ

ũ∗ (dW K + {K,K}) − c

∫

∂Σ

u∗θ

≥
∫

Σ

ũ∗ (−dK + dΣK − {K,K}) − c

∫

∂Σ

u∗θ as Egeom(u) ≥ 0

≥
∫

Σ

ũ∗ (−dK + dβ) − c

∫

∂Σ

u∗θ by hypothesis (3)

=
∫

∂Σ

−ũ∗K + β − c · u∗θ.

By hypothesis (2), the first and second terms combine to give
∫

∂Σ

−ũ∗(α · ρ + β) + β = −
∫

∂Σ

c · α,

12Given ξ ∈ Ω2(Σ, C∞(W )), we say that ξ ≥ 0 if for all z ∈ Σ, v ∈ TzΣ, and w ∈ W , we
have ξ(v, jv)(w) ≥ 0.
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as ρ = c along Y .
We can analyse the remaining term using the argument in [2, Lemma

7.2]. Let v ∈ Tz∂Σ be a positively-oriented boundary vector. Using the Floer
equation

(du − XK)0,1 = 0,

we obtain

u∗(v) = −Ju∗j(v) + XK (v) + JXKj(v),

so

u∗θ(v) = −θ (Ju∗j(v)) + θ (XK (v)) + θ (JXKj(v)) .

We analyse each term on the RHS. For the first, we note that j(v) points
into Σ. Therefore u∗(j(v)) points into W . Such vectors can be written as the
sum of a non-negative multiple of the Liouville vector and a vector that is
tangent to Y . Because J is of contact type, this implies that

θ (Ju∗j(v)) ≥ 0.

For the second, we note that hypothesis (2) ensures that XK(v) = −α(v) ·R,
where R is the Reeb vector field on Y . Thus, θ(XK(v)) = −α(v). For the
third, hypothesis (2) again ensures that XK(j(v)) is a multiple of the Reeb
vector field; because J is of contact type, θ(JXKj(v)) = 0. Putting it all
together, we have

u∗θ(v) ≤ −α(v).

Combining, we finally obtain

[ω; cθ](u) ≥
∫

∂Σ

−c · α + c · α = 0

as required.
If equality holds then we have Egeom(u) = 0, which implies that du =

XK. Hypothesis (2) then implies that u∗(v) = XK(v) is a multiple of the
Reeb vector field R in a neighbourhood of Y , for all v; as R is tangent to Y ,
this implies that u is contained in Y . �

Remark 3.10. Note that if K′ = K + ξ, where ξ ∈ Ω1(Σ), then XK = XK′ ,
so the associated pseudoholomorphic curve equations are identical. Thus, we
would expect that if the hypotheses of Proposition 3.9 hold for K, then they
should also hold for K′. Indeed, Hypothesis (2) holds, as K′ = α ·ρ+β′, where
β′ = β + ξ; and Hypothesis (3) also holds, because K′ − β′ = K − β.

Proposition 3.9 is designed to prove Proposition 1.12 (= Proposition
5.10), but there are other natural situations where Hypotheses (2) and (3) can
be made to hold. The simplest, of course, is if K vanishes in a neighbourhood
of Y . Alternatively, similarly to [2], we may have K = H · γ where H is
independent of z ∈ Σ, H = aρ + b in a neighbourhood of Y , H ≥ b over W ,
and dγ ≥ 0.
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4. Special Hamiltonian

Our goal in this section is to construct the special functions ρR : M → R,
defined for R > 0 sufficiently small, as mentioned Sect. 1.5. Recall their key
properties:

• ρR is continuous on M , and smooth on the complement of the skeleton
L;

• ρR|L = 0 and ρR|D ≈ 1;
• we have Z(ρR) = ρR on X\L, where Z is the Liouville vector field on

(X, θ);
• ρR → ρ0 as R → 0.

Having constructed the functions ρR, we use them to construct the Hamilto-
nians on M which we use in our main arguments; and we compute the action
and index of the orbits of these Hamiltonians. The results are expressed in
Lemmas 4.21 and 4.24.

We use the geometric setup of Sect. 1.1 with slight modifications in light
of Sect. 2. Let us spell this out fully. We have a closed symplectic manifold
(M,ω) which is monotone

2κcM
1 = [ω] ∈ H2(M ; R) with κ > 0,

D = ∪N
i=1Di ⊂ (M,ω) is an orthogonal simple crossings divisor and λ1, . . . ,

λN ∈ Q>0 is a choice of weights. We denote X = M\D and λ ∈ R
N ∼=

H2(M,X; R) is the associated lift of 2cM
1 . We also choose an admissible

system of commuting Hamiltonians {ri : UDi → [0, R0)} near D and a
primitive θ ∈ Ω1(X) of ω|X such that the relative de Rham cohomology class
of (ω, θ) is κλ. We assume that θ is adapted to {ri : UDi → [0, R0)} and that

R0 < κλi, for all i. (4.1)

The last condition can be achieved by shrinking the ascH (as explained in
Sect. 2.2).

In fact, we will consider the (0, R0)-family of such data obtained by
shrinking the ascH to radius R ∈ (0, R0), while keeping all else fixed. The
parameter R will also13 be used as the ‘smoothing parameter’ for ρR. In
Sect. 5, we will want R to be sufficiently small for certain arguments to work.
The approximations in this section (such as ρR|D ≈ 1) will be more and more
accurate as R tends to 0. The dependence on R of our constructions below
should be understood in this light.

4.1. Overview of the construction of ρR

The first step in the construction is to enlarge the sets UDi via the Liouville
flow. This gives us open sets UDmax

i , together with toric moment maps rmax
i :

UDmax
i → [0, κλi), such that ∪iUDmax

i = M\L. For I ⊂ [N ], we define
UDmax

I = ∩i∈IUDmax
i , and we have toric moment maps rmax

I : UDmax
I →∏

i∈I [0, κλi).

13We note that this is for notational convenience only.
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Now for each non-empty I ⊂ [N ], we define open subsets ŮDmax
I ⊂

UDmax
I so that ∪I ŮDmax

I = M\L. We will define ρR|ŮDmax
I

= ρ̃R
I ◦ rmax

I , for
smooth functions

ρ̃R
I :
∏

i∈I

[0, κλi) → R

carefully chosen so that the definition agrees on the overlaps and ρR satisfies
the desired key properties. In fact, ρ̃R

I will be well defined on the larger region

VI := R
I\
∏

i∈I

[κλi,∞).

Let us briefly discuss how we will ensure that ρR thus defined satisfies
Z(ρR) = ρR. We translate this into a property of the functions ρ̃R

I . We denote
the standard projection by prI : R

N → R
I , and set λI := prI(λ). We consider

the (Euler-type) vector field Z̃I on R
I defined by

(
Z̃I

)
r :=

∑

i∈I

(ri − κλi)
∂

∂ri
.

Lemma 4.1. For all x ∈ UDI\D,

(rI)∗Zx =
(
Z̃I

)

rI(x)
.

Proof. Follows from the fact that Z(ri) = ri − κλi, as θ is adapted to the
scH. �

In fact, UDmax
I and rmax

I are constructed so that Lemma 4.1 also holds
if we put max superscripts on the rI and UDI (Lemma 4.4). This gives us

Corollary 4.2. The function ρR := ρ̃R
I ◦rmax

I satisfies Z(ρR) = ρR if and only
if Z̃I(ρ̃R

I ) = ρ̃R
I .

Note that a function f : VI → R satisfies Z̃I(f) = f if and only if it is
linear along the rays emanating from κλI , converging to 0 at that point.

The functions ρ̃R
I will be constructed roughly as follows. We will choose

a hypersurface Ỹ R
I ⊂ VI ∩R

I
≥0 which is a smoothing of Ỹ 0

I := ∂R
I
≥0, satisfying

certain properties (see Lemma 4.8). Then, we will define ρ̃R
I as the function

that is linear along the rays emanating from κλI , converging to zero at that
point, and takes the value 1 on Ỹ R

I .
For the other key properties of ρR let us mention the following slightly

sketchy point to orient the reader. Recall that ρR is supposed to be a smooth-
ing of the continuous function ρ0 : M → R introduced in Sect. 1.3, which
has all of the properties we need (e.g., it satisfies ρ0|L = 0, ρ0|D = 1 and
Z(ρ0) = ρ0), except it is not smooth. We now give an alternative description
of the function ρ0, which is parallel with the construction of ρR. We extend
the function κλi−rmax

i

κλi
: UDmax

i → R to M by defining it to be 0 everywhere
outside of its original domain of definition. Let us momentarily denote this
extension with the same notation. Then we have

ρ0 = max
i

κλi − rmax
i

κλi
.
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In particular, on UDmax
I , we have ρ0 = ρ̃0

I◦rmax
I , where ρ̃0

I(r) = maxi∈I
κλi−ri

κλi
.

Note that ρ̃0
I is equal to 0 at κλI , linear along the rays emanating from this

point, and equal to 1 along Ỹ 0
I . The functions ρ̃R

I mentioned above will be
consistently chosen smoothings of the functions ρ̃0

I .

Remark 4.3. We would like to warn the reader of an abuse of notation we
already committed a couple of times above and will continue with below.
We will use ri both as the function ri : UDi → [0, R) and also the ith

coordinate function on R
I with i ∈ I. We believe that this will not cause

too much confusion, partly because often we will actually need to be using
rmax
i : UDmax

i → [0, κλi) in place of the former anyway.

4.2. Construction of UDmax
I , rmax

I , ŮDmax
I

Note that UDi\Di is closed under the positive Liouville flow as long as the
flow is defined, by Lemma 4.1 and Eq. (4.1). Let us define UDmax

i ⊂ M as
the union of UDi with the set of points in X that enter into UDi under the
positive Liouville flow in finite time. Of course we have UDi ⊂ UDmax

i . Note
that UDmax

i depends on R just as UDi does (unless D = Di is smooth);
nevertheless we suppress R from the notation.

We extend ri to

rmax
i : UDmax

i → R≥0

by first flowing into UDi with the Liouville flow in some time T ≥ 0, applying
ri, and then flowing with Z̃{i} for time −T . This is well defined and smooth
by Lemma 4.1.

Let us also define UDmax
I := ∩i∈IUDmax

i and

rmax
I : UDmax

I → R
I
≥0.

Then the following is true by construction:

Lemma 4.4. Lemma 4.1 holds if we put max superscripts on the rI and UDI .

Now, recall that Ỹ 0
I := ∂R

I
≥0. Define the projection-from-κλI map

PI : VI → Ỹ 0
I ,

which flows a point along Z̃I until it intersects Ỹ 0
I .

Now, let us define UD
1/2
i := {ri ≤ R/2} ⊂ UDi = {ri < R}. Define

UD
1/2,max
i to be the union of UD

1/2
i with the set of points in X that enter

into UD
1/2
i under the positive Liouville flow in finite time.

Definition 4.5. For I ⊂ [N ], define

ŮDmax
I := UDmax

I \
⋃

j /∈I

UD
1/2,max
j .

(Fig. 1 may help the reader visualize these sets.)

Lemma 4.6. The sets
{

ŮDmax
I

}

∅�=I⊂[N ]
form an open cover of M\L.
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Proof. Because UD
1/2,max
i is closed in M\L, and contained in UDmax

i , the

sets UDmax
i and

(
UD

1/2,max
i

)c

form an open cover of M\L for all i. Taking
the intersection of these open covers over all i gives us an open cover by the
sets

⋂

i∈I

UDmax
i ∩

⋂

i/∈I

(
UD

1/2,max
i

)c

= ŮDmax
I

for I ⊂ [N ]. It remains to check that ŮDmax
∅ = ∅. This follows from the fact

that ∪iUD
1/2,max
i = M\L (because every flowline of the Liouville vector field

in X\L ultimately enters ∪iUD
1/2
i ). �

The following is an easy consequence of Lemma 4.1 and the construction
of UDmax

I and UD
1/2,max
i :

Lemma 4.7. If i ∈ I, then

UDmax
I \UD

1/2,max
i = (PI ◦ rmax

I )−1 ({ri > R/2}) .

4.3. Construction of Ỹ R
I

For any R0 > R > 0 (as always in this section), let qR : R → R be a function
satisfying:

• qR(r) = 0 for r ≥ R/2;
• (qR)′(r) < 0 for r < R/2;
• qR(0) = 1.

Consider

QR
I : R

I → R

QR
I (r) :=

∑

i∈I

qR(ri).

Now define

Ỹ R
I := {QR

I = 1}
(see Fig. 1).

Lemma 4.8. The hypersurfaces Ỹ R
I ⊂ R

I have the following properties:

(1) Ỹ R
I is contained in the region VI,≥0 := VI ∩ R

I
≥0.

(2) Every flowline of Z̃I in VI crosses Ỹ R
I transversely at a unique point.

(3) If ν̃R
I : Ỹ R

I → R
I is a normal vector field (pointing towards the com-

ponent containing κλ), then ν̃R
I,i ≥ 0 for all i. (Here ν̃R

I,i is the ith
component of ν̃R

I .)
(4) For any J ⊂ I, Ỹ R

I coincides with Ỹ R
J × R

I\J over the region ∩i∈I\J

{ν̃R
I,i = 0}.

(5) The region {ν̃R
I,i = 0} contains P−1

I ({ri > R/2}).
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Figure 1. The hypersurface Ỹ R
{1,2}. The image of rmax

{1,2} is

shaded. The images of the regions ŮDmax
{1} ∩ ŮDmax

{1,2} and

ŮDmax
{2} ∩ ŮDmax

{1,2} are shaded darker

Proof. Property (1) follows from the fact that QR
I ≥ 1 if any ri ≤ 0 and

QR
I = 0 if all ri ≥ R/2.

To prove property (2), we first observe any flowline of Z̃I in VI starts
at κλI , where QR

I = 0, and ends up outside VI,≥0, where QR
I ≥ 1, so it must

cross Ỹ R
I somewhere. Furthermore, we have that Z̃I(QR

I ) ≥ 0 for any i: we
have

Z̃I(qR(ri)) = (ri − κλi) · (qR)′(ri),

where (qR)′(ri) ≤ 0, and ri − κλi < R/2 − κλi < 0 wherever (qR)′(ri) �= 0.
Finally, we have Z̃I(QR

I ) > 0 along Ỹ R
I , because at any point on Ỹ R

I we have
qR(ri) > 0 and hence (qR)′(ri) < 0 for some i.

Property (3) follows from the fact that ∂QR
I /∂ri ≤ 0 for all i. Property

(4) follows from the fact that (qR)′(ri) = 0 if and only if qR(ri) = 0. Property
(5) follows from the fact that

P−1
I ({ri > R/2}) ∩ Ỹ R

I ⊂ P−1
I ({ri > R/2}) ∩ VI,≥0 ⊂ {ri > R/2},

and (qR)′(ri) = 0 for ri > R/2. �

Remark 4.9. The hypersurface Ỹ R
I has the additional property (which we

will not use, but which may help the reader to visualize the construction)
that it coincides with Ỹ 0

I away from a neighbourhood of the singular locus of
the latter. We can also choose qa to be a convex function, which would imply
that the component of R

I − Ỹ R
I that does not contain 0 is convex (which

would in turn imply that ρ̃R
I is convex). Again, we do not need this property.
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4.4. Construction of ρ̃R
I

By property (2) of Ỹ R
I , there is a unique smooth function ρ̃R

I : VI → R

satisfying

ρ̃R
I |Ỹ R

I
= 1 and Z̃I(ρ̃R

I ) = ρ̃R
I .

Recall that the second condition means that ρ̃R
I is linear along the rays em-

anating from κλI , converging to zero at κλI . In particular, the level sets of
ρ̃R

I are scalings of Ỹ R
I centred at κλI .

Lemma 4.10. If J ⊂ I, then

ρ̃R
I = ρ̃R

J ◦ prIJ over the region
⋂

i∈I\J

P−1
I ({ri > R/2}) ,

where prIJ : R
I → R

J is the natural projection.

Proof. Follows from the fact that Ỹ R
I coincides with Ỹ R

J × R
I\J in the given

region, by properties (4) and (5) of Ỹ R
I . �

4.5. Construction of ρR

Lemma 4.11. For any ∅ �= I, J ⊂ [N ], we have

ρ̃R
I ◦ rmax

I = ρ̃R
J ◦ rmax

J over ŮDmax
I ∩ ŮDmax

J .

Proof. First note that ŮDmax
I ∩ ŮDmax

J ⊂ UDmax
I∪J . We have

ŮDmax
I ∩ ŮDmax

J =
⋂

k/∈I∩J

(PI∪J ◦ rmax
I∪J )−1 ({rk > R/2}) ,

as an immediate consequence of Lemma 4.7. Over this set, we have

ρ̃R
I ◦ rmax

I = ρ̃R
I ◦ prI∪J,I ◦ rmax

I∪J = ρ̃R
I∪J ◦ rmax

I∪J

by Lemma 4.10. The result now follows by applying the same argument to
ρ̃R

J ◦ rmax
J . �

Lemmas 4.6 and 4.11 allow us to define:

Definition 4.12. We define ρR : M → R to be equal to ρ̃R
I ◦ rmax

I over each
ŮDmax

I , and equal to 0 over L.

To check that ρR is continuous along L, we use the fact that Z(ρR) = ρR

on M\L by Corollary 4.2, and the level sets of ρR are compact submanifolds
disjoint from L. It follows that ρR → 0 as we go towards L, so ρR is continuous
along L.

Definition 4.13. Because Z(ρR) = ρR, and ρR|D ≥ 1, the subset KR
σ :=

{ρR ≤ σ} is a Liouville subdomain of X for any σ ∈ (0, 1). The contact
manifold Y R

σ = ∂KR
σ with contact form σ−1ι∗Y R

σ
θ is independent of σ.

For the remainder of this section, we will drop R from the notation: so
we write ρ instead of ρR, etc.
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4.6. The Hamiltonian and its orbits

Let h : R → R be a smooth function which is constant on a neighbourhood of
0. It is clear that the function h◦ρ is smooth on M . We denote its Hamiltonian
flow by Φh◦ρ

t . To describe the orbits of h ◦ ρ, we first compute dρ.

Lemma 4.14. There exist smooth functions νi : M\L → R≥0, supported in
UDmax

i , such that

(dρ)m = −
∑

i

νi(m) · (drmax
i )m .

(Here the LHS denotes the value of the one-form dρ at the point m. The
RHS is well defined, even though drmax

i is only defined over UDmax
i , because

νi vanishes outside UDmax
i .)

Proof. For any i, I, we define the following function on VI :

ν̃I,i :=
{−∂ρ̃I/ri if i ∈ I

0 else

Note that it is non-negative by property (3) of ỸI . We claim that for any i,
and any J ⊂ I, we have

ν̃I,i = ν̃J,i ◦ prIJ over the region
⋂

i∈I\J

P−1
I ({ri > R/2}) .

If i ∈ I, this follows by Lemma 4.10 (there are two cases: i ∈ J and i ∈ I\J).
If i /∈ I, it is obvious as both functions are 0. This allows us to mimic the
construction of ρ: we set νi = ν̃I,i ◦rmax

I over ŮDmax
I . We finally observe that

dρ̃I = −∑i ν̃I,idri, which completes the proof. �
For any m ∈ M − L, we define I(m) := {i : νi(m) �= 0}. We have

m ∈ UDmax
I(m).

We define ν : M\L → R
N to be the smooth function with coordi-

nates (ν1, . . . , νN ). We note that the function h′(ρ) · ν : M\L → R
N extends

smoothly to M , and we denote this extension by νh : M → R
N . Note that

νh is constant along orbits of h ◦ ρ, so we have a well-defined νh(γ) ∈ R
N

associated with such an orbit γ. We can interpret νh
i (γ) as ‘the number of

times γ wraps around Di’ (it is an integer unless γ is contained in Di, see
Lemma 4.16 below). We define

I(γ) := {i : νh
i (γ) �= 0} ⊂ [N ].

Note that if h′(ρ) ≥ 0, then νh(γ) ∈ R
N
≥0.

Corollary 4.15. For any m ∈ M\L, we have Φh◦ρ
1 (m) = νh(m)·m. To explain

the notation, νh(m) ∈ R
I(m) gets projected to (R/Z)I(m), which then acts on

m ∈ UDmax
I(m) by the Hamiltonian torus action.

Lemma 4.16. We have Φh◦ρ
1 (m) = m if and only if for all i, either m ∈ Di

or νh
i (m) ∈ Z.

Proof. For m ∈ L, the claim is obvious, as h ◦ ρ is constant and νh vanishes.
For m /∈ L, the claim follows from Corollary 4.15. �
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4.7. Perturbing to achieve nondegeneracy

Now let us suppose that for some ε > 0, we have that
• h(ρ) is constant for ρ ≤ ε;
• h(ρ) is linear for ρ ≥ 1 − ε;
• On any interval on which h(ρ) is linear, except (−∞, ε], the slope is not

a Reeb period of Y .

Then the orbits of h ◦ ρ come in families parametrized by manifolds with
corners.

The families are indexed by a set

P =
∐

I⊂[N ]

PI ,

where PI consists of families of orbits γ with I(γ) = I. The two cases I =
∅, I �= ∅ must be treated differently. To describe P∅, let us suppose that ε′

is maximal so that h is constant on (−∞, ε′]. Then

P∅ = {0} ∪ {ρ > ε′ : h′(ρ) = 0}.

Associated with p ∈ P∅ is a set of constant orbits Cp, which can be identified
with a subset of M :

C0 = {ρ ≤ ε′}, Cp = {ρ = p} for p ∈ P∅\{0}.

On the other hand, for I �= ∅ we have

PI = {p ∈ im(rmax
I ) : for each i ∈ I we either have

pi = 0 or h′(ρ̃I(p)) · ν̃I,i(p) ∈ Z\{0}} .

Associated with each p ∈ PI , we define a subset of M :

Cp := {m ∈ UDmax
I : rmax

I (m) = p, νk(m) = 0 for k /∈ I}.

For each p ∈ P , Cp is a manifold-with-corners on which the flow of h ◦ ρ is
1-periodic, yielding a manifold-with-corners of orbits which is diffeomorphic
to Cp.

We now perturb h◦ρ, in such a way as to make the orbits nondegenerate.

Lemma 4.17. Given ε > 0, there exists a perturbation H of h ◦ ρ with non-
degenerate orbits, such that for any capped orbit (γ, u) of H, there exists a
capped orbit (γ̄, ū) of h ◦ ρ, such that
(1) |A(γ, u) − A(γ̄, ū)| < ε;
(2) |CZ(γ, u) − CZ(γ̄, ū)| ≤ k(γ̄)/2, where CZ denotes the Conley–Zehnder

index,14 and k(γ̄) := dim ker
(
DΦ1

h◦ρ − id
)

γ̄(0)
.

Proof. Note that the subsets Cp ⊂ M , p ∈ P are closed, disjoint, preserved
by the flow of h ◦ ρ, and the flow is one-periodic on them. We will choose
disjoint neighbourhoods Np of Cp, and perturb in each Np separately, i.e.,
H = h ◦ ρ + δ where δ =

∑
p δp with δp supported in Np.

14The definition is due to Robbin–Salamon in the case of the possibly-degenerate orbit γ.
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We fix a Riemannian metric on M for the duration of this proof. In
particular, whenever we say that a function is ‘Ck-small’, we mean with
respect to this metric.

Note that d(Φh◦ρ
1 (m),m) > η for some η > 0 over the compact set

M\ ∪p Np. By making δ C1-small, we can make Φh◦ρ+δ
t C0-close to Φh◦ρ

t

for all t ∈ [0, 1]; in particular we can ensure that all fixed points of Φh◦ρ+δ
1

lie in some Np. By taking a generic such δ, we can ensure that all orbits
of h ◦ ρ + δ are nondegenerate. By taking Np small, we may ensure that
any orbit γ of h ◦ ρ + δ is C0-close to an orbit γ̄ of h ◦ ρ. When the orbits
are sufficiently C0-close, we can construct a cylinder v : S1 × [0, 1] → M
stretching between γ and γ̄, so that v(·, t) is the unique geodesic from γ(t)
to γ̄(t); concatenating with this cylinder defines a natural bijection between
caps for γ and γ̄. To arrange (1) we must bound the symplectic area of the
cylinder. This is achieved by observing that

∫

S1×[0,1]

v∗ω =
∫

S1×[0,1]

ω

(
∂v

∂s
,
∂v

∂t

)
,

and ∂v/∂s can be made arbitrarily small while ∂v/∂t is bounded.
Now we arrange (2). Recall that CZ(γ̄, ū) is by definition that Conley–

Zehnder index of the path of symplectic matrices Ψt(DΦh◦ρ
t )Ψ−1

t , where Ψt

is a trivialization of γ̄∗TM induced by the cap ū and CZ(γ, u) is the Conley–
Zehnder index of the corresponding path of symplectic matrices. By making
δ C2-small, we can make Φh◦ρ+δ

t C1-close to Φh◦ρ
t for all t ∈ [0, 1];15 this

implies that the aforementioned paths of symplectic matrices can be made
C0-close; the result now follows by [24, Corollary 4.9]. �

Remark 4.18. Our approach to perturbing degenerate orbits follows [24].
With more effort one can prove a more precise result: one can find a Morse–
Bott perturbation H, whose orbits are precisely the orbits of h◦ρ correspond-
ing to critical points of a Morse function defined on the manifold with corners
(and increasing at the boundary), and are nondegenerate. The technique for
doing this goes back to [6, Proposition 2.2], see also [26, Section 3.3] and [21].
These references all deal with closed manifolds of orbits; the case of manifolds
with corners is addressed in [14], in a setting closely related to ours.

4.8. Action computation

We start with a preliminary lemma which will be used in our action computa-
tion below. We state this lemma in a much more general setup than we need
and after the proof make some comments to explain how we will specialize
it.

Lemma 4.19. Let (M,ω) be a symplectic manifold and π : M → R
k be a

smooth map. Let f : R
k → R be a smooth function. Let φt be the Hamiltonian

15This means that given η > 0, we may choose δ so that for all (m, v) ∈ TM with |v| ≤ 1,
we have

d
(
DΦh◦ρ+δ

t (m, v), DΦh◦ρ
t (m, v)

)
< η

for an a priori fixed Riemannian metric on TM .
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flow of f̃ := π∗f . Consider a map

u : [0, 1] × [0, 1] → M

such that for all (t, s) ∈ [0, 1] × [0, 1],

u(t, s) = φt(u(0, s)).

Moreover, we assume that u([0, 1] × {0}) = {A} and u([0, 1] × {1}) = {B},
where A and B are points in R

k. We orient [0, 1] × [0, 1] is so that ∂t, ∂s is
a positive basis.

Then, the symplectic area of u is equal to f(B) − f(A).

Proof. This is an elementary computation.
∫

[0,1]×[0,1]

u∗ω =
∫ 1

0

∫ 1

0

ω(u∗∂t, u∗∂s)dsdt

=
∫ 1

0

∫ 1

0

ω(Xf̃ , u∗∂s)dsdt

=
∫ 1

0

(∫ 1

0

df(π∗u∗∂s)ds

)
dt

=
∫ 1

0

(∫

{t}×[0,1]

(π ◦ u ◦ ιt)∗df

)
dt

=
∫ 1

0

(f(B) − f(A)) dt

= f(B) − f(A)

as required. �

Note that the assumption on the boundary of u is automatic if π is
involutive; even more specifically, when π is a moment map for a Hamiltonian
torus action. Also note that if f is an affine function, then f(B) − f(A) is
equal to the linear part of f evaluated at the vector

−−→
AB considered as an

element of R
k. If π is a moment map for a Hamiltonian (R/Z)k-action, and

f is integral affine, then u as in the statement of the lemma satisfies

u(0, s) = u(1, s), for all s ∈ [0, 1].

We will only use this special case of the lemma below, where u can also be
thought of as a map R/Z×[0, 1] → M . As a final remark that will be relevant,
note that the blow down map

R/Z × [0, 1] → D ⊂ C, where (t, s) �→ se2πit

is orientation reversing, where we use the standard orientation of C.
Let us now get back to the action computation that we wanted to un-

dertake, continuing the notation used in the previous section.
There is a canonical cap uout associated with any orbit γ of h◦ρ, which

we now describe. If I(γ) = ∅, then γ is a constant orbit. We define uout to
be the constant cap in this case. Otherwise, γ is contained in UDmax

I(γ). If γ

is contained in UDI(γ) then it is contained in an admissible standard chart,
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and we define uout to be the cap contained in that chart. Note that uout is
well-defined by Lemma 2.14.

Note that if γ is an orbit on D, it is contained in UDI(γ). For an orbit
γ not contained in D, we define uout to be the union of the cylinder swept
by γ along the Liouville flow taking it into UDI(γ), with the canonical cap
in an admissible chart.

At this point the reader might also benefit from looking at Remark 2.17,
which gives a simpler version of admissibility and suffices for the purposes of
this paper. It works because of the following Lemma.

Lemma 4.20. The action of the 1-periodic orbit γ of h ◦ ρ with respect to the
outer cap is given by

A(γ, uout) = h(ρ(γ)) +
∑

i

νh
i (γ) · rmax

i (γ).

Proof. The action is

A(γ, uout) =
∫

S1
h(ρ(γ(t)) +

∫

uout

ω.

The first term is h(ρ(γ)), because h(ρ(γ(t)) = h(ρ(γ)) is constant along γ.
We claim that the second term is

ω(uout) =
∑

i

νh
i (γ) · rmax

i (γ).

Consider the map

f : R
I → R

f(r) =
∑

i∈I

−νh
i (γ) · ri.

Notice that γ is a one periodic orbit of the Hamiltonian vector field of f̃ :=
f ◦ rmax

I (see Lemma 4.14).
We break uout into two pieces: the piece uout,1 lying in an admissible

chart, and the piece uout,2 = ∪t∈[0,T ]ϕt(γ) swept out by the Liouville flow.
Assume that the boundary of uout,1 is contained in r−1

I ((ai)i∈I).
Using the symplectic embedding of the admissible chart into C

I×C
n−|I|,

we see that
∫

uout,1
ω is equal to the symplectic area of an arbitrary cap of a

1-periodic orbit of Xf̃ contained inside the fiber above (ai)i∈I of the moment
map C

I×C
n−|I| → R

I . Choosing the cap obtained by radially scaling the loop
to the origin inside the slice C

I × {c} that it is contained in, we immediately
obtain (e.g. using Lemma 4.19):

∫

uout,1

ω = −
(
∑

i∈I

−νh
i (γ) · ai

)
.

For the area of the second piece, we use Lemma 4.19 for the map rmax
I ,

function f and map uout,2 to obtain:
∫

uout,2

ω =
∑

i∈I

νh
i (γ) · (rmax

i (γ) − ai).
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Note that here we used the rmax
I -relatedness of the Liouville vector field and

the Euler vector field (i.e., Lemma 4.4).
Putting the computations together, we get the desired result. �

We define the fractional inner cap uin := uout − νh(γ) ·λ as in Sect. 3.3.
Strictly speaking we do not need the following result for our argument, but
we thought it was informative. Note that it is a slight generalization of the
well-known formula in [45, Section 1.2], which gives the result for SH-type
orbits.

Lemma 4.21. The action of the orbit γ of h ◦ ρ with respect to the inner cap
is given by

A(γ, uin) = h(ρ(γ)) − h′(ρ(γ)) · ρ(γ).

Proof. By Lemma 4.20, setting ρ = ρ(γ), we have

A(γ, uin) = h(ρ) +
∑

i

νh
i (γ) · rmax

i (γ) − νh(γ) · λ

= h(ρ) − h′(ρ)
∑

i

νi(γ) · (ri(γ) − λi)

= h(ρ) − h′(ρ) · Z̃I (ρ̃I)rmax
I (γ)

= h(ρ) − h′(ρ) · ρ,

where the last step follows as Z̃I(ρ̃I) = ρ̃I and ρ̃I ◦ rmax
I = ρ. �

4.9. Index computation

Lemma 4.22. Let γ be an orbit of h ◦ ρ, with J := {j ∈ I(γ) : rmax
j (γ) �= 0}.

Define the |J | × |J | matrix

Hessγ :=
(

∂2(h ◦ ρ̃I)
∂ri∂rj

(rI(γ))
)

i,j∈J

.

Then the Conley–Zehnder index of the orbit γ of h ◦ ρ with respect to the
outer cap is given by

CZ(γ, uout) = 2
∑

i

⌈
νh

i (γ)
⌉

+
1
2
sign (Hessγ) .

Proof. For constant orbits the result is easy, so we assume that γ is noncon-
stant. We may assume that γ and uout lie in an admissible chart C

I(γ) ×
C

n−|I(γ)|, as the index does not change as we flow along the Liouville flow.
The flow of h◦ρ in the admissible chart decomposes as a product of the flow

ϕt(r, θ) = (r, θ + 2πtν̃h(r))

on C
I(γ) (written in action-angle coordinates) with the trivial flow on C

n−|I(γ)|.
Thus CZ(γ, uout) = CZ(Dϕt). We have

CZ(Dϕt) = CZ

(
diag

(
e2πit·νh(z)

)
·
(

1 + 2πit ·
[

∂νh
j (z)
∂zi

]))

= CZ
(
diag

(
e2πit·νh(z)

))
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+ CZ

(
diag

(
e2πi·νh(z)

)
·
(

1 + 2πit ·
[

∂νh
j (z)
∂zi

]))

by a standard argument (c.f. [26, Section 3.3]). The first term is equal to
2
∑

i

⌈
νh

i (γ)
⌉

(see [26, Section 3.2]). For the second, we decompose C
I(γ) =

C
J ⊕C

I(γ)\J . Note that ∂νh
j /∂zi = 0 for i /∈ J , because ri has vanishing deriv-

ative along {zi = 0}, where our orbit is contained. Also note that e2πi·νh
i (z) =

1 for i ∈ J . Putting these together, one finds that the second term is equal
to the Conley–Zehnder index of the path 1J + 2πit · [∂νh

j /∂zi]i,j∈J . Writing
this in the basis given by action-angle coordinates (i.e., (ri∂/∂ri, ∂/∂θi)i∈J),
we see that it takes the form of a symplectic shear, whose Conley–Zehnder
index is equal to

CZ
(

1 −2πt · Hessγ

0 1

)
=

1
2
sign (Hessγ)

by the ‘normalization’ property of the Conley–Zehnder index, see [30, Theo-
rem 4.1].16 �
Lemma 4.23. Let γ be an orbit of H which corresponds to an orbit γ̄ of h ◦ ρ
as in Lemma 4.17. Then we have

i(γ, uout) = 2
∑

i

⌈
νh

i (γ̄)
⌉

+ δ(γ),

where 0 ≤ δ(γ) ≤ 2n.

Proof. We apply Lemmas 4.17 and 4.22. Continuing the notation from the
proof of the latter, we have

ker (Dϕ1 − id) = C
n−|I(γ)| ⊕ C

I(γ)\J ⊕ 〈∂/∂θj〉j∈J ⊕ ker (Hessγ̄) .

Recall that k(γ̄) is, by definition, the dimension of this space. Thus we have

k(γ̄) + |sign (Hessγ̄)| ≤ 2n.

Combining the stated Lemmas, we have
∣∣∣∣∣CZ(γ, uout) − 2

∑

i

⌈
νh

i (γ̄)
⌉− 1

2
sign (Hessγ̄)

∣∣∣∣∣ ≤
k(γ̄)

2

⇒
∣∣∣∣∣CZ(γ, uout) − 2

∑

i

⌈
νh

i (γ̄)
⌉
∣∣∣∣∣ ≤

2n

2
= n.

Recalling that i(γ, uout) := n + CZ(γ, uout), the result is immediate. �
Lemma 4.24. Let γ be an orbit of H which corresponds to an orbit γ̄ of h ◦ ρ
as in Lemma 4.17, and suppose that h′(ρ) ≥ 0 everywhere, so that νh

i (γ̄) ≥ 0
for all i. Then we have

i(γ, uin) ≥
∑

i

(2 − λi) · νh
i (γ̄).

In particular, when Hypothesis A is satisfied, we have i(γ, uin) ≥ 0.

16The signature of a symmetric matrix is the number of positive eigenvalues minus the
number of negative eigenvalues.
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Proof. By Lemma 4.23, we have

i(γ, uin) ≥
∑

i

2
⌈
νh

i (γ̄)
⌉− λi · νh

i (γ̄)

≥
∑

i

(2 − λi) · νh
i (γ̄)

as required. �
Lemma 4.25. Let γ be an orbit of H which corresponds to an orbit γ̄ of h ◦ ρ
as in Lemma 4.17. Then we have

imix(γ) =
∑

i

(2 − κ−1rmax
i (γ̄)) · νh

i (γ̄) − κ−1h(ρ(γ̄)) + D(γ),

where D(γ) is bounded: in particular, the lower bound is D(γ) ≥ −κ−1ε(γ),
where ε(γ) is as in Lemma 4.17.

Proof. The equality follows using the outer cap to compute the mixed index,
via Lemmas 4.17, 4.20, and 4.23. �

5. Proofs

In this section, we prove Theorems B, C, and D. We will assume through-
out that the divisor D is orthogonal, although that is not a hypothesis of
Theorems B and C; the general results follow using Remark 2.2.

Because D is orthogonal (and in particular admits an admissible system
of commuting Hamiltonians), we can make all of the constructions from the
previous section, whose notation and assumptions (e.g. Equation 4.1) we
continue. Right before Sect. 4.6 we had started omitting the dependence on
R ∈ (0, R0) from the notation for brevity, now we bring it back.

5.1. Properties of ρ̃R
I

When we talk about a property (n) of Ỹ R
I below, we mean the properties

from Lemma 4.8.

Lemma 5.1. There is a continuous function ε1 : [0, , R0) → R≥0, with ε1(0) =
0, such that for all R ∈ (0, R0), all I, and all r ∈ Ỹ 0

I , we have

1 ≤ ρ̃R
I (r) ≤ 1 + ε1(R).

Proof. Note that Ỹ R
I is sandwiched between Ỹ 0

I and (R/2, . . . , R/2) + Ỹ 0
I ;

hence, it is also sandwiched between Ỹ 0
I and α · κλ + Ỹ 0

I , where α = R/
(2κ min λi). It follows that

1 ≤ ρ̃R
I (r) ≤ 1

1 − α

for r ∈ Ỹ 0
I , which gives the desired result. �

Lemma 5.2. There is a continuous function ε2 : [0, R0) → R≥0, with ε2(0) =
0, such that for all R ∈ (0, R0), all I, and all r ∈ Ỹ 0

I , we have

1 ≤
∑

i

κλi · ν̃R
I,i(r) ≤ 1 + ε2(R). (5.1)



Vol. 24 (2022) Quantum cohomology as a deformation of symplectic cohomology Page 57 of 77 48

Proof. Because Z̃I

(
ρ̃R

I

)
= ρ̃R

I by construction, we have
∑

i

(κλi − ri) · ν̃R
I,i(r) = ρ̃R

I (r). (5.2)

Thus Lemma 5.1 gives

1 ≤ ρ̃R
I (r) =

∑

i

(κλi − ri) · ν̃R
I,i(r) ≤

∑

i

κλi · ν̃R
I,i(r),

where the last step uses the fact that ν̃R
I,i(r) ≥ 0 by property (3) of Ỹ R

I , and
ri ≥ 0 for all i.

For the right-hand bound, observe that ν̃R
I,i(r) = 0 whenever ri > R/2,

by property (5) of Ỹ R
I ; as ν̃R

I,i ≥ 0 this implies that
∑

i

(κλi − R/2) · ν̃R
I,i(r) ≤

∑

i

(κλi − ri) · ν̃R
I,i(r) = ρ̃R

I (r) ≤ 1 + ε1(R).

Thus we have
∑

i

κλi · ν̃R
I,i(r) ≤

(
max

i

κλi

κλi − R/2

)
· (1 + ε1(R))

where the RHS converges to 1 as R → 0, as required. �

The following Lemma will be used in the proof of Theorem B:

Lemma 5.3. There exists a continuous function σB
crit : [0, R0) → R≥0, with

σB
crit(0) = σcrit (recall Definition 1.9), such that for all R ∈ (0, R0), all I, and

all r ∈ Ỹ 0
I , we have
∑

i

(
2 − κ−1ri

) · ν̃R
I,i(r) − κ−1

(
ρ̃R

I (r) − σB
crit(R)

)
> 0.

Proof. Note that by property (4) of Ỹ R
I , if ν̃R

I,i(r) �= 0 and r ∈ Ỹ 0
I then

ri ≤ R/2. Combining this observation with Lemma 5.1, we have
∑

i

(
2 − κ−1ri

) · ν̃R
I,i(r) − κ−1ρ̃R

I (r) ≥
∑

i

(
2 − R

2κ

)
· ν̃R

I,i(r) − κ−1 · (1 + ε1(R)).

Dividing the left-hand bound in (5.1) by maxi κλi immediately gives

∑

i

(
2 − R

2κ

)
· ν̃R

I,i(r) ≥ 2 − R
2κ

maxi κλi
.

Thus, we may take

σ̃B
crit(R) = 1 + ε1(R) − 2 − R

2κ

maxi λi
, σB

crit(R) = max
(
0, σ̃B

crit(R)
)
,

which clearly has the desired properties. �

The following Lemma will be used in the proof of Theorem D:
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Lemma 5.4. There exists a continuous function σD
crit : [0, R0) → R≥0, with

σD
crit(0) = σcrit, and a positive function η : (0, R0) → R>0, such that for all

R ∈ (0, R0), all I, all i ∈ I, and all r ∈ VI satisfying ρ̃R
I (r) > σD

crit(R) and
ν̃R

I,i(r) �= 0, we have

2 − κ−1ri ≥ η(R) · (ρ̃R
I (r) − σD

crit(R)
)
.

Proof. Suppose that the flowline of Z̃I passing through r exits Ỹ 0
I at r′.

Because both ρ̃R
I and ri − κλi vary linearly along flowlines of Z̃I , we have

ρ̃R
I (r)

ρ̃R
I (r′)

=
ri − κλi

r′
i − κλi

,

and, therefore,

2 − κ−1ri = 2 − λi +
ρ̃R

I (r)
ρ̃R

I (r′)
·
(

λi − r′
i

κ

)
.

Now by property (5) of Ỹ I
R, if ν̃R

I,i(r) �= 0 then r lies in the region P−1
I ({ri ≤

R/2}), and therefore r′
i ≤ R/2. We also have ρ̃R

I (r′) ≤ 1 + ε1(R) by Lemma
5.1. It follows that

2 − κ−1ri ≥ 2 − λi +
ρ̃R

I (r) · (λi − R
2κ

)

1 + ε1(R)
.

Now let us set

σ̃D
crit(R) = max

i

(λi − 2) · (1 + ε1(R))
λi − R

2κ

;

then we find that the functions

σD
crit(R) = max

(
0, σ̃D

crit(R)
)
,

η(R) = min
i

λi − R
2κ

1 + ε1(R)

have the desired properties. �

5.2. Proof of Theorem B

Let R ∈ (0, R0) be sufficiently small that σB
crit(R) < 1. Let σ = σB

crit(R)+2δ <
1, for some δ > 0. The proof will rely on a special choice of acceleration data
for KR

σ (see Definition 4.13) which we now describe. Fix 0 < �1 < �2 < · · ·
such that the Reeb flow on Y R

σ = ∂KR
σ has no �n-periodic orbits for all n, and

�n → ∞ as n → ∞. (Here we take the contact form from Definition 4.13.)
We now choose smooth functions hn : R → R approximating max

(0, �n(ρ−σ)). We require that they each satisfy the conditions from Sect. 4.7,
and furthermore,

• h1 < h2 < · · · (pointwise);
• h′

n(ρ) ≥ 0;
• hn(ρ) = 2δn for ρ ≤ σ/2;
• hn(ρ) = �n(ρ − σ) + δn for ρ ≥ σ,
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Figure 2. The function hn

where δn < 0 converges monotonically to 0 as n → ∞, and furthermore
�nσ−δn < �n+1σ−δn+1 for all n (the latter condition will be used in the proof
of Proposition 5.10). See Fig. 2. Note that hn converges monotonically to 0 on
(−∞, σ] and +∞ outside it. We extend (hn)n∈Z≥1 to (hτ )τ∈[1,∞) by convex
interpolation: hτ = (n+1−τ)hn+(τ−n)hn+1 for τ ∈ [n, n+1]. We choose our
acceleration data (Hτ , Jτ ) for KR

σ ⊂ M , where Hn is a perturbation of hn◦ρR

as in Lemma 4.17, where the parameter ε in the Lemma is chosen smaller
than �nδ, and Hτ is a corresponding perturbation of hτ ◦ ρR. We further
require that, over a ‘neck region’ {σ ≤ ρR ≤ σ + ε} (where σ < σ + ε < 1),
we have Hτ = hτ ◦ ρR and Jτ is of contact type.

We denote by C = C(Hτ , Jτ ) the corresponding Floer 1-ray

CF ∗(M,H1; Λ) → CF ∗(M,H2; Λ) → · · · ,

so that SC∗
M (KR

σ ; Λ) = t̂el(C). By restricting (Hτ , Jτ ) to KR
σ , we obtain

acceleration data appropriate for defining the symplectic cochain complex of
KR

σ . We denote by CSH := C(Hτ |KR
σ
, Jτ |KR

σ
) the corresponding Floer 1-ray

CF ∗(KR
σ ,H1|KR

σ
; k) → CF ∗(KR

σ ,H2|KR
σ

; k) → · · · ,

so that SC∗(KR
σ ; k) = tel(CSH).

By construction, the orbits of Hn are either contained in KR
σ (in which

case we say they are of SH-type), or contained in M\KR
σ (in which case we

say they are of D-type). We have a corresponding direct sum decomposition
of Λ-modules:

tel(C) = tel(C)SH ⊕ tel(C)D.

Let us denote SCΛ := (SC∗(KR
σ ; k)⊗k Λ, d⊗ idΛ). We have the isomor-

phism

ι : SCΛ → tel(C)SH ,

ι(γ ⊗ ea) = (γ, a · uin).

By Lemma 3.8, this map respects action and index.

Lemma 5.5. If γ is a D-type orbit of Hn, then imix(γ) ≥ κ−1δ�n.
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Proof. By Lemma 4.25, we have

imix(γ) ≥
∑

i

(
2 − κ−1rmax

i (γ̄)
) · νh

i (γ̄) − κ−1
(
h
(
ρR(γ̄)

)
+ ε(γ)

)
.

Note that as γ is a D-type orbit, we have ρR(γ̄) ≥ 1 by Lemma 5.1, and
therefore,

h
(
ρR(γ̄)

) ≤ �n

(
ρR(γ̄) − σ

)
and

h′ (ρR(γ̄)
)

= �n.

Thus, we have νh
i (γ̄) = �n · ν̃R

I,i(r
max
I (γ̄)). Setting r = rmax

I (γ̄) (which lies in
Ỹ 0

I because γ̄ is a D-type orbit), and recalling that we chose ε(γ) < �nδ, we
obtain

imix(γ) ≥ �n ·
∑

i

(2 − κ−1ri) · ν̃R
I,i(r) − κ−1�n(ρ̃R

I (r) − σ) − κ−1�nδ

≥ κ−1�n · (σ − σB
crit(R) − δ

)
= κ−1δ�n,

where the second inequality follows from Lemma 5.3. �
We now consider the filtration on tel(C) associated with the filtration

map

F ′(γ, u) :=
A(γ, u) + δ�n

κ
,

if γ is a 1-periodic orbit of Hn. It is clear that this is a filtration map, because
the differential increases action, and it also increases n and hence �n by the
definition of the telescope complex. We define the corresponding filtration on
SCΛ, associated with the filtration map

F(γ ⊗ ea) :=
A(γ) + κa + δ�n

κ
.

(Note that because ι respects index and action, we have F ′ ◦ ι = F .) For any
cochain complex C∗, we define the quotient complex σ<pC

∗ := ⊕∗<pC
∗ with

the induced differential.

Lemma 5.6. For any p, ι induces an isomorphism of graded Q≥0Λ-modules

ι : σ<pF≥pSCΛ
∼−→ σ<pF ′

≥ptel(C).

Proof. It suffices to show that σ<pF ′
≥ptel(C) does not include any D-type

orbits. Indeed, for any generator (γ, u) of this complex, we have

i(γ, u) < p ≤ A(γ, u) + δ�n

κ
,

which means γ cannot be of D-type, by Lemma 5.5. �
We now recall that SCΛ comes equipped with the Q-filtration, induced

by the Q-filtration on Λ (c.f. Eq. (1.1)).

Lemma 5.7. For any p, the inclusions of the following subcomplexes are quasi-
isomorphisms:

F ′
≥ptel(C) ⊂ tel(C), and F≥pQ≥qSCΛ ⊂ Q≥qSCΛ

(the latter for any q ∈ Z ∪ {−∞}).
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Proof. Observe that F ′
≥ptel(C) is the telescope complex of the sub-1-ray of

Floer groups

A≥κp−δ�n
CF ∗(M,Hn; Λ) ⊂ CF ∗(M,Hn; Λ).

As the action filtration on each CF ∗(M,Hn; Λ) is exhaustive, continuation
maps increase action, and κp − δ�n → −∞ as n → ∞, the result follows by
Lemma A.1. The argument for F≥p (tel(CSH) ⊗ Q≥qΛ) ⊂ tel(CSH) ⊗ Q≥qΛ
is identical. �

Lemma 5.8. For any p, we have

Hj
(
σ<pF ′

≥ptel(C)
) ∼= QHj(M ; Λ) for j < p − 1.

Proof. Applying Lemma 5.7 and the PSS isomorphism, we have

Hj(F≥ptel(C)) = Hj(tel(C)) = lim−→
n

HF j(M,Hn; Λ)

= lim−→
n

QHj(M ; Λ) = QHj(M ; Λ).

The result now follows as the degree truncation σ<p does not affect cohomol-
ogy in degrees < p − 1. �

We now denote
(
SC

(p)
Λ , d(p)

)
:= σ<pF≥p(SCΛ, d ⊗ idΛ).

For any p > q, we have a natural chain map SC
(p)
Λ → SC

(q)
Λ , induced by

the inclusion F≥p ⊂ F≥q and the projection σ<p � σ<q. In particular, we
obtain an inverse system SC∗ of graded filtered Q≥0Λ-modules. We consider
the ‘homotopy inverse limit’

S̃CΛ := tel← (SC∗),

(see Sect. A.4 for the notation). We denote the differential by d̃, and equip it
with the filtration Q̃ induced by Q≥• (see Remark A.8).

We now make precise the notion of ‘filtered quasi-isomorphism’ appear-
ing in Theorem B (1). We consider the category of Q-graded filtered Q≥0Λ-
cochain complexes (M,d,Q≥•), where multiplication by ea increases the de-
gree and the filtration level by a. Morphisms are Q≥0Λ-linear filtered chain
maps. A morphism in this category is called a filtered quasi-isomorphism if
it induces a quasi-isomorphism on each associated graded. Objects M and
N are said to be filtered quasi-isomorphic if there exists a zigzag of filtered
quasi-isomorphisms between them. This implies, in particular, that we have
isomorphisms Hj(GrQ

k M) ∼= Hj(GrQ
k N) for all j, k.

Lemma 5.9. The filtered complex (S̃CΛ, d̃, Q̃≥•) is filtered quasi-isomorphic
to (SCΛ, d ⊗ idΛ,Q≥•) in the above sense.
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Proof. We have maps of inverse systems

SCΛ SCΛ
id

�� SCΛ
id

�� . . .��

F≥0SCΛ

��

��

F≥1SCΛ

��

��

�� F≥2SCΛ

��

��

�� . . .��

σ<0F≥0SCΛ σ<1F≥1SCΛ
�� σ<2F≥2SCΛ

�� . . . ,��

both of which induce a filtered quasi-isomorphism on the corresponding in-
verse telescope complex. For the upper map, this follows from Lemma 5.7.
The lower map requires a little more argument. We first observe that Hj

(Grkσ<pF≥pSCΛ) ∼= Hj(GrkSCΛ) for j < p−1. It follows easily that for each
j, the inverse system Hj(Grkσ<pF≥pSCΛ) satisfies the Mittag-Leffler condi-
tion, so its lim←−

1 vanishes. Therefore, the cohomology of the kth-associated
graded of the inverse telescope of the bottom inverse system is

lim←−Hj(Grkσ<pF≥pSCΛ) = Hj(GrkSCΛ),

by Lemma A.7. This completes the argument.
Finally, we observe that there is a filtered quasi-isomorphism from the

inverse telescope of the top inverse system to SCΛ. Indeed, we take the com-
position

tel←

(
SCΛ

id←− SCΛ
id←− . . .

)
→
∏

p∈N

SCΛ → SCΛ

where the first map is the natural one (i.e., the one appearing in the proof
of Lemma A.7), and the second map is given by projecting to any of the
identical factors. Because this inverse system clearly satisfies the Mittag-
Leffler condition, the proof of Lemma A.7 shows that the induced map on
cohomology is the obvious isomorphism

lim←−
p

H∗(SCΛ) ∼= H∗(SCΛ).

Therefore, the chain map is a quasi-isomorphism, and applying the same
argument to the associated graded pieces shows that it is a filtered quasi-
isomorphism. This completes the necessary zig-zag of filtered quasi-isom-
orphisms. �

Proposition 5.10. (= Proposition 1.12) For any Floer solution u that con-
tributes to C(Hτ , Jτ ) with both ends asymptotic to SH-type orbits, we have
u · λ ≥ 0. In case of equality, u is contained in KR

σ .

Proof. Let u : R × S1 → M be a pseudoholomorphic curve contributing to
C(Hτ , Jτ ), with both ends asymptotic to SH-type orbits. We choose ε > 0
so that u is transverse to ∂KR

σ+ε, and in a neighbourhood of ∂KR
σ+ε we have

that Hτ = hτ ◦ ρR and Jτ is of contact type. We will apply Proposition 3.9
to the part of u that lies in {ρR ≥ σ + ε}, to show that u is contained in
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KR
σ+ε; applying the same argument to a sequence of such ε converging to 0

will show that u ⊂ KR
σ as required.

We check the hypotheses of Proposition 3.9 one by one. First recall that
we chose Jτ to be of contact type along ∂KR

σ+ε, so hypothesis (1) is satisfied.
Now we check hypothesis (2). We have Hτ = hτ ◦ρR in a neighbourhood

of ∂KR
σ+ε. Thus, K =

(
hψ(s) ◦ ρR

)
dt in this region, where ψ(s) is either

constant in the case of a Floer differential, or ψ(s) = n for s � 0 and
ψ(s) = n + 1 for s � 0, in the case of a continuation map. Now observe
that hn(ρ) is a linear function of ρ for ρ ≥ σ, and hτ is obtained by linear
interpolation from the hn, hence is also linear in ρ; this establishes hypothesis
(2).

Finally, we check hypothesis (3). We have K = Hψ(s)(t)dt, so dΣK =
∂sHψ(s)(t)dt ≥ 0 as Hτ is increasing. Furthermore, we have {K,K}(∂s, ∂t) =
{0,H(s, t)} = 0. It remains to address the term dβ appearing in the hypothe-
sis. Observe that hn(ρ) = �n(ρ−σ)+δn = αnρ+βn, where we have arranged
that the ‘constant terms’ βn = −�nσ + δn are decreasing. We can extend
βn to βτ by linear interpolation, just as we did for hτ ; this will clearly be
a decreasing function of τ . We then have β = βψ(s)dt, and it is clear that
dβ ≤ 0. Putting the three terms together,

dΣK − {K,K} − dβ ≥ 0,

verifying hypothesis (3). The result now follows by Proposition 3.9. �
Proof of Theorem B. Item (1) holds by Lemma 5.9. For item (2), we observe
that SC

(p)
Λ comes equipped with another differential, namely the pullback

of the differential on σ<pF ′
≥ptel(C) under the isomorphism of Lemma 5.6,

which we denote by ∂(p). The difference d(p) − ∂(p) does not decrease the Q-
filtration, by Proposition 5.10. Any Floer solution u contributing to the part
of ∂(p) which preserves the Q-filtration must satisfy u · λ = 0, and hence be
contained in KR

σ by Proposition 5.10. These are precisely the Floer solutions
contributing to d(p), so in fact d(p) − ∂(p) strictly increases the Q-filtration.
The maps in the inverse system are clearly chain maps for the differentials
∂(p), so S̃CΛ admits a corresponding differential, which we denote by ∂; and
d̃ − ∂ strictly increases the Q̃-filtration, by the corresponding property of
d(p) − ∂(p).

For item (3), we observe that Lemma 5.8 implies that the inverse sys-
tem Hj(σ<pF ′

≥ptel(C)) has the Mittag–Leffler property, and in particular has
lim←−

1 = 0. Therefore we have

Hj(S̃CΛ, ∂) ∼= lim←−Hj(σ<pF ′
≥ptel(C)) by Lemma A.7

∼= QHj(M ; Λ) by Lemma 5.8 again.

�
5.3. Proof of Theorem C

To fit with the standard terminology for spectral sequences, in which fil-
trations are assumed to be increasing (see [46, Chapter 5]), we turn the
decreasing filtrations Q̃≥• into increasing ones by setting Q̄j = Q̃≥−j .
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Lemma 5.11. Suppose that Hypothesis A holds. Then the Q̄-filtration on S̃CΛ

is bounded below. (Recall that this means that for each i, there exists q(i) such

that Q̄q(i)S̃C
i

Λ = 0.)

Proof. If i(γ ⊗ ea) = i, then

a0Q̃(γ ⊗ ea) = a = i(γ ⊗ ea) − i(γ) ≤ i

by Lemma 4.24. Thus we may take q(i) = �−i/a0� − 1. �

Proof of Theorem C. We start by establishing that the inclusion
(
⋃

q

Q̄qS̃CΛ, ∂

)
⊂
(
S̃CΛ, ∂

)

is a quasi-isomorphism. This follows as

H∗
(
⋃

q

Q̄qS̃CΛ, ∂

)

= lim−→
q

H∗
(
Q̄qS̃CΛ, ∂

)
as direct limit commutes with cohomology

= H∗
(
S̃CΛ, ∂

)
by Lemma 5.13 below.

The spectral sequences induced by these filtered complexes are iden-
tical (this follows immediately from the construction). The Q̄-filtration on⋃

q Q̄qS̃CΛ is exhaustive by construction, and bounded below by Lemma 5.11.

Therefore, the corresponding spectral sequence converges to H∗
(
S̃CΛ, ∂

)
by

[46, Theorem 5.5.1]; and this is isomorphic to QH∗(M ; Λ) by Theorem B (3).

Now we identify the E1 page. By definition we have Ej,k
0 = GrQ̄

j S̃C
j+k

Λ ,
and dj,k

0 is the differential induced by ∂. The latter is equal to the differen-
tial induced on the associated graded by d̃, by Theorem B (2) (combined
with the fact that any cylinder u satisfying u · λ > 0 satisfies u · λ ≥
a0). Therefore,

(
Ej,k

0 , dj,k
0

)
=
(
GrQ̄

j S̃C
j+k

Λ , d̃
)
, which is quasi-isomorphic

to
(
GrQ̄

j SCj+k
Λ , d ⊗ idΛ

)
by Lemma 5.9. Observe that GrQ̄

j Λ is spanned

by q−j , and hence is concentrated in degree −ja0. It follows that Ej,k
1 =

SHj(1+a0)+k(KR
σ ; k) ⊗k k · q−j as claimed. �

Lemma 5.12. The map

Hj
(
Q≥qSC

(p)
Λ , ∂(p)

)
→ Hj

(
Q≥qSC

(r)
Λ , ∂(r)

)

is an isomorphism, for all p ≥ r > j + 2.

Proof. Let (C, ∂) be the cone of the chain map
(
Q≥qSC

(p)
Λ , ∂(p)

)
→

(
Q≥qSC

(r)
Λ , ∂(r)

)
. The Q-filtration on C is bounded below by Lemma 5.11,

and it is clearly bounded above by q. Therefore, the corresponding spectral
sequence converges to the cohomology of (C, ∂) by [46, Theorem 5.5.1].
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The E1 page is the cohomology of the cone of the chain map(
Q≥qSC

(p)
Λ , d(p)

)
→
(
Q≥qSC

(r)
Λ , d(r)

)
. This cone coincides with the cone

of the chain map Q≥qF≥pSCΛ → Q≥qF≥rSCΛ in degrees < r−1. The latter
cone is acyclic, by Lemma 5.7. Therefore, Ej,k

1 = 0 for j +k < r − 2. Because
the spectral sequence converges, this means Hj(C, ∂) = 0 for j < r − 2. This
implies the result. �

Lemma 5.13. The natural map

lim−→
q

H∗
(
Q̄qS̃CΛ, ∂

)
→ H∗

(
S̃CΛ, ∂

)

is an isomorphism.

Proof. Note that
(
Q≥qS̃CΛ, ∂

)
= tel←

(
Q≥qSC(p), ∂(p)

)
.

The inverse system Hj(Q≥qSC(p), ∂(p)) has the Mittag-Leffler property for
all j, q, by Lemma 5.12, so

Hj
(
Q≥qS̃CΛ, ∂

) ∼= lim←−
p

Hj
(
Q≥qSC(p), ∂(p)

)
by Lemma A.7

∼= Hj
(
Q≥qSC(p), ∂(p)

)
for any p > j

+ 2, by Lemma 5.12.

A similar argument, using Lemma 5.8, shows that

Hj
(
S̃CΛ, ∂

)
= Hj

(
SC

(p)
Λ , ∂(p)

)
for any p > j + 1.

Therefore, we have an identification

lim−→Hj
(
Q̄qS̃CΛ, ∂

)
�� Hj

(
S̃CΛ, ∂

)

lim−→Hj
(
Q≥qSC

(p)
Λ , ∂(p)

)
�� Hj

(
SC

(p)
Λ , ∂(p)

)
,

for any p > j+2. The bottom map is an isomorphism, because the Q-filtration
on SC(p) is exhaustive. �

5.4. Proof of Theorem D

The key to the proof is the following:

Proposition 5.14. Let σD
crit(R) < σ1 < σ2 < 1. Then there exists an isomor-

phism

SH∗
M

(
M\KR

σ1
; Λ
) ∼= SH∗

M

(
M\KR

σ2
; Λ
)

.
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Figure 3. The functions hn and h̃n

The proof relies on the Contact Fukaya Trick of [38, Section 4], with
which we assume some familiarity.

We first describe a special choice of acceleration data for M\KR
σ2

⊂ M .
Let ε > 0 be such that 0 < σ2 − 2ε, σ2 + 3ε < 1, and (σ1/σ2) · (σ2 − 2ε) >
σD

crit(R). Let 0 < �1 < �2 < · · · and δ1 < δ2 < · · · < 0 be reals such that the
Reeb flow on Y R

σ2
= ∂KR

σ2
has no �n-periodic orbits or δn-periodic orbits for

all n, and �n → ∞, δn → 0 as n → ∞.
We choose smooth functions hn : R → R satisfying:

• h1 < h2 < · · · (pointwise);
• h′

n(ρ) ≤ 0;
• hn(ρ) = �nε for ρ ≤ σ2 − 2ε;
• hn(ρ) = −�n(ρ − σ2) + δn for σ2 − ε ≤ ρ ≤ σ2;
• hn(ρ) = δnρ for ρ ≥ σ2 + ε.

Note that hn converges monotonically to 0 on [σ2,∞) and to +∞ outside it.
We define h̃n(ρ) = σ1

σ2
hn

(
σ2
σ1

ρ
)
, and observe that h̃n converges monotonically

to 0 on [σ1,∞) and to +∞ outside it. See Fig. 3.
We extend hn to hτ by linear interpolation as before, and make a choice

of acceleration data (Hτ , Jτ ) for M\KR
σ2

such that Hn is a perturbation of
hn ◦ ρR in accordance with Lemma 4.17. We assume that Hn > 0 over the
region {ρR ≤ σ2 − ε} (we can arrange this so long as hn ◦ ρR > 0 over this
region, which is true so long as the δn are chosen sufficiently small). We need
to make some special assumptions over the ‘neck’ region {σ2 + 2ε ≤ ρR ≤
σ2 + 3ε}, which make the contact Fukaya trick work: first, we assume that
Jτ is of contact type over the neck (this includes the assumption that Jτ is
invariant under translation by the Liouville vector field); second, we assume
that the perturbation term Hτ − hτ ◦ ρR vanishes over the neck, which is
possible as hn ◦ ρR = δnρR has no periodic orbits over this region.

We now choose a smooth function f : R → R satisfying:17

17Our function f corresponds to the function g−1 from [38].
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Figure 4. The function f

• f ′(ρ) > 0;
• f(ρ) ≤ ρ;
• f(ρ) = σ1

σ2
· ρ for ρ ≤ σ2 + 2ε;

• f(ρ) = ρ for ρ ≥ σ2 + 3ε.

See Fig. 4. We then define a diffeomorphism φ : M → M by

φ(m) =

⎧
⎨

⎩
ϕ

log

(
f(ρR(m))

ρR(m)

)(m) for m ∈ X;

m for ρR(m) > σ2 + 3ε,

where ϕt : X → X denotes the time-t Liouville flow. The definition is chosen
so that ρR(φ(m)) = f(ρR(m)). Note that φ sends KR

σ2
to KR

σ1
via the time-

log(σ1/σ2) Liouville flow.
We now define acceleration data (H̃τ , J̃τ ) for M\KR

σ1
by taking

J̃τ = φ∗Jτ ;

H̃τ =

{
σ1
σ2

φ∗Hτ on φ
({ρR ≤ σ2 + 3ε}) ;

φ∗Hτ on φ
({ρR ≥ σ2 + 2ε}) .

Note that the definition of Hτ agrees on the overlaps, using the fact that
Hτ = δτρR and φ = ϕσ1/σ2 over this region. Furthermore, we observe that
φ∗XHτ

= XH̃τ
. (This is relatively easy to check on the complement of the

image of the neck region φ({σ2 + 2ε ≤ ρR ≤ σ2 + 3ε}); over the neck region
it uses the fact that both Hτ and H̃τ are equal to δτρR.) The fact that Jτ is
of contact type over the neck ensures that φ∗Jτ is ω-compatible.

Thus we have constructed acceleration data for M\KR
σ2

and M\KR
σ1

leading to Floer 1-rays

Cσ2 := C(Hτ , Jτ ) and Cσ1 := C(H̃τ , J̃τ ),

such that the map (γ, u) �→ φ(γ, u) := (φ ◦ γ, φ ◦ u) defines an isomorphism
Cσ2

∼−→ Cσ1 , which, however, need not respect the action filtrations. We want
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to prove that this map of 1-rays induces an isomorphism of the completed
telescopes

t̂el(Cσ2) → t̂el(Cσ1).

Lemma 5.15. There exist constants B, η > 0, C such that

−imix(γ) − B ≥ −imix(φ(γ)) ≥ η · (−imix(γ)) + C

for any orbit γ of Hn, and the corresponding orbit φ(γ) of H̃n.

Proof. First, we show that −imix(γ)−B ≥ −imix(φ(γ)), for some B > 0 that
we specify below. Note that i(γ, uout) = i(φ(γ), φ(u)out), so it suffices to show
A(γ, uout) − B ≥ A(φ(γ), φ(u)out). Let (γ̄, ūout) be a capped orbit of hn ◦ ρR

corresponding to (γ, uout) under Lemma 4.17. Then we have

A(γ, uout) = hn(ρR(γ̄)) +
∑

i

νh
i (γ̄) · rmax

i (γ̄) + ε(γ) (5.3)

by Lemma 4.20, where ε(γ) is bounded, and similarly for φ(γ, uout). We con-
sider the first term on the RHS. Note that orbits occur either in the region
{ρR ≤ σ2 − ε}, in which case h̃n(ρR(φ(γ̄))) = σ1

σ2
hn(ρR(γ̄)) < hn(ρR(γ̄),

because hn(ρR(γ̄)) > 0 (we ensured this positivity when choosing our pertur-
bation); or in the region {ρR ≥ σ2}, where both hn(ρR(γ̄)) = δnρR(γ̄) and
h̃n(ρR(φ(γ̄))) = δnρR(φ(γ̄)) lie in the bounded interval (δ1 · (1 + ε1(R)), 0).
In either case, we have hn(ρR(γ̄)) ≥ h̃n(ρR(φ(γ̄))) + B′ for some fixed B′.
For the second term on the RHS of (5.3), note that h′(ρ) ≤ 0, so νh

i (γ̄) ≤ 0.
We have νh

i (γ̄) = νh
i (φ(γ̄)), and rmax

i (γ̄) ≤ rmax
i (φ(γ̄)) (here we use our as-

sumption that f(ρ) ≤ ρ, as well as the fact that Z(rmax
i ) < 0). Together this

yields
∑

i

νh
i (γ̄) · rmax

i (γ̄) ≥
∑

i

νh
i (φ(γ̄)) · rmax

i (φ(γ̄)).

Adding the bounds together, and taking B > B′ + 2|ε(γ)| for all γ, gives the
result.

Now we consider the −imix(φ(γ)) ≥ η · (−imix(γ))+C part of the state-
ment. By Lemma 4.25, we have

− imix(γ) =
∑

i

−νh
i (γ̄) · (2 − κ−1rmax

i (γ̄)) − κ−1hn(ρR(γ̄)) + D(γ), (5.4)

where |D(γ)| is bounded. We focus on the first term on the RHS. We start
by recalling that −νh

i (φ(γ̄)) = −νh
i (γ̄) ≥ 0. Note that if γ̄ is non-constant,

then ρR(γ̄) > σ2 − 2ε, so ρR(φ(γ̄)) > σ1
σ2

(σ2 − 2ε) > σD
crit(R). Therefore, by

Lemma 5.4, whenever νh
i (γ̄) �= 0 we have

2 − κ−1rmax
i (φ(γ̄)) > 2η,

where 2η = η(R) · (σ1
σ2

(σ2 − 2ε) − σD
crit(R)) > 0. As a result we have

∑

i

−νh
i (φ(γ̄)) · (2 − κ−1rmax

i (φ(γ̄))) ≥ η ·
∑

i

−νh
i (γ̄) · (2 − κ−1rmax

i (γ̄)).

Note that this inequality also holds for the constant orbits, as then we have
νh

i (γ̄) = νh
i (φ(γ̄)) = 0.
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Now we focus on the second term on the RHS of (5.4). We saw in the
first part of the proof that h̃n(ρR(φ(γ̄))) = σ1

σ2
· hn(ρR(γ̄)) > 0 for orbits

with ρR(γ̄) < σ2 − ε. Decreasing η if necessary so that it is less than σ1/σ2,
and recalling that D(γ) is bounded, we obtain the desired bound for such
orbits. For the remaining orbits we recall from the first part of the proof that
both h̃n(ρR(φ(γ̄))) and hn(ρR(γ̄)) are bounded. Therefore, decreasing C if
necessary, we obtain the desired bound for the remaining orbits. �

Lemma 5.16. If (γj , uj) is a sequence of capped orbits of Hnj
such that

i(γj , uj) = i is constant, then

A(γj , uj) → +∞ ⇔ A(φ(γj , uj)) → +∞.

Proof. Lemma 5.15 gives

κ−1A(γj , uj) − i − B ≥ κ−1A(φ(γj , uj)) − i ≥ η · (κ−1A(γj , uj) − i) + C

⇒ A(γj , uj) − κB ≥ A(φ(γj , uj)) ≥ η · A(γj , uj) + κC + (1 − η)κi,

where η > 0, from which the result follows. �

Remark 5.17. Notice that the contact Fukaya trick that we presented here is
simpler than the one in [38] (compare Fig. 3 above with Figure 2 in [38]). We
would like to stress that it is possible to use this simpler version because we
are in a different situation.

Proof of Proposition 5.14. By Lemma 5.16, the isomorphism Cσ1
∼= Cσ2 in-

duces an isomorphism of the corresponding degreewise-action-completed tele-
scope complexes; so

SC∗
M

(
M\KR

σ1
; Λ
) ∼= SC∗

M

(
M\KR

σ2
; Λ
)

,

and the result follows by taking cohomology. �

We continue with the following observation of McLean:

Proposition 5.18. (see Proposition 6.20 of [25]) Let D be an SC divisor in a
symplectic manifold M . Then D is stably displaceable. �

Proof of Theorem D. It follows from Proposition 5.18 that a neighbourhood
of our divisor D is stably displaceable. Suppose that R is sufficiently small
that the domains UDi of our system of commuting Hamiltonians {ri : UDi →
[0, R)} are contained in this stably displaceable neighbourhood, for all i. This
ensures that M\KR

σ is contained in this neighbourhood for σ sufficiently close
to 1. In particular,

SH∗
M

(
M\KR

σ ; Λ
)

= 0

for such σ, by Theorem 3.6. By Proposition 5.14, we see that in fact we
have the same result for any σD

crit(R) < σ < 1. This completes the proof
using Theorem 3.7, as the sets

{
M\KR

σ

}

R>0,σ>σD
crit(R)

exhaust M\Kcrit (this

follows from the fact that ρR → ρ0 and σD
crit(R) → σcrit as R → 0). �
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A. Algebraic background

A.1. Filtration maps

In this section, we present an elementary framework to better deal with the
type of filtrations that we encounter in this paper, which are in particular
indexed by real numbers.

A filtration map on an abelian group A is a map ρ : A → R ∪ {∞}
satisfying the inequality

ρ(x + y) ≥ min (ρ(x), ρ(y)),

equality ρ(x) = ρ(−x), and sending 0 to ∞. A filtration map defines a filtra-
tion by the subgroups

F≥ρ0A := {α ∈ A | ρ(a) ≥ ρ0}.

Note that if (Vα, ρα) are abelian groups equipped with filtration maps
indexed by a set α ∈ I, then

⊕
α∈I Vα is equipped with a filtration map given

by

ρ
(∑

vi

)
:= min (ρi(vi)).

Let us call this the min construction.
We can define a pseudometric on an abelian group A with a filtration

map ρ by d(a, a′) := e−ρ(a−a′). The completion Â of A is defined by taking the

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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abelian group of Cauchy sequences in A and modding out by the subgroup
of sequences which converge to 0. Â is equipped with a canonical filtration
map:

ρ((ai)i∈N) = lim−→ ρ(ai).

We call A complete, if the natural map A → Â is bijective.
We define filtration maps Q : Λ → R by setting Q(qa) = a and using

the min construction.
A filtration map on a Z-graded Λ-module A is a filtration map for

each Ai which in addition is additive for the module action by homogenous
elements of Λ. A filtration map on a Λ-cochain complex C is a filtration map
on the underlying Z-graded Λ-module, which satisfies the condition that the
differential does not decrease the filtration map. Let F≥ρ0C :=

⊕
i∈Z F≥ρ0C

i,
which is of course nothing but the filtration associated with the filtration map
on C constructed by the min construction.

Filtered chain maps between Λ-cochain complexes equipped with filtra-
tion maps are defined to be chain maps that do not decrease the values of
the filtration maps. Filtered chain homotopies between filtered chain maps
are defined in the same fashion.

A.2. Quasi-isomorphic subcomplexes of the telescope

Let

C := C1
f1 �� C2

f2 �� C3
f3 �� . . . (A.1)

be a 1-ray of Q-graded chain complexes.
The telescope tel(C) of C is defined to be the cone of the chain map

id − f :
∞⊕

i=1

Ci →
∞⊕

i=1

Ci.

Assume that we have a commutative diagram

C′
1

��

��

C′
2

��

�� C′
3

��

��

. . .

C1
�� C2

�� C3
�� . . .

,

where the vertical maps are inclusions of subcomplexes. We call the top 1-ray
C′.

We obtain the commutative diagram of Q-graded abelian groups

H(tel(C′))

��

�� H(tel(C))

��

H
(
lim−→(C′

i)
)

�� H
(
lim−→(Ci)

)

, (A.2)

where the vertical maps are isomorphisms (see [40, Lemma 2.2.2] for the
proof).
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Lemma A.1. Assume that every element γ of Ci lands inside C′
i+N(γ) for some

N(γ) > 0. Then,

tel(C′) → tel(C)

is a quasi-isomorphism.

Proof. Because direct limits commute with quotients, we have

lim−→ Ci/ lim−→C′
i � lim−→Ci/C′

i,

as Q-graded chain complexes. A basic property of filtered direct limits is
that any element in lim−→Ci/C′

i is in the image of the canonical map Ci/C′
i →

lim−→Ci/C′
i for some i > 0. This and the given condition implies that the direct

limit on the RHS is zero. In particular, the lower horizontal map in Diagram
(A.2) is also an isomorphism. This finishes the proof. �

A.3. Completed telescopes

Let FiltChΛ be the category of free Q-graded Λ-cochain complexes equipped
with a filtration map and morphisms given by filtered chain maps.

Let

C := C1
f1 �� C2

f2 �� C3
f3 �� . . . (A.3)

be a 1-ray in FiltChΛ. Let us equip tel(C) with the filtration map obtained
from the min construction. If we define

CA0 = F≥A0C1 → F≥A0C2 → ...,

then by construction

F≥A0tel(C) = tel(CA0). (A.4)

We define maps between two 1-rays in FiltChΛ as diagrams

C1
��

��

C2

��

�� C3
��

��

. . .

C′
1

�� C′
2

�� C′
3

�� . . .

, (A.5)

where the horizontal arrows are filtered chain maps and each square is equipped
with a map Ci → C′

i+1, which is a filtered chain homotopy between the two
filtered chain maps Ci → C′

i+1 obtained by composing the arrows at the edges
of the square. The resulting category we call 1-ray-ChΛ.

In 1-ray-ChΛ, we also have a notion of two morphisms being equivalent,
defined by the existence of a homotopy of maps of 1-rays. The definition is
identical to [40] except that here we require all the homotopy maps to not
decrease the filtration values, instead of requiring them to be Λ≥0-module
maps.

The following is a direct analogue of the second bullet point of Lemma
2.1.9 in [40] for n = 1. The proof is omitted.
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Lemma A.2. Let us start with a morphism in 1-ray-ChΛ

C1
��

��

C2

��

�� C3
��

��

. . .

C′
1

�� C′
2

�� C′
3

�� . . .

(A.6)

Then there is an induced filtered chain map tel(C) → tel(C′). Hence, the
telescope construction is a functor

tel : 1-ray-ChΛ → FiltChΛ.

Moreover, equivalent morphisms in 1-ray-ChΛ gives rise to filtered ho-
motopy equivalent chain maps.

Degreewise completion defines a functor

·̂ : FiltChΛ → FiltChΛ.

Let us call a chain map C → C ′ between Λ-cochain complexes equipped
with filtration maps a strong filtered quasi-isomorphism if it induces a quasi-
isomorphism

F≥ρ0C → F≥ρ0C
′,

for every ρ0 ∈ R. Because the filtrations are exhaustive, a strong filtered
quasi-isomorphism is a quasi-isomorphism.

Lemma A.3. Under the degreewise completion functor
• a strong filtered quasi-isomorphism is sent to a strong filtered quasi-

isomorphism.
• a filtered chain homotopy is sent to a filtered chain homotopy.

Proof. The first bullet point follows from a spectral sequence comparison
theorem. Precisely, we must show that the chain map F≥ρ0Ĉ → F≥ρ0Ĉ

′ is a
quasi-isomorphism, for all ρ0 ∈ R. We consider the spectral sequences associ-
ated with these filtered complexes, and the map of spectral sequences between
them associated with the strong filtered quasi-isomorphism. We observe that
this map is an isomorphism on the E1 page. To see this, we first observe that
the map GrF

i C → GrF
i C ′ is a quasi-isomorphism for all i, using the long

exact sequence associated with a short exact sequence of chain complexes.
We have GrF

i Ĉ = GrF
i C, and similarly for C ′, so the map GrF

i Ĉ → GrF
i Ĉ ′

is also a quasi-isomorphism; it then follows by construction that the map is
an isomorphism on the E1 page. The filtrations are both complete and ex-
haustive by construction, so the Eilenberg–Moore Comparison Theorem [46,
Theorem 5.5.11] gives the result.

The second bullet point follows from the fact that the completion is an
additive functor. �

Remark A.4. The first bullet point of Lemma A.3 is not explicitly used in
the present paper. It would be an input in the proof of the well definedness
of relative symplectic cohomology (Proposition 3.3), which we omitted.
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Lemma A.5. Let C = C1 → C2 → C3 → · · · be a 1-ray in FiltChΛ with the
following property: for any integer i ≥ 1 and real number r there exists a
positive integer N such that the composition of the Λ-chain maps from the
1-ray Ci → Ci+N increases the filtration map by at least r for any element
of Ci. Then, t̂el(C) is acyclic.

Proof. As in the proof of Lemma A.3, it suffices by the Eilenberg–Moore
Comparison Theorem to show that Gritel(C) is acyclic for all i. Using Equa-
tion A.4 and elementary homological algebra, we obtain that Gritel(C) is
quasi-isomorphic to the telescope of

GriC1 → GriC2 → · · · .

Because the homology of the telescope is isomorphic to the homology of the
direct limit, it suffices to show the acyclicity of the direct limit of this diagram.
It is easy to see that the direct limit is in fact trivial on the nose (i.e. at the
chain level). �

A.4. Homotopy inverse limit

Definition A.6. Let C be an inverse system of cochain complexes and cochain
maps:

C∗
0

i01←−− C∗
1

i12←−− . . . .

We define the cochain complex
∏

p C∗
p to be the degreewise direct product

of the C∗
p . There is a natural chain map id − i :

∏
p C∗

p → ∏
p C∗

p , sending
(cp) �→ (cp − ip,p+1(cp+1)). We define the inverse telescope complex

tel← (C) := Cone

(
∏

p

C∗
p

id−i−−−→
∏

p

C∗
p

)
[−1].

The following recovers the Milnor exact sequence if C satisfies the Mittag-
Leffler condition. We believe that it is standard, but we could not locate it
in the literature.

Lemma A.7. There is a short exact sequence

0 → lim←−
1Hj−1

(
C∗

p

)→ Hj
(
tel← (C)

)
→ lim←−Hj

(
C∗

p

)→ 0.

Proof. The long exact sequence associated with the short exact sequence of
cochain complexes

0 →
∏

p

C∗
p [−1] → tel← (C) →

∏

p

C∗
p → 0

gives an exact sequence

Hj−1

(
∏

p

C∗
p

)
[id−i]−−−−→ Hj−1

(
∏

p

C∗
p

)
→ Hj

(
tel← (C)

)

→ Hj

(
∏

p

C∗
p

)
[id−i]−−−−→ Hj

(
∏

p

C∗
p

)
.
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This gives the desired short exact sequence, as the lim←− is defined to be the
kernel of [id − i], and lim←−

1 is defined to be the cokernel. �

Remark A.8. If C is an inverse system of filtered cochain complexes with
filtered cochain maps, then the inverse telescope complex acquires a filtration
by

F≥p

(
tel← (C)

)
:= tel← (F≥pC)

(it is clear how to regard the RHS as a subcomplex of tel← (C)).
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