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Abstract. In this note we study the systoles of convex hypersurfaces
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1. Introduction

Let Σ be a smooth manifold of dimension 2n − 1 equipped with a global 1-
form α such that α∧(dα)n−1 is nowhere vanishing. Such a pair (Σ, α) is called
a (co-oriented) contact manifold. We assume throughout that Σ is closed and
connected. There exists a unique vector field R = Rα on Σ characterized
by the conditions dα(R, ·) = 0 and α(R) = 1. The vector field R is called
the Reeb vector field associated with α. A periodic (Reeb) orbit is a smooth
curve γ : R/τZ → Σ solving the differential equation γ̇ = R ◦ γ. The systole
of (Σ, α) is defined as

�min(Σ, α) = inf{τ > 0 | τ is the period of a periodic orbit on (Σ, α)} > 0.

By convention, the infimum of the empty set is infinity.
Suppose that the contact manifold (Σ, α) is equipped with an anti-

contact involution ρ, meaning that ρ2 = Id and ρ∗α = −α. The triple
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(Σ, α, ρ) is called a real contact manifold. A periodic orbit γ on (Σ, α, ρ)
is said to be symmetric if ρ(Im(γ)) = Im(γ). By definition, the symmetric
systole �sym

min (Σ, α, ρ) is the infimum over the periods of symmetric periodic
orbits on Σ. We then define the symmetric ratio R(Σ, α, ρ) as

R(Σ, α, ρ):=
�sym
min (Σ, α, ρ)
�min(Σ, α)

∈ [1,∞], (1.1)

provided that there exists a periodic orbit on (Σ, α).

Example 1.1. Let Σ ⊂ R
2n be a smooth, compact, and starshaped hypersur-

face with respect to the origin. Assume that Σ is invariant under the complex
conjugation

ρ0(x1, y1, . . . , xn, yn) = (x1,−y1, . . . , xn,−yn).

The triple (Σ, α, ρ0) is a real contact manifold, where α = λ0|Σ is the re-
striction of the Liouville form λ0 = 1

2

∑n
j=1(xjdyj − yjdxj) to Σ. The Reeb

orbits on Σ are reparametrizations of the Hamiltonian orbits on Σ of any
Hamiltonian H : R2n → R having Σ as a regular level set. The existence of a
symmetric periodic orbit was established by Rabinowitz [27], implying that
R(Σ, α, ρ0) is finite.

As of a prominent class of real contact manifolds, we are mainly in-
terested in symmetric convex hypersurfaces in R

2n. In this paper convex
domains in R

2n are assumed to contain the origin in the interior, and star-
shaped domains are starshaped with respect to the origin. Let K ⊂ R

2n be a
compact convex domain with smooth boundary which is invariant under an
anti-symplectic involution ρ of R2n, i.e. ρ2 = Id and ρ∗dλ0 = −dλ0. We call
the boundary of K a symmetric convex hypersurface. Assume that the fixed
point set Fix(ρ) intersects the boundary ∂K. This condition necessarily holds
if (∂K, ρ) admits a symmetric periodic orbit. We can find a Liouville form
λ on the symplectic manifold (K,dλ0) such that its Liouville vector field
is transverse along the boundary ∂K and ρ is exact with respect to λ i.e.
ρ∗λ = −λ. For example one takes the average λ:= 1

2 (λ0 − ρ∗λ0), see Lemma
4.7. We define the (symmetric) systoles of the symmetric convex hypersurface
(∂K, ρ) by the ones of the real contact manifold (∂K,α:=λ|∂K , ρ):

�min(∂K):=�min(∂K,α) and �sym
min (∂K, ρ):=�sym

min (∂K,α, ρ). (1.2)

They are independent of the choice of the Liouville form λ because the (sym-
metric) systoles coincide with the minimal actions of (symmetric) closed char-
acteristics on (∂K, ρ).

Remark 1.2. More precisely, recall that the symplectic form dλ0 =
∑n

j=1 dxj

∧dyj induces the characteristic line bundle L∂K := ker(dλ0|∂K) over ∂K. This
defines a 1-dimensional foliation of ∂K whose closed leaf γ (i.e. an embedded
circle whose tangent spaces lie in L∂K) is called a closed characteristic of
∂K. Its action is defined by A(γ):=

∫
S1 γ∗λ where λ is a Liouville form on K

such that dλ = dλ0. By Stokes theorem A(γ) is independent of the choice of
λ. A closed characteristic γ on ∂K is called symmetric if γ is invariant under
ρ. Now if λ is chosen as above so that (∂K, λ|∂K , ρ) is a real contact manifold,
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then there is the correspondence between (symmetric) closed characteristics
of ∂K and (symmetric) periodic orbits on (∂K, λ|∂K). Indeed, any closed
characteristic of ∂K is parametrized by a periodic Reeb orbit, and vice versa.
The action of a closed characteristic and the period of the corresponding
periodic orbit coincide. Therefore, (1.2) is independent of the choice of λ, but
does depend on the hypersurface ∂K and the symplectic form dλ0.

The main result of this note is the following estimate on the symmetric
ratio for symmetric convex hypersurfaces.

Theorem 1.3. Let K ⊂ R
2n be a compact and convex domain with smooth

boundary which is invariant under an anti-symplectic involution ρ of R
2n.

Assume that Fix(ρ) ∩ ∂K 	= ∅. Then the symmetric ratio of the symmetric
convex hypersurface (∂K, ρ) satisfies

1 ≤ R(∂K, ρ) ≤ 2. (1.3)

In particular, on the boundary ∂K, there exists a symmetric periodic orbit of
period less than or equal to 2�min(∂K).

It is particularly interesting to ask when the symmetric ratio is exactly
equal to one. This means that the smallest period among all periodic orbits
can be realized by symmetric one. In Sect. 2 we examine this question with
explicit examples of symmetric hypersurfaces. Smooth starshaped toric do-
mains, for instance, admit a family of anti-symplectic involutions including
complex conjugation, and we can explicitly understand their Reeb flows. We
observe in Sect. 2.3 that the symmetric ratio in this case is always equal to
one even without convexity. On the other hand, there are symmetric star-
shaped domains whose boundary has the symmetric ratio bigger than 1. In
Sect. 2.4, we construct such examples by perturbing the standard contact
form on the unit sphere following the Bourgeois’ perturbation scheme for
Morse–Bott contact forms [8, Section 2.2].

Remark 1.4. Even if the symmetric ratio is equal to one, there can exist a
non-symmetric periodic orbit of the smallest period. Moreover, a symmet-
ric periodic orbit of the smallest period might not be unique. For example,
consider the unit round sphere S2n−1 ⊂ R

2n ≡ C
n for n ≥ 2 with complex

conjugation ρ0. The contact form is given by the restriction of the Liouville
form as in Example 1.1. The associated Reeb flow is periodic, and the peri-
odic orbit γ through z ∈ S2n−1 can be parametrized as γ(t) = e2itz, t ∈ R.
Then γ is symmetric with respect to ρ0 if and only if γ(t0) ∈ R

n for some
t0 ∈ R.

Another interesting aspect of the estimate (1.3) is that it gives a uniform
upper bound of the symmetric ratio for convex hypersurfaces in R

2n. Such
an upper bound does not necessarily exist for a larger class of hypersurfaces.
For example, in Sect. 2.5, we exhibit symmetric starshaped hypersurfaces,
which are Bordeaux-bottle-shaped, whose symmetric ratio is arbitrary large.
In Sect. 2.6, we provide examples of restricted contact type, not starshaped,
hypersurfaces in Hamiltonian systems whose symmetric ratio is also arbitrary
large.
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Our discussions up to now suggest the following questions:
• Is the symmetric ratio for symmetric convex hypersurfaces in R

2n equal
to exactly one?

• Under what conditions on real contact manifolds can we find a uniform
upper bound of its symmetric ratio? For example, one can consider
dynamical convexity for contact manifolds as a substitute of geometric
convexity.

Remark 1.5. A convex body K ⊂ R
2n, i.e. a compact convex subset in R

2n

with non-empty interior, is called centrally symmetric if it is invariant under
the antipodal map on R

2n. Note that the antipodal map is not anti-symplectic
but symplectic. It is shown in Akopyan–Karasev [4, Corollary 2.2] that any
closed characteristic of minimal action on the boundary of K is itself centrally
symmetric, cf. Remark 1.4.

In Sect. 4, we present an approach to obtain the upper bound in The-
orem 1.3 employing symplectic capacities from Floer theory. We first bound
the symmetric ratio from above in terms of the symplectic homology capacity
(the SH capacity) cSH and the wrapped Floer homology capacity (the HW
capacity) cHW. An essential ingredient is the recent result of Abbondandolo–
Kang [1] and Irie [19] showing for convex domains that the systole �min(∂K)
coincides with the SH capacity cSH(K). Together with the spectral property
of the HW capacity in Proposition 4.4, we deduce that

�sym
min (∂K, ρ)
�min(∂K)

≤ 2cHW(K, ρ)
cSH(K)

.

We can then bound the ratio of the capacities from above using Floer the-
ory. In Sect. 3.3 we recall a construction of well-known comparison homo-
morphisms in Floer homology, called closed-open maps. They are defined
by counting certain Floer disks with one interior puncture (asymptotic to a
Hamiltonian 1-orbit) and one boundary puncture (asymptotic to a Hamilton-
ian 1-chord) with Lagrangian boundary condition. See Fig. 4. We call them
Floer chimneys as in [5, Figure 11]. Closed-open maps are compatible with
the action filtrations on the Floer homologies in the sense of Theorem 3.9. As
also observed in [7], it is rather straightforward to obtain the desired upper
bound from the existence of filtered closed-open maps.

At the heuristic level the underlying geometric idea is the following.
By the spectral properties, the SH capacity cSH(K) is the action A(γ) of a
periodic orbit γ on ∂K and the HW capacity cHW(K, ρ) is the action A(x) of
a chord x on (∂K, ∂ Fix(ρ)). Closed-open maps in principle tell us that there
exists a J-holomorphic chimney asymptotic to γ at the interior puncture and
asymptotic to x at the boundary puncture. Since the energy of J-holomorphic
chimneys is necessarily non-negative, one has cHW(K, ρ) = A(x) ≤ A(γ) =
cSH(K) by Stokes’ theorem.

The wrapped Floer homology capacity for symmetric domains can be
seen as a symplectic capacity for symplectic manifolds with symmetries,
which we call a real symplectic capacity. The upper bound in Theorem 1.3
hinges on relationships between real and non-real symplectic capacities. In
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Sect. 5 we discuss further examples of real symplectic capacities which might
be of independent interest. See also [11] for more information on symplectic
capacities.

Remark 1.6. One finds a motivation to study the symmetric systole in the
context of the planar circular restricted three-body problem (PCR3BP). This
problem studies the motion of a massless body influenced by two bodies
of positive mass according to Newton’s law of gravitation, where the two
massive bodies move in circles about their common center of mass, and the
massless body is confined to the plane determined by the two bodies. Denote
by c∗ the energy value of the Hamiltonian H of the PCR3BP such that
for every c < c∗, the level set H−1(c) contains two bounded components
near either massive body. In what follows, we concentrate on one of the two
bounded components, denoted by Σc. It is invariant under the anti-symplectic
involution ρ whose fixed point set projects into the configuration space R

2

as a subset of the horizontal axis. In [6] Birkhoff found a Reeb chord on
Σc via shooting argument and closed it up using ρ to obtain a symmetric
periodic orbit, called a retrograde periodic orbit. In a real-world situation, a
direct periodic orbit is more important since most orbits of moons in the
solar system are direct. However, Birkhoff did not give an analytic proof of
the existence of a direct periodic orbit. Instead, he conjectured that for each
c < c∗, the retrograde periodic orbit on Σc bounds a disk-like global surface of
section. Birkhoff believed that a fixed point of the associated first return map,
whose existence is assured by Brouwer’s translation theorem, corresponds to a
direct periodic orbit. One way to prove this conjecture is to look at the period
of the retrograde periodic orbit. Indeed, the SFT-compactness theorem says
that if the retrograde periodic orbit has the smallest period, then this would
imply Birkhoff’s conjecture. For details, we refer to a beautiful exposition
[15].

2. Examples

In this section we discuss examples for the symmetric ratio (1.1) on various
symmetric hypersurfaces.

2.1. In dimension two

Let W be a subset of R2 that is diffeomorphic to a closed disc and invariant
under an anti-symplectic involution ρ. There exists a unique simply covered
periodic orbit γ, which is a parametrization of the ρ-invariant circle ∂W .
Moreover, γ is ρ-symmetric. It follows that �min(∂W ) = �sym

min (∂W ) and hence
R(∂W, ρ) = 1.

2.2. Ellipsoids

Given aj ∈ R>0, j = 1, . . . , n, the associated ellipsoid is given by

E(a1, . . . , an):=

{

z ∈ C
n

∣
∣
∣
∣

n∑

j=1

π|zj |2
aj

≤ 1

}

.
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With respect to the standard contact form, i.e. the restriction of the Liouville
form from Example 1.1, complex conjugation ρ0 provides an anti-contact
involution on the boundary ∂E(a1, . . . , an). The Reeb flow can explicitly be
written by coordinate-wise rotations on C

n. Periodic orbits are of the form

γ(t) =
(
e

2πit
a1 z1, e

2πit
a2 z2, . . . , e

2πit
an zn

)
(2.1)

for some (z1, z2, . . . , zn) ∈ ∂E(a1, . . . , an). Assuming a1 ≤ a2 ≤ · · · ≤ an

without loss of generality, the periodic orbit γ1(t) = (e
2πit
a1 z1, 0, . . . , 0) with

z1 	= 0 attains the minimal period and is symmetric with respect to ρ0. Hence
the symmetric ratio is equal to one. In general, a periodic orbit of the form
(2.1) is ρ0-symmetric if and only if γ(t0) ∈ R

n for some t0 ∈ R.

2.3. Smooth starshaped toric domains

Define the moment map μ : Cn → R
n
≥0 as

μ(z1, . . . , zn) = π(|z1|2, . . . , |zn|2).

It is invariant under the exact anti-symplectic involution

ρθ(z) =
(
eiθ1z1, . . . , e

iθnzn

)
(2.2)

for each θ = (θ1, . . . , θn) ∈ R
n. For a domain Ω ⊂ R

n
≥0, the preimage

XΩ:=μ−1(Ω) ⊂ C
n is called a toric domain. Note that any toric domain

is ρθ-invariant. For example, the ellipsoid E(a1, . . . , an) is a smooth toric
domain associated to the simplex

Ω =

{

x ∈ R
n
≥0

∣
∣
∣
∣

n∑

j=1

xj

aj
≤ 1

}

.

A toric domain is not necessarily smooth, but, in this note, we only consider
smooth ones.

In what follows we assume that a domain Ω ⊂ R
n
≥0 is smooth, compact,

and starshaped (with respect to the origin). Then the associated toric domain
XΩ ⊂ C

n is a smooth toric domain that is compact and starshaped.
We shall show that R(∂XΩ, ρθ) = 1 for every θ ∈ R

n.
Note that XΩ is invariant under the T

n-family of the exact symplecto-
morphisms

σφ(z) = (eiφ1z1, . . . , e
iφnzn), φ = (φ1, . . . , φn) ∈ R

n.

If γ is a periodic orbit on ∂XΩ, then so is σφ(γ). Each fiber torus μ−1(w),
w ∈ Ω, is foliated by periodic orbits, see e.g. [17, Section 2.2], and hence any
periodic orbit on ∂XΩ is contained in a fiber torus.

For a fixed θ ∈ R
n, each fiber torus contains a ρθ-symmetric periodic

orbit. Indeed, in view of the fact that ρ∗
θR = −R, where R is the Reeb vector

field on ∂XΩ, a periodic orbit γ is ρθ-symmetric if and only if γ(R)∩Fix(ρθ) 	=
∅. For a periodic orbit γ in a fiber torus T , it is always possible to find φ ∈ R

n

such that σφ(γ) intersects Fix(ρθ). Then σφ(γ) is a ρθ-symmetric periodic
orbit in T .



Vol. 24 (2022) The systoles of symmetric convex hypersurfaces Page 7 of 26 28

As all periodic orbits belonging to the same fiber torus have the same
period, this implies that R(∂XΩ, ρθ) = 1. Actually, for every periodic orbit
γ on ∂XΩ, there exists θ = θ(γ) ∈ R

n such that γ is a ρθ-periodic orbit.
Recall that a toric domain XΩ is said to be convex if

Ω̂ = {(x1, . . . , xn) ∈ R
n | (|x1|, . . . , |xn|) ∈ Ω} ⊂ R

n

is convex. In this case, we know which (symmetric) periodic orbit attains
the smallest period. From the convexity of Ω̂, we can show by computing the
Reeb vector field that the fiber orbit at a point of ∂Ω along a coordinate axis,
i.e. an intersection point of ∂Ω with a coordinate axis, attains the smallest
period. Moreover, it is also obvious from the Reeb flow that such a periodic
orbit is ρθ-symmetric for every θ ∈ R

n.

2.4. Starshaped domains with the symmetric ratio slightly bigger than one

For every θ ∈ R
n we can construct a ρθ-symmetric starshaped domain K

in R
2n with R(∂K, ρθ) > 1, where ρθ is defined as in (2.2), by perturbing

the round sphere. Without loss of generality, we only consider the case of
complex conjugation ρ = ρ0.

Let B ⊂ (R2n, λ0) denote the closed unit ball. For h ∈ C∞(∂B,R) with
h ≥ 1, we define the starshaped domain in R

2n

Kh:=B ∪∂B {(r, x) ∈ [1,∞) × ∂B | x ∈ ∂B, r ≤ h(x)}

by attaching the graph of h along the boundary ∂B via the Liouville flow of
λ0. Note that ∂Kh is contactomorphic to the unit sphere ∂B equipped with
the contact form hα0. Since the Reeb flow φt on (∂B, α0) satisfies ρ◦φ−t◦ρ =
φt, the involution ρ of ∂B descends to the involution ρ̄ of ∂B/S1 ∼= CPn−1,
where the S1-action on ∂B is given by the Reeb flow.

Take a ρ̄-invariant Morse function f̄ ≥ 0 on ∂B/S1 which attains the
minimum precisely at a pair of two critical points away from the fixed point
set of ρ̄. We write f ∈ C∞(∂B,R) for the lifting of f̄ . Set hε:=1+εf for ε > 0.
Since hε is ρ-invariant, the starshaped domain Khε

is symmetric. We claim
that for ε > sufficiently small we have R(∂Khε

, ρ) > 1, but this will be close
to 1. We denote by Tmin the minimal period of the Reeb flow of the standard
contact sphere (∂B, α0). Recall from Bourgeois [8, Section 2.2] that for any
T > Tmin there exists ε > 0 such that the periodic orbits of (∂B, αε:=hεα) of
period less than T are non-degenerate and correspond to the critical points of
f̄ . For a critical point x̄ of f̄ the corresponding periodic orbit is the S1-fiber
γx̄ of the fibration ∂B → ∂B/S1 at x̄, and its period is given by Tminhε(x)
for any lift x ∈ ∂B of x̄. The periodic orbit γx̄ is symmetric if and only if
x̄ is a fixed point of ρ̄. Now we take T > 0 slightly bigger than Tmin. For
ε > 0 small enough, the minimum period of non-symmetric periodic orbits
is strictly smaller than the minimum period of symmetric periodic orbits.
This shows that R(∂Khε

, ρ) > 1. It is worth noting that R(∂Khε
, ρ) can be

arbitrarily close to one.
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Figure 1. A symmetric Bordeaux-bottle-shaped domain
having two necks

2.5. Bordeaux-bottle-shaped hypersurfaces of arbitrarily large symmetric
ratio

Recall that the classical Bordeaux-bottle K ⊂ R
2n is a smooth starshaped

domain obtained by gluing a thin neck, modeled on the symplectic 2-subspace
R

2 × {0}, along the boundary of the unit ball B, see [18, Section 3.5]. Let
ρ denote complex conjugation on R

2n. For a given symplectic 2-subspace
V ⊂ R

2n with ρ(V ) ∩ V = {0}, we glue the two thin necks, associated
to V and ρ(V ) respectively, along the boundary ∂B to form a ρ-symmetric
Bordeaux-bottle-shaped domain KV with two necks. See Fig. 1. Since ρ sends
one neck to the other, any periodic orbits on the thin necks are not symmetric.
Moreover, symmetric periodic orbits on ∂KV exist on ∂B, and the period of
any symmetric periodic orbits of ∂KV is uniformly bounded from below.
Making the necks narrow, we obtain a symmetric starshaped domain KV

with arbitrarily large symmetric ratio. Below, we provide a detailed account
of this construction.

Consider the symplectic 2-subspace V in (R2n, ω0 =
∑n

j=1 dxj ∧ dyj)
spanned by

v1 = (1, 0, 0, 1, 0, . . . , 0),

Jv1 = (0, 1,−1, 0, 0, . . . , 0),

where J denotes the standard complex structure on C
n ∼= R

2n. A simple
computation shows that

ρ(V ) ∩ V = {0}. (2.3)

Since ρ is anti-symplectic, ρ(V ) is a symplectic 2-subspace. We then obtain
a symplectic orthogonal decomposition

R
2n = V ⊕ ρ(V ) ⊕ W,

where W = (V ⊕ ρ(V ))⊥ denotes the symplectic complement of V ⊕ ρ(V ).
Since V ⊕ρ(V ) is ρ-invariant, so is W . Using the Gram–Schmidt process [24,
Lemma 2.6.6], we can construct a unitary basis on R

2n,

{v1, Jv1, . . . , vn, Jvn}, (2.4)
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such that
• v2:=ρ(v1) and Jv2 = Jρ(v1) = −ρ(Jv1),
• {v3, Jv3, . . . , vn, Jvn} is a unitary basis for W .

We denote by
(x′,y′) = (x′

1, y
′
1, . . . , x

′
n, y′

n) (2.5)
the symplectic coordinates on R

2n with respect to the basis (2.4). Then KV

is defined to be a ρ-symmetric smooth starshaped domain in R
2n consisting

of
• a bounded piece of the neck NV = {(x′,y′) | (x′

1)
2 + (y′

1)
2 ≤ ε} of V ;

• a bounded piece of the neck Nρ(V ) = {(x′,y′) | (x′
2)

2 + (y′
2)

2 ≤ ε} of
ρ(V );

• the unit ball B = {(x′,y′) |
∑n

j=1(x
′
j)

2 + (y′
j)

2 ≤ 1}.

Here, a smoothing procedure is required as in the well-known case of a
Bordeaux-bottle having one neck. We emphasize that the smoothing pro-
cedure in the standard Bordeaux-bottle is still enough for our case, since the
gluing regions of ∂NV and ∂Nρ(V ) along ∂B are disjoint due to (2.3). More-
over, the unit ball in the coordinates (2.5) coincides with the unit ball in the
standard coordinates.

We claim that the symmetric ratio R(∂KV , ρ) can be arbitrarily large
by choosing ε > 0 small enough. Since V is chosen to be symplectic, every
periodic orbit on the boundary of the neck NV is of the form

γ(t) =
(
w1e

2it
ε , w2, . . . , wn

)
,

where the identifications (2.5) and wj = x′
j + iy′

j are used. They have small
periods depending on ε > 0. The similar holds for periodic orbits on ∂Nρ(V ).
Thanks to (2.3), any periodic orbits on the necks ∂NV and ∂Nρ(V ) are not
symmetric under ρ. As mentioned before, symmetric periodic orbits of ∂KV

exist on the boundary ∂B, and the period of any symmetric periodic orbits
of ∂KV is uniformly bounded from below. Therefore, the claim follows.

2.6. Hypersurfaces of arbitrarily large symmetric ratio in Hamiltonian sys-
tems

Recall that a hypersurface Σ in R
2n is called of restricted contact type if there

exists a Liouville vector field X which is defined in a neighborhood of the
hypersurface and which is transverse to Σ. If Σ is of restricted contact type
with the radial vector field X = r

2∂r, then it is starshaped. Here we provide a
restricted contact type, but not starshaped hypersurface of arbitrarily large
symmetric ratio.

Consider a mechanical Hamiltonian H(q, p) = 1
2 |p|2 + V (q), (q, p) ∈

R
2 × R

2, where the potential V is invariant under the involution (q1, q2) �→
(−q1, q2). It follows that H is invariant under the anti-symplectic involution
ρ(q1, q2, p1, p2) = (−q1, q2, p1,−p2), and hence for every E ∈ R, the energy
level set H−1(E) is ρ-invariant. We assume the following.

• There exist exactly two saddle points (±a, 0) of V such that V (±a, 0) =
0.
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Figure 2. The projections of the energy levels H−1(E) into
the position space R

2

• For E > 0 small enough, H−1(−E) consists of three 3-spheres.

The first condition implies that the equilibriums (±a, 0, 0, 0) of H are of
saddle-center type, and the second condition implies that the energy level
H−1(E) for E = 0 and for E > 0 small enough project into the position space
R

2 as in Fig. 2. For every E > 0 sufficiently small, H−1(E) is not starshaped,
but of restricted contact type as H is of mechanical type. Since (±a, 0, 0, 0)
are of saddle-center type, in view of a well-known theorem by Lyapunov, if
E > 0 is small enough, H−1(E) carries periodic orbits γ1, γ2 = ρ(γ1), called
the Lyapunov orbits (red curves in Fig. 2). As E → 0+, they converge to
equilibriums. Moreover, in a sufficiently small neighborhood of equilibriums,
there exists no periodic orbit other than the associated Lyapunov orbit, and
periodic orbits that pass this neighborhood have sufficiently large periods.
This in particular implies that if E > 0 is small enough, then the periods of
the Lyapunov orbits are extremely small, but the periods of other periodic
orbits are bounded from blow by some positive constant. As the Lyapunov
orbits are not ρ-symmetric, we conclude that the symmetric ratio can be
chosen arbitrarily large.

3. Closed-open maps

3.1. Symplectic homology

We briefly recall the construction of symplectic homology without technical
details. We refer the reader to [9, Section 2] for a detailed description. We
work with Liouville domains, and prominent examples are starshaped do-
mains in R

2n including smooth convex bodies. In this paper, we always use
Z2-coefficients.

Let (W,λ) be a Liouville domain with a Liouville form λ. This means W
is a compact smooth manifold with boundary and λ is a 1-form on W such
that dλ is symplectic and its Liouville vector field is positively transverse
along the boundary. The restriction α := λ|∂W of the Liouville form defines
a contact form on the boundary, and we denote the contact boundary by
(Σ, α) := (∂W, λ|∂W ). The completion (Ŵ , λ̂) of the Liouville domain (W,λ)
is an open symplectic manifold defined by attaching (a positive part of) the
symplectization ([1,∞) × Σ, rα) to the domain (W,λ) along the boundary
via the Liouville flow. Here r ∈ [1,∞) denotes the Liouville coordinate.
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Example 3.1. The closed unit ball B2n ⊂ R
2n with the standard symplectic

form ω0 =
∑n

j=1 dxj ∧ dyj is a Liouville domain with a Liouville form λ0 =
1
2

∑n
j=1(xjdyj − yjdxj). The contact type boundary is the standard contact

sphere (S2n−1, α0) with α0 = λ0|∂B2n . The completion of B2n recovers R
2n.

More generally, any starshaped domains in R
2n, including smooth convex

ones, fit into our setup for Floer theory.

3.1.1. Admissible Hamiltonians. We take an admissible time-dependent
Hamiltonian HS1 : S1 × Ŵ → R, meaning that all 1-periodic orbits of the
Hamiltonian vector field XHS1 are non-degenerate, HS1 is negative and C2-
small (and Morse) in the interior of W ⊂ Ŵ , and HS1 is linear at the end
with respect to the Liouville coordinate r, independent of the time parameter
t ∈ S1. The derivative H ′

S1(r) at the end is called the slope of the Hamilton-
ian HS1 . We assume that the slope is positive and not equal to the period of
a periodic Reeb orbit in the contact boundary (Σ, α). See Remark 3.4.

Remark 3.2. Our convention for Hamiltonian vector fields is that ω(XH , ·) =
dH.

Denote the set of contractible 1-periodic orbits of HS1 by P(HS1). To
each 1-periodic orbit γ ∈ P(HS1) we can associate an integer called the
Conley–Zehnder index CZ(γ) by taking a capping disk of γ. We assume that
c1(TW ) vanishes on π2(W ) for well-definedness of the index CZ(γ). See [9]
for details on the index.

3.1.2. Chain complex. Let JS1 = {Jt}t∈S1 be a time-dependent family of
compatible almost complex structures on (Ŵ , λ̂) which is admissible in the
sense of [9]. The Floer chain group CF∗(HS1 , JS1) for the pair (HS1 , JS1) is a
Z-graded vector space over Z2, generated by the 1-periodic orbits of P(HS1)
and graded by the negative Conley–Zehnder index |γ| = −CZ(γ):

CFk(HS1 , JS1) =
⊕

γ∈P(HS1 )
|γ|=k

Z2〈γ〉.

For two distinct 1-periodic orbits γ± ∈ P(HS1), define the moduli space
of Floer cylinders M(γ−, γ+,HS1 , JS1) from γ− to γ+, modulo the natural
R-action, by

M(γ−, γ+,HS1 , JS1) = {u : R × S1 → Ŵ | lim
s→±∞

u(s, t) = γ±(t),

(du − XHS1 ⊗ dt)0,1 = 0}/R.

(3.1)

See the left in Fig. 3.

Proposition 3.3. Let γ− 	= γ+. For generic JS1 , the moduli space M(γ−, γ+,
HS1 , JS1) is a smooth manifold of dimension |γ−| − |γ+| − 1.

Remark 3.4. Since HS1 and JS1 are admissible, Floer trajectories must lie in
a compact region in Ŵ by a maximum principle.
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Figure 3. A Floer cylinder (left) and strip (right)

The differential ∂ : CFk(HS1 , JS1) → CFk−1(HS1 , JS1) is defined by
counting rigid Floer trajectories between 1-periodic orbits as follows:

∂(γ−) =
∑

γ+∈P(HS1 )
|γ+|=k−1

#2M(γ−, γ+,HS1 , JS1)γ+. (3.2)

The Floer–Gromov compactness and the gluing construction in Floer theory
show that ∂2 = 0, and hence we obtain the Floer chain complex (CF∗(HS1 ,
JS1), ∂). The Floer homology HF∗(HS1 , JS1) of the pair (HS1 , JS1) is defined
by

HF∗(HS1 , JS1) = H∗(CF∗(HS1 , JS1), ∂).

3.1.3. Symplectic homology. Standard continuation maps in Hamiltonian
Floer homology define a direct system of Floer homology groups HF∗(HS1 , JS1)
directed by increasing the slope τ of Hamiltonains. See e.g. [12, Section 4.4].
The symplectic homology of the Liouville domain (W,λ) is defined to be the
direct limit

SH∗(W,λ) = lim−→
τ→∞

HF∗(HS1 , JS1).

3.1.4. Action filtration. For an admissible Hamiltonian HS1 we have the as-
sociated action functional AHS1 : LŴ → R on the free loop space LŴ of the
completion Ŵ given by

AHS1 (γ) = −
∫

S1
γ∗λ −

∫ 1

0

HS1(t, γ(t))dt.

We call the value AHS1 (γ) the action of γ. Since Floer trajectories decrease
action values, we obtain an action filtration on Floer chain complexes by
collecting generators of action less than a ∈ R

CFa
k(HS1 , JS1) =

⊕

γ∈P(HS1 )
|γ|=k

AH
S1 (γ)<a

Z2〈γ〉.

The corresponding filtered Floer homology is denoted by HFa
∗(HS1 , JS1), and

taking the direct limit we define the filtered symplectic homology

SHa
∗(W,λ) = lim−→

τ→∞
HFa

∗(HS1 , JS1).
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3.1.5. Tautological exact sequences. Let a < b. The action filtration on the
chain complex CF∗(HS1 , JS1) induces the following natural short exact se-
quence of chain complexes:

0 → CFa
∗(HS1 , JS1) → CFb

∗(HS1 , JS1) → CF[a,b)
∗ (HS1 , JS1) → 0

where CF[a,b)
∗ (HS1 , JS1) is the chain complex defined to be the quotient

CF[a,b)
∗ (HS1 , JS1) = CFb

∗(HS1 , JS1)/CFa
∗(HS1 , JS1)

with the induced differential. We obtain, passing to the direct limit, an asso-
ciated long exact sequence in symplectic homology

→ SHa
k(W ) → SHb

k(W ) → SH[a,b)
k (W ) → SHa

k−1(W ) → . (3.3)

In particular, due to the assumption that HS1 is C2-small and Morse on W ,
if ε > 0 sufficiently small, we have a canonical identification

SHε
k(W ) ∼= Hk+n(W,∂W ). (3.4)

We then have the (filtered) tautological exact sequence in symplectic homol-
ogy

→ Hk+n(W,∂W ) → SHa
k(W ) → SH[ε,a)

k (W ) → Hk+n−1(W,∂W ) → .

For each a > 0, we shall denote the map from Hk+n(W,∂W ) to SHa
k(W ) in

the sequence by

ja : Hk+n(W,∂W ) → SHa
k(W ).

3.2. Wrapped Floer homology

We shortly review a construction of wrapped Floer homology which is an
open string analogue of symplectic homology. We refer to [3,21] for details.

3.2.1. Chain complex. Let L be an admissible Lagrangian in a Liouville do-
main (W,λ), meaning that L is a connected and exact Lagrangian which
intersects the contact boundary (Σ, α) in a Legendrian L:=∂L = L ∩ Σ and
the Liouville vector field is tangent to TL near the boundary. By attaching
[1,∞) × L to L along the Legendrian boundary L we have a completed ex-
act Lagrangian L̂ in the completion (Ŵ , λ̂). Roughly speaking, the wrapped
Floer homology HW∗(L) is a version of Lagrangian Floer homology of L̂ in
Ŵ .

A time-independent Hamiltonian H : Ŵ → R is called admissible if
every Hamiltonian 1-chord relative to L̂ is non-degenerate, H is negative and
C2-small in the interior of W ⊂ Ŵ , and H is linear at the end with respect
to r ∈ [1,∞). We assume that the slope τ of H is positive and is not equal to
the length of a Reeb chord in (Σ, α,L). Recall that a Reeb chord in (Σ, α,L)
is an orbit x : [0, T ] → Σ of the Reeb flow on (Σ, α) with x(0), x(T ) ∈ L. We
call T the length of the Reeb chord x.

Denote the set of contractible, as an element of π1(Ŵ , L̂), Hamiltonian
1-chords by PL(H). We associate the index |x| = −μ(x)− n

2 ∈ Z for each non-
degenerate contractible 1-chord in PL(H), where μ(x) is the Maslov index
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defined in [21, Definition 2.3]. Assume that c1(TW ) = 0 and π1(L) = 0 for
well-definedness of μ(x).

Example 3.5. Consider complex conjugation ρ0 on the closed ball B2n. Its
fixed point set L = Fix(ρ0) = B2n ∩ R

n, called a real Lagrangian, defines an
admissible Lagrangian in (B2n, λ0). More generally, let W be a starshaped do-
main in R

2n invariant under an exact anti-symplectic involution ρ of (R2n, λ0)
i.e. ρ∗λ0 = −λ0. Then the fixed point set L := Fix(ρ|W ) defines an admissible
Lagrangian:

• From the classical Smith theory, we have dim H∗(W ;Z2) ≥ dim H∗(L;Z2)
and χ(W ) = χ(L) mod 2. It follows that L is nonempty and connected.

• Since the Liouville flow on (R2n, λ0) commutes with ρ and flows radially
from the origin, the real Lagrangian L intersects the boundary ∂W .

• As in [22, Lemma 3.1], L is an exact Lagrangian, the intersection L∩∂W
is a Legendrian, and the Liouville vector field is tangent to TL near the
boundary.

Note also that c1(TW ) = 0 for any starshaped domain W whereas π1(L) is
not necessarily a trivial group. If the anti-symplectic involution ρ is linear
e.g. complex conjugation, then L is diffeomorphic to the closed ball Bn and
hence π1(L) = 0 in this case.

Let J = {Jt}t∈[0,1] be an admissible time-dependent family of compat-
ible almost complex structures. For two distinct 1-chords x± ∈ PL(H), the
moduli space M(x−, x+,H, J) of Floer strips from x− to x+, modulo the
natural R-action, is defined by

M(x−, x+,H, J) = {u : R × [0, 1] → Ŵ | lim
s→±∞

u(s, t) = x±(t),

(du − XH ⊗ dt)0,1 = 0,

u(s, 0), u(s, 1) ∈ L̂}/R.

(3.5)

See the right in Fig. 3. For generic J , the moduli space M(x−, x+,H, J) is a
smooth manifold of dimension |x−| − |x+| − 1.

The Floer chain complex for the pair (H,J) is defined by

CFk(H,J) =
⊕

x∈PL(H)
|x|=k

Z2〈x〉

equipped with the differential ∂ : CFk(H,J) → CFk−1(H,J) given by

∂(x−) =
∑

x+∈PL(H)
|x+|=k−1

#2M(x−, x+,H, J)x+. (3.6)

We obtain the Floer homology group HF∗(H,J) as the homology of the chain
complex (CF∗(H,J), ∂), and by taking the direct limit as in the symplectic
homology, we define the wrapped Floer homology of the Lagrangian L in
(W,λ) by

HW∗(L) = lim−→
τ→∞

HF∗(H,J).
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3.2.2. Filtered wrapped Floer homology. Wrapped Floer homology shares
many analogous properties with symplectic homology. In particular, we have
a natural action filtration and tautological exact sequences. The action fil-
tration on HW∗(L) is given by the action functional AH : LLŴ → R on the
free path space LLŴ of the completion Ŵ relative to L̂, defined by

AH(x) = −
∫

[0,1]

x∗λ −
∫ 1

0

H(x(t))dt + fL(x(1)) − fL(x(0)).

Here fL ∈ C∞(L̂,R) is a primitive of the form λ̂|L̂. For a ∈ R, we denote the
filtered chain complex by CFa

∗(H,J) and the filtered wrapped Floer homology
by HWa

∗(L). For a < b a long exact sequence analogous to (3.3) is written as

→ HWa
k(L) → HWb

k(L) → HW[a,b)
k (L) → HWa

k−1(L) → . (3.7)

In particular, for ε > 0 sufficiently small so that

HWε
k(L) ∼= Hk+n(L, ∂L) (3.8)

we have the tautological long exact sequence in wrapped Floer homology

→ Hk+n(L, ∂L) → HWa
k(L) → HW[ε,a)

k (L) → Hk+n−1(L, ∂L) → .

For each a > 0, as in symplectic homology, we denote the map from Hk+n

(L, ∂L) to HWa
k(L) in the sequence by

ja : Hk+n(L, ∂L) → HWa
k(L).

3.3. Closed-open maps

Closed-open maps are natural homomorphisms from symplectic homology to
wrapped Floer homology. In Sect. 4 we use them to relate symplectic capac-
ities from the two Floer homologies. In this section we shall briefly outline a
construction of closed-open maps based on [2,16,29]. See also [5].

3.3.1. Floer data. Closed-open maps are defined by counting curves in Ŵ
which we call Floer chimneys. The domain T of Floer chimneys is given by
the closed unit disk D with an interior puncture and a boundary puncture,

T = (D \ {0, 1}, i)

where i is the standard complex structure. See the left in Fig. 4. We equip
T a negative cylindrical end ε0 : (−∞, 0] × S1 → T near 0 and a positive
strip-like end ε1 : [0,∞) × [0, 1] → T near 1.

A Floer data (HT , JT ) for chimneys is given as follows. Let HS1 :
S1 × Ŵ → R and H : Ŵ → R be admissible Hamiltonians for symplec-
tic homology and wrapped Floer homology, respectively, of the same slope τ .
A Hamiltonian HT : T × Ŵ → R is called admissible if

• HT (ε0(s, t), w) = HS1(t, w);
• HT (ε1(s, t), w) = H(w);
• for each z ∈ T , the Hamiltonian HT (z, ·) : Ŵ → R is admissible with

slope τ and is independent of z at the end. We call τ the slope of HT .
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Figure 4. A Floer chimney

For admissible almost complex structures JS1 and J as in Sect. 3.1.2 and 3.2.1,
we take an admissible T -family of compatible almost complex structures JT
given in an analogous way to the Hamiltonian case so that JT = JS1 and
JT = J near the punctures.

3.3.2. Floer chimneys. To write the Floer equation for chimneys, we fix a
1-form β on T with the following properties.

• dβ ≤ 0 with respect to the fixed volume form on T .
• β|∂T = 0, and β|ν(∂T ) = 0 where ν(∂T ) is a neighborhood of ∂T .
• With respect to the coordinate charts ε0 and ε1, we set β = dt.

Remark 3.6. The conditions on β guarantee that Floer chimneys stay in a
compact region in Ŵ . One can show this using a convexity argument in [3,
Lemma 7.2], which replaces the maximum principle.

Take γ ∈ P(HS1) and x ∈ PL(H). A Floer chimney from γ to x is a
map u : T → Ŵ satisfying the following conditions, see Fig. 4.

• (Floer equation) u is a solution of the equation

(du − XHT ⊗ β)0,1 = 0.

• (Asymptotic condition)

lim
s→−∞

u(ε0(s, t)) = γ(t), lim
s→∞

u(ε1(s, t)) = x(t).

• (Lagrangian boundary) u(∂T ) ⊂ L̂.

We denote the moduli space of Floer chimneys from γ to x by

M(γ, x,HT , JT ) = {u : T → Ŵ |u is a Floer chimney from γ to x}. (3.9)

Proposition 3.7. (See [2, Lemma 5.3]) For generic JT , the moduli space
M(γ, x,HT , JT ) is a smooth manifold of dimension

dim M(γ, x,HT , JT ) = |γ| − |x| − n.

If |γ| = |x|+n, the moduli space is compact and zero dimensional. This
allows us to define the map

CO : CFk(HS1 , JS1) → CFk−n(H,J)

by counting rigid Floer chimneys

CO(γ) =
∑

x∈PL(H)
|x|=k−n

#2M(γ, x,HT , JT )x. (3.10)
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Figure 5. Broken Floer chimneys showing ∂ ◦ CO = CO ◦ ∂

The codimension 1 boundary strata of the moduli space of Floer chimneys,
described in [2, Lemma 5.3], shows that the map CO : CFk(HS1 , JS1) →
CFk−n(H,J) is a chain map; see Fig. 5. We have the induced homomorphism
on homology groups

CO : HFk(HS1 , JS1) → HFk−n(H,J).

Taking homotopies of admissible Hamiltonians HT , a standard argument in
Floer theory in [12, Section 4.4] allows us to pass it to the direct limit via
continuation maps

CO : SHk(W ) → HWk−n(L).

We call this map the closed-open map from symplectic homology to wrapped
Floer homology.

Remark 3.8. In [29, Theorem 8.2], it is shown that CO : SH∗(W ) → HW∗(L)
is a unital ring homomorphism with respect to the standard ring structures
described e.g. in [28].

3.3.3. Filtered closed-open maps. Closed-open maps respect the action fil-
trations. To see this, one introduces the topological energy of Floer chimneys
as follows:

E(u):=
∫

T
u∗dλ − u∗dHT ∧ β − u∗HT dβ

where u ∈ M(γ, x,HT , JT ) as in Sect. 3.3.2. It is observed in [2, Appendix
B] that E(u) ≥ 0, and a direct computation shows that

E(u) = AHS1 (γ) − AH(x).

In particular, Floer chimneys decrease action values. For each a ∈ R, we have
filtered closed-open maps

COa : SHa
k(W ) → HWa

k−n(L).

The filtered closed-open maps are compatible with the tautological exact
sequences (3.3) and (3.7) in the following sense. This is also observed in [7,
Section 5.2.1] and essentially follows from [5, Theorem 1.5].

Theorem 3.9. The closed-open map

COa : SHa
k(W ) → HWa

k−n(L)
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for a > 0 fits into the following commutative diagram:

Hk+n(W,∂W ) SHa
k(W )

Hk(L, ∂L) HWa
k−n(L)

ja

i! COa

ja

(3.11)

where the left vertical i! : Hk+n(W,∂W ) → Hk(L, ∂L) is the natural map
induced by the inclusion i : L → W .

Proof. Let ε > 0 be a sufficiently small number such that (3.4) and (3.8)
hold. The commutative diagram (on the right) in [5, Theorem 1.5] together
with the compatibility of closed-open maps with the action filtrations yields
the following commutative diagram.

Hk+n(W,∂W ) SHε
k(W ) SHa

k(W )

Hk(L, ∂L) HWε
k−n(L) HWa

k−n(L)

ψ

i!

ιa

COε COa

ψ ιa

(3.12)

Here, the maps ψ, constructed in [28, Section 15], are the analogues of the
(relative) Piunikhin–Salamon–Schwarz isomorphism [26], and the maps ιa are
the natural inclusions from the respective tautological exact sequences (3.3)
and (3.7). Indeed, the exactness of L replaces the monotonicity assumption in
[5, Theorem 1.5] from which we obtain the commutativity of the left square
in (3.12) modulo conventional differences between Floer homology and co-
homology. The commutativity of the right square in (3.12) is an immediate
consequence of the fact that the closed-open map CO respects the action
filtration on SH∗(W ) and HW∗(L). As in [28, Lemma 15.1], we know that
ja = ιa ◦ ψ, and the commutative diagram (3.11) in the assertion therefore
follows from (3.12). �

3.3.4. Without absolute grading. Even though we have worked with the ab-
solute Z-grading on SH∗(W ) and HW∗(L) for the sake of completeness, the
Floer homologies and the filtered closed-open maps with Theorem 3.9 readily
work regardless of the grading. The discussions in Sect. 4 do not require the
Floer homologies and the closed-open maps to be graded, and the topological
assumptions c1(TW ) = 0 and π1(L) = 0 are therefore not necessary for our
applications; see Example 3.5.

In this case, as a fairly standard way in Floer theory, we take the zero-
dimensional component of the moduli spaces (3.1), (3.5), (3.9) of Floer solu-
tions instead of fixing the difference of the absolute gradings of asymptotes;
the Fredholm index of underlying Fredholm problems determines the local
dimension of the corresponding moduli spaces. Then we define the differen-
tials (3.2), (3.6) and the chain map (3.10) on ungraded Floer chain groups
by counting elements of the zero-dimensional component of the respective
moduli spaces. The analysis on Floer solutions and the action filtrations on
Floer chain complexes are independent of the absolute grading. We therefore
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obtain the ungraded filtered closed-open map COa : SHa
∗(W ) → HWa

∗(L)
with the commutative diagram:

H∗(W,∂W ) SHa
∗(W )

H∗(L, ∂L) HWa
∗(L)

ja

i! COa

ja

4. Floer homology capacities

4.1. SH capacity

Let (W,λ) be a Liouville domain as in Sect. 3.1. We define the symplectic
homology capacity or shortly the SH capacity cSH(W,λ) of the domain (W,λ)
by

cSH(W ) = cSH(W,λ) = inf{a > 0 | ja[W,∂W ] = 0} ∈ [0,∞]

where the map ja : H∗(W,∂W ) → SHa
∗(W ) is constructed in Sect. 3.1.5. If

ja[W,∂W ] 	= 0 for all a > 0, then we conventionally put cSH(W ) = ∞.

Proposition 4.1. The SH capacity satisfies the following properties.
(1) (Conformality) For a positive real number r, we have

cSH(W, rλ) = rcSH(W,λ).

(2) (Monotonicity) For a generalized Liouville embedding (W1, λ1) ↪→
(W2, λ2), we have

cSH(W1, λ1) ≤ cSH(W2, λ2).

(3) (Spectrality) If cSH(W ) < ∞, there exists a periodic Reeb orbit γ on the
contact boundary (Σ, α) such that

cSH(W ) = �(γ)

where �(γ) denotes the period of γ.

Remark 4.2. A symplectic embedding ϕ : (W1, λ1) ↪→ (W2, λ2) is called a
generalized Liouville embedding if (ϕ∗λ2 − λ1)|∂W1 = 0 in H1(∂W1). In par-
ticular, if W1 and W2 are both starshaped domains in R

2n, every symplectic
embedding is a generalized Liouville embedding since H1(S2n−1) = 0 for
n ≥ 2.

Remark 4.3. The SH capacity cSH(W ) is finite if and only if SH∗(W ) = 0.

Proof of Proposition 4.1. For smooth convex domains in R
2n, the above prop-

erties are presented e.g. in [19, Section 2.4]. For general Liouville domains, the
monotonicity comes from the existence of a natural homomorphism SHa

∗(W2)
→ SHa

∗(W1), called a transfer map, in symplectic homology for generalized
Liouville embeddings as in [17, Theorem 1.24]. The spectrality follows from
essentially the same argument as in [17, Lemma 4.2], using the relationship
between action values of Hamiltonian 1-orbits of admissible Hamiltonians
and Reeb orbits on the contact boundary; see [17, Remark 5.6].
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4.2. HW capacity

We can define an open string analogue of the SH capacity using wrapped
Floer homology. Let L be an admissible Lagrangian in a Liouville domain
(W,λ). Recall that L is assumed to be connected; Sect. 3.2.1. The wrapped
Floer homology capacity or shortly HW capacity is defined as

cHW(W ) = cHW(W,λ,L) = inf{a > 0 | ja[L, ∂L] = 0} ∈ [0,∞]

where the map ja : H∗(L, ∂L) → HWa
∗(L) is defined in Sect. 3.2.2. We set

cHW(W ) = ∞ if ja[L, ∂L] 	= 0 for all a > 0. The following is completely
analogous to that for the SH capacity in Proposition 4.1; we omit its proof.

Proposition 4.4. The HW capacity satisfies the following properties.

(1) (Conformality) For a positive real number r, we have

cHW(W, rλ, L) = rcHW(W,λ,L).

(2) (Monotonicity) For a generalized Liouville embedding ϕ : (W1, λ1) →
(W2, λ2) with ϕ(L1) ⊂ L2, we have

cHW(W1) ≤ cHW(W2).

(3) (Spectrality) If cHW(W ) < ∞, there exists a Reeb chord x on the contact
boundary (Σ, α,L) such that

cHW(W ) = �(x)

where �(x) denotes the length of x.

Remark 4.5. The SH capacity is also known as the Floer–Hofer–Wysocki ca-
pacity defined in [14], and the HW capacity is referred to as Lagrangian
Floer–Hofer–Wysocki capacity in [7].

Remark 4.6. The HW capacity cHW(W,λ,L) is finite if and only if HW∗(L) =
0, which is in particular the case when SH∗(W ) = 0, see [28, Theorem 10.6].

4.3. Proof of Theorem 1.3

In this section, we give a proof of the estimate (1.3).
Let K be a smooth compact convex domain in R

2n which is invariant
under an anti-symplectic involution ρ of (R2n,dλ0), and the real Lagrangian
Fix(ρ) intersects the boundary ∂K. To apply our Floer setup, we choose a
Liouville form λ on K with dλ = dλ0 such that ρ is an exact anti-symplectic
involution with respect to λ and the associated Liouville vector field is pos-
itively transverse along the boundary. For example one takes the average
λ:= 1

2 (λ0 − ρ∗λ0):

Lemma 4.7. Let (W,λ0) be a Liouville domain with an anti-symplectic invo-
lution ρ : W → W . Then λ:=1

2 (λ0−ρ∗λ0) satisfies that dλ = dλ0, ρ∗λ = −λ,
and the corresponding Liouville vector field Xλ of λ is positively transverse
along the boundary ∂W .
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Proof. It is immediate to see that dλ = dλ0 and ρ∗λ = −λ. We claim that
the Liouville vector field Xλ of λ, defined by dλ0(Xλ, ·) = λ, is positively
transverse along the boundary ∂W . Observe that Xρ∗λ0 = −ρ∗Xλ0 . Indeed,
for any vector Y ∈ TW ,

dλ0(ρ∗Xλ0 , Y ) = ρ∗dλ0(Xλ0 ◦ ρ, ρ∗(Y ◦ ρ))

= −dλ0(Xλ0 ◦ ρ, ρ∗(Y ◦ ρ))

= −λ0(ρ∗(Y ◦ ρ))

= −ρ∗λ0(Y ).

Since the diffeomorphism ρ : W → W preserves the boundary ∂W and the
interior of W , respectively, the push-forward of any outward normal vector
along the boundary under ρ is again an outward normal vector. From this
fact, we deduce that the pull-back ρ∗Xλ0 is positively transverse along the
boundary. Therefore the convex sum

Xλ =
1
2
(Xλ0 − Xρ∗λ0) =

1
2
(Xλ0 + ρ∗Xλ0)

is positively transverse along ∂W as well. �

Note that the systoles �min(∂K) and �sym
min (∂K, ρ) defined in (1.2) do not

depend on the choice of the Liouville form λ as explained in Remark 1.2, and
we can work with λ instead of λ0. The triple (K,λ, ρ) now fits our Floer setup
as in Example 3.5. Note that we do not assume π1(L) = 0; see Sect. 3.3.4.

Abbreviate α = λ|∂K and denote the restriction of ρ to ∂K again by
the same letter. First we relate the above Floer homology capacities with
(symmetric) systoles. The following is a non-trivial fact relating the systole
�min(∂K) with the SH capacity, which is recently proved in [1] and [19].

Theorem 4.8. (Abbondandolo–Kang, Irie) Let K be a smooth convex body in
R

2n. Then the SH capacity of K coincides with the systole of the contact
boundary (∂K,α)

cSH(K) = �min(∂K).

Remark 4.9. The inequality cSH(K) ≥ �min(∂K) is obvious from the spec-
trality of cSH(K) in Proposition 4.1. There is a starshaped and non-convex
K for which the strict inequality cSH(K) > �min(∂K) holds. See for example
[18, Section 3.5].

Since SH∗(K) = 0, it follows from Remark 4.6 that HW∗(L) = 0 as
well. By the spectrality of cHW in Proposition 4.4, there exists a symmetric
periodic orbit on (∂K, ρ). In view of the one-to-one correspondence between
symmetric periodic orbits and pairs of Reeb chords on the symmetric convex
hypersurface ∂K, the spectrality of cHW yields the following comparison.

Proposition 4.10. The HW capacity of (K, ρ) and the symmetric systole of
(∂K, ρ) satisfy

�sym
min (∂K, ρ) ≤ 2cHW(K, ρ).
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Remark 4.11. It should be possible to establish a real analogue of Theo-
rem 4.8 for symmetric convex hypersurfaces, asserting that 2cHW(K, ρ) =
�sym
min (∂K, ρ).

Closed-open maps give the following relationship between the SH ca-
pacity and the HW capacity, which was also observed in [7, (i) in Theorem
1.5]. We state it for general Liouville domains:

Proposition 4.12. For an admissible Lagrangian L in a Liouville domain
(W,λ),

cHW(W ) ≤ cSH(W ).

Proof. This is a direct consequence of Theorem 3.9. If ja[W,∂W ] = 0 in
SHa

∗(W ), it follows from the commutative diagram (3.11) that

0 = (COa ◦ ja)[W,∂W ] = (ja ◦ i!)[W,∂W ] = ja[L, ∂L]

where the last equality holds because the natural map i! : H∗(W,∂W ) →
H∗(L, ∂L) sends the fundamental class [W,∂W ] to the fundamental class
[L, ∂L]. Therefore we have a ≥ cHW(W ), and consequently we conclude
cHW(W ) ≤ cSH(W ). �

We now obtain the desired estimate.

Proof of Theorem 1.3. Theorem 4.8 and Proposition 4.10 tell us that

1 ≤ R(∂K, ρ) =
�sym
min (∂K, ρ)
�min(∂K)

≤ 2cHW(K, ρ)
cSH(K)

.

An application of Proposition 4.12 to (K,α, ρ) provides
2cHW(K, ρ)

cSH(K)
≤ 2,

finishing the proof. �

5. Real symplectic capacities

Let (M,ω, ρ) be a real symplectic manifold, meaning that a symplectic man-
ifold (M,ω) is equipped with an anti-symplectic involution ρ, i.e. ρ∗ω = −ω.
We always assume that Fix(ρ) 	= ∅ so that it is a Lagrangian submanifold
of M . A real symplectic embedding Ψ: (M1, ω1, ρ1) → (M2, ω2, ρ2) between
two real symplectic manifolds is an embedding of M1 into M2 such that
Ψ∗ω2 = ω1 and Ψ∗ρ2 = ρ1.

Definition 5.1. A real symplectic capacity is a function c which assigns to a
real symplectic manifold (M,ω, ρ) a number c(M,ω, ρ) ∈ [0,+∞] having the
following properties:

• (Monotonicity) If real symplectic manifolds (M1, ω1, ρ1) and (M2, ω2, ρ2)
have the same dimension, and if there exists a real symplectic em-
bedding Ψ: (M1, ω1, ρ1) → (M2, ω2, ρ2), then we have c(M1, ω1, ρ1) ≤
c(M2, ω2, ρ2);

• (Conformality) c(M, rω, ρ) = rc(M,ω, ρ) for all r > 0;
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• (Nontriviality) 0 < c(B2n(1), ω0, ρ0) and c(Z2n(1), ω0, ρ0) < ∞, where
B2n(1) = {z ∈ C

n | ||z||2 < 1} and Z2n(1) = {z ∈ C
n | |z1|2 < 1}. Here

ω0 = dλ0 denotes the standard symplectic form on R
2n, and ρ0 denotes

complex conjugation.

A real symplectic capacity c is said to be normalized if

c(B2n(1), ω0, ρ0) = c(Z2n(1), ω0, ρ0) = 1.

Remark 5.2. The notion of real symplectic capacities was first introduced
by Liu and Wang [23], where the authors referred to it as “symmetrical”
symplectic capacities.

Example 5.3. We provide several examples of real symplectic capacities.
(i) The real Gromov width creal

B (M,ω, ρ) is defined as the supremum over
all r > 0 such that (B2n(r), ω0, ρ0) real symplectically embeds into
(M,ω, ρ). It is normalized and the smallest in the sense that if c is
a real symplectic capacity, then creal

B (M,ω, ρ) ≤ c(M,ω, ρ) for all real
symplectic manifolds (M,ω, ρ).

(ii) In [23], Liu and Wang constructed the real Hofer–Zehnder capacity creal
HZ ,

which is normalized, by imitating the construction of Hofer–Zehnder ca-
pacity [18]. Let K ⊂ R

2n be a compact convex domain invariant under
a linear anti-symplectic involution ρ. It was shown in [20, Theorem 1.3]
that the real Hofer–Zehnder capacity of (K, ρ) agrees with the symmet-
ric systole, i.e. creal

HZ (K, ρ) = �sym
min (∂K, ρ).

(iii) Following the construction of the (first) Ekeland–Hofer capacity [13],
Jin and Lu defined the real Ekeland–Hofer capacity creal

EH (·, ρ) for com-
pact domains K ⊂ R

2n invariant under a fixed linear anti-symplectic
involution ρ, see [20]. It is normalized. Strictly speaking, it is not a real
symplectic capacity as it is defined only for domain in R

2n and satis-
fies only restricted monotonicity: if K1 ⊂ K2 are compact domains in
R

2n that are invariant under a fixed linear anti-symplectic involution ρ,
then we have creal

EH (K1, ρ) ≤ creal
EH (K2, ρ). Nonetheless, we call it a real

symplectic capacity. For a compact convex domain K ⊂ R
2n invariant

under a linear anti-symplectic involution ρ, it agrees with the symmet-
ric systole of (∂K, ρ). Consequently, for every symmetric convex domain
(K, ρ) with ρ being linear, the real Hofer–Zehnder capacity and the real
Ekeland–Hofer capacity agree, see [20, Theorem 1.10].

(iv) Let (W,λ, ρ) be a real Liouville domain, i.e. (W,λ) is a Liouville domain
equipped with an exact anti-symplectic involution ρ. The wrapped Floer
homology capacity cHW(W,λ, ρ), constructed using wrapped Floer ho-
mology, satisfies restricted monotonicity, meaning that if there exists a
generalized real Liouville embedding from (W1, λ1, ρ1) into (W2, λ2, ρ2),
then cHW(W1, λ1, ρ1) ≤ cHW(W2, λ2, ρ2). See Sect. 4.2 for the construc-
tion. Recall that a generalized real symplectic embedding is a real sym-
plectic embedding ϕ : (W1, λ1, ρ1) → (W2, λ2, ρ2) such that (ϕ∗λ2 −
λ1)|∂W1 = 0 in H1(∂W1). In particular, if W1 and W2 are both star-
shaped domains in R

2n, every real symplectic embedding is a gener-
alized real Liouville embedding since H1(S2n−1) = 0 for n ≥ 2. We
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expect that the argument of [19] applies to all compact convex domains
K ⊂ R

2n invariant under a linear anti-symplectic involution ρ, implying
that cHW(K, ρ) = �sym

min (∂K, ρ).
(v) Analogously to Gutt–Hutchings [17], we can construct, using positive

equivariant wrapped Floer homology defined in [21], a sequence of real
symplectic capacities c1 ≤ c2 ≤ · · · ≤ ∞ for real Liouville domains.
They satisfy all the conditions for real symplectic capacities, but the
monotonicity. Instead, they satisfy the restricted monotonicity as the
wrapped Floer homology capacity. Using a Gysin-type exact sequence
in wrapped Floer theory (see [21, Proposition 3.27] and [10, Proposition
2.9]), it is not hard to see that c1(W,λ, ρ) ≤ cHW(W,λ, ρ) for every real
Liouville domain (W,λ, ρ).

There is an old question about symplectic capacities asking if all nor-
malized symplectic capacities agree on compact convex domains in R

2n, see
[24, Section 14.9, Problem 53] and [25, Section 5]. We finish this article with
the following related conjecture.

Conjecture 5.4. For convex domains in R
2n invariant under a fixed linear

anti-symplectic involution, all normalized symplectic capacities and normal-
ized real symplectic capacities are the same.
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ern Birkhäuser Classics. Birkhäuser, Basel (2011). Reprint of the 1994 edition

[19] Irie, K.: Symplectic homology of fiberwise convex sets and homology of loop
spaces. to appear in J. Symplectic Geom

[20] Jin, R., Lu, G.: Representation formula for symmetrical symplectic capacity
and applications. Discrete Contin. Dyn. Syst. 40(8), 4705–4765 (2020)

[21] Kim, J., Kim, S., Kwon, M.: Equivariant wrapped Floer homology and sym-
metric periodic Reeb orbits. online ready in Ergodic Theory Dynam. Systems
(2021)

[22] Kim, J., Kwon, M., Lee, J.: Volume growth in the component of fibered twists.
Commun. Contemp. Math. 20(8), 1850014, 43 (2018)

[23] Liu, C., Wang, Q.: Symmetrical symplectic capacity with applications. Discrete
Contin. Dyn. Syst. 32(6), 2253–2270 (2012)

[24] McDuff, D., Salamon, D.: Introduction to Symplectic Topology, 3rd edn. Ox-
ford Graduate Texts in Mathematics, Oxford (2017)



28 Page 26 of 26 J. Kim et al. JFPTA

[25] Ostrover, Y.: When symplectic topology meets Banach space geometry. In Pro-
ceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II.
pages 959–981. Kyung Moon Sa, Seoul (2014)

[26] Piunikhin, S., Salamon, D., Schwarz, M.: Symplectic Floer-Donaldson theory
and quantum cohomology. In Contact and symplectic geometry (Cambridge,
1994). volume 8 of Publ. Newton Inst. pages 171–200. Cambridge Univ. Press,
Cambridge (1996)

[27] Rabinowitz, P.H.: On the existence of periodic solutions for a class of symmetric
Hamiltonian systems. Nonlinear Anal. 11(5), 599–611 (1987)

[28] Ritter, A.F.: Topological quantum field theory structure on symplectic coho-
mology. J. Topol. 6(2), 391–489 (2013)

[29] Ritter, A.F., Smith, I.: The monotone wrapped Fukaya category and the open-
closed string map. Select. Math. (N.S.) 23(1), 533–642 (2017)

Joontae Kim
Department of Mathematics
Sogang University
35 Baekbeom-ro, Mapo-gu
Seoul 04107
Republic of Korea
e-mail: joontae@sogang.ac.kr

Seongchan Kim
Department of Mathematics Education
Kongju National University
Kongju 32588
Republic of Korea
e-mail: seongchankim@kongju.ac.kr

Myeonggi Kwon
Department of Mathematics Education
Sunchon National University
Suncheon 57922
Republic of Korea
e-mail: mkwon@scnu.ac.kr

Accepted: April 20, 2021.


	Remarks on the systoles of symmetric  convex hypersurfaces and symplectic  capacities
	Abstract
	1. Introduction
	2. Examples
	2.1. In dimension two
	2.2. Ellipsoids
	2.3. Smooth starshaped toric domains
	2.4. Starshaped domains with the symmetric ratio slightly bigger than one
	2.5. Bordeaux-bottle-shaped hypersurfaces of arbitrarily large symmetric ratio
	2.6. Hypersurfaces of arbitrarily large symmetric ratio in Hamiltonian systems

	3. Closed-open maps
	3.1. Symplectic homology
	3.1.1. Admissible Hamiltonians
	3.1.2. Chain complex
	3.1.3. Symplectic homology
	3.1.4. Action filtration
	3.1.5. Tautological exact sequences

	3.2. Wrapped Floer homology
	3.2.1. Chain complex
	3.2.2. Filtered wrapped Floer homology

	3.3. Closed-open maps
	3.3.1. Floer data
	3.3.2. Floer chimneys
	3.3.3. Filtered closed-open maps
	3.3.4. Without absolute grading


	4. Floer homology capacities
	4.1. SH capacity
	4.2. HW capacity
	4.3. Proof of Theorem 1.3

	5. Real symplectic capacities
	Acknowledgements
	References




