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Abstract. In this paper, we consider the following Kirchhoff equation
with Choquard nonlinearity:

−
(

a + b

∫
R3

|∇u|2dx

)
Δu + V (x)u =

(∫
R3

|u(y)|p
|x − y|3−α

dy

)
|u|p−2u (0.1)

+|u|q−2u, in R
3,

where V (x) is a smooth function, a and b are positive constants, α ∈
(1, 3), q ∈ (4, 6). By employing the results from the matrix theory, gluing
approach and Brouwer degree theory, we prove that for any integer k,
the above equation with p ∈ (4, 3+α) has a sign changing radial solution,
which changes sign k times.
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1. Introduction and statement of main result

Consider the Kirchhoff type equation

−
(

a + b

∫
R3

|∇u|2dx

)
Δu + V (x)u = f(x, u), u ∈ H1(R3), (1.1)

where a, b > 0, V (x) is a smooth function. This problem is related to the
stationary analogue of the equation

∂2u

∂t2
−
(

a + b

∫ L

0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
= 0,

which was proposed by Kirchhoff [12] as an extension of the classical
D’Alembert’s wave equations for free vibration of elastic string. After Lions
[15] introduced an abstract function analysis framework to the problem, many
researchers have paid attention to it, see [1,4] and the references therein.
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There are many interesting results on the existence and multiplicity
of solutions for problem (1.1), such as [6,8–10,13,19,21,23] and references
therein. In particular, He and Zou [10] studied the existence of positive so-
lutions for (1.1) by the variational method, and obtained the multiplicity by
means of Category theory. Moreover, they also studied the concentrated be-
havior of positive solutions. When f(x, u) = |u|p−1u, Li and Ye [13] proved
(1.1) has a positive ground state solution by using a monotonicity trick and
global compactness lemma. This result can be seen as a partial extension of
the results of He and Zou in [10]. Wu [19] considered the existence of non-
trivial solutions and infinitely many high energy solutions for (1.1) using a
symmetric Mountain Pass Theorem. Guo [6] considered the positive ground
state solution of (1.1) without classical Ambrosetti–Rabinowitz condition by
using variational methods. The existence of sign-changing solution of (1.1)
has also been studied in [16,22].

Moreover, there are many results about the existence of nodal solutions
for elliptic problems. Bartsch and Willem [2], Cao and Zhu [3] proved that
for any positive integer k, there exists a pair of solutions uk

± having exact k
nodes for the following equation:

−Δu + V (|x|)u = f(|x|, u), u ∈ H1(R3).

By gluing method, Deng, Peng and Shuai [5] considered the existence and
asymptotic behavior of nodal solutions for the following Kirchhoff equation:

−
(

a + b

∫
R3

|∇u|2dx

)
Δu + V (|x|)u = f(|x|, u), x ∈ R

3. (1.2)

Due to the existence of nonlocal items, gluing method cannot be used to solve
this problem directly. To solve this difficulty, they regard this problem as a
system of k+1 equations with k+1 unknown functions ui, each ui is supported
on only one annulus and vanishing on the complement. Huang, Yang and Yu
[11] showed the existence of nodal solutions of Choquard equation by the same
method as in [5]. Wang and Guo [20] proved the existence and nonexistence of
nodal solutions for Choquard type equations with perturbation by employing
the variational method, gluing approach and the Brouwer degree. Recently,
Guo and Wu [7] showed the existence of nodal solutions for the Schrödinger–
Poisson equations with convolution terms.

Motivated by the above results, we intend to establish infinitely many
nodal solutions to the following equation:

−
(

a + b

∫
R3

|∇u|2dx

)
Δu + V (x)u

=
(∫

R3

|u(y)|p
|x − y|3−α

dy

)
|u|p−2u + |u|q−2u, u ∈ H1(R3), (1.3)

where V (x) is a smooth function, a, b are positive constants, α ∈ (1, 3) and
q ∈ (4, 6).

Our main result can be stated as follows.

Theorem 1.1. Suppose that V(x) satisfies
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(V) V (x) = V (|x|) ∈ C([0,∞),R) is bounded from below by a positive
constant V0.

Moreover, if α ∈ (1, 3), p ∈ (4, 3 + α) and q ∈ (4, 6). Then for any
positive integer k, Eq. (1.3) has a radial solution uk changing sign exactly k
times.

The paper is organized as follows. In Sect. 2, we give some notations and
preliminary results. In Sect. 3, we are devoted to the proof of our main result
which mainly show the construction of least energy nodal solutions changing
sign exactly k times.

2. Variational framework and some results in the matrix
theory

In this section, we give some notations and preliminary results. First, we
present the variational framework. The space HV (R3) is defined by

HV (R3) :=
{

u ∈ H1
r (R3) :

∫
R3

(
a|∇u|2 + V (|x|)u2

)
dx < ∞

}
,

with the norm

‖u‖V =
(∫

R3

(
a|∇u|2 + V (|x|)u2

)
dx

)1/2

.

The energy functional associated with problem (1.3) is given by

Ib(u) =
1
2
‖u‖2

V +
b

4

(∫
R3

|∇u|2dx
)2

− 1
2p

∫
R3

∫
R3

|u(x)|p|u(y)|p
|x − y|3−α

dxdy

−1
q

∫
R3

|u|qdx.

By Hardy–Littlewood–Sobolev inequality ([14, Theorem 4.3]), Ib is well de-
fined on H1(R3) when p ∈ (4, 3 + α).

For any integer k, we define

Γk =
{
ρk = (ρ1, . . . , ρk) ∈ R

k| 0 := ρ0 < ρ1 < · · · < ρk+1 := ∞}
,

and for each ρk ∈ Γk, set

B
ρk
1 =

{
x ∈ R

3 : 0 ≤ |x| < ρ1

}
,

B
ρk
i =

{
x ∈ R

3 : ρi−1 < |x| < ρi

}
, for i = 1, 2, . . . , k;

B
ρk

k+1 =
{
x ∈ R

3 : |x| ≥ ρk

}
.

Fix ρk=(ρ1, . . . , ρk) ∈ Γk and thereby a family of
{
B

ρk
i

}k+1

i=1
, we denote

H
ρk
i =

{
u ∈ H1

0 (Bρk
i )| u(x) = u(|x|), u(x) = 0 if x �∈ B

ρk
i

}
,

for i = 1, . . . , k + 1. Therefore, H
ρk
i is a Hilbert space with the norm

‖u‖i =

(∫
B

ρ k
i

(a|∇u|2 + V (|x|)u2)dx

)1/2

.
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Let us set

(ui, uj)∗ =
∫

B
ρ k
i

|∇ui|2dx

∫
B

ρ k
j

|∇uj |2dx, (2.1)

and

(ui, uj)α =
∫

B
ρ k
i

∫
B

ρ k
j

|ui(x)|p|uj(y)|p
|x − y|3−α

dxdy. (2.2)

We now define the function Jb: Hρk

k → R by

Jb(u1, . . . , uk+1) := Ib

(
k+1∑
i=1

ui

)

=
k+1∑
i=1

⎛
⎝1

2
‖ui‖2

i +
b

4

(∫
B

ρ k
i

|∇ui|2dx

)2

− 1
2p

∫
B

ρ k
i

∫
B

ρ k
i

|ui(x)|p|ui(y)|p
|x − y|3−α

dxdy − 1
q

∫
B

ρ k
i

|ui|qdx

)

+
k+1∑
i,j=1
j �=i

(
b

4

∫
B

ρ k
i

|∇ui|2dx

∫
B

ρ k
j

|∇uj |2dx−

1
2p

∫
B

ρ k
i

∫
B

ρ k
j

|ui(x)|p|uj(y)|p
|x − y|3−α

dxdy

)

=
k+1∑
i=1

(
1
2
‖ui‖2

i +
b

4
(ui, ui)∗ − 1

2p
(ui, ui)α − 1

q

∫
B

ρ k
i

|ui|qdx

)

+
k+1∑
i,j=1
j �=i

(
b

4
(ui, uj)∗ − 1

2p
(ui, uj)α

)
,

where Hρk

k = H
ρk
1 × · · ·×H

ρk

k+1 and ui ∈ H
ρk
i for i = 1, . . . , k +1. Obviously,

for each i = 1, . . . , k + 1

∂ui
Jb(u1, . . . , uk+1)ui = ‖ui‖2

i + b(ui, ui)∗ − (ui, ui)α

−
∫

B
ρ k
i

|ui|qdx +
k+1∑
j=1
j �=i

(b(ui, uj)∗ − (ui, uj)α) .

If (u1, . . . , uk+1) ∈ Hρk

k is a critical point of Jb, then every component ui

satisfies⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
(

a + b
k+1∑
j=1

∫
B

ρ k
j

|∇uj |2dx

)
Δui + V (|x|)ui =

( ∫
R3

|
k+1∑
j=1

uj(y)|p

|x−y|3−α dy
)
|ui|p−2ui + |ui|q−2ui x ∈ B

ρk
i ,

ui = 0 x �∈ B
ρk
i .

(2.3)
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We regard ui ∈ H
ρk
i as an element in H1(R3) by setting u ≡ 0 in R

3 \ B
ρk
i .

To find least energy radial solution which changes signs exactly k times of
(1.3), let Nehari manifold

Nk =
{
u ∈ HV : there exists ρk such that (−1)i+1ui > 0 in B

ρk
i ,

ui = 0 on ∂B
ρk
i , and I ′

b(u)ui = 0, ∀ 1 ≤ i ≤ k + 1
}

,

and ck = inf
Nk

Jb. Obviously, u =
∑k+1

i=1 ui and Nk consists of nodal functions

with precisely k nodes.
Least energy radial solution of (1.3) which changes signs exactly k times

will constructed by gluing the solutions of the system (2.3). To this end, we
look for critical points of Jb with nonzero component by considering the
following Nehari type set

Mρk

k =
{
(u1, . . . , uk+1) ∈ Hρk

k : ui �= 0, 〈∂ui
Jb(u1, u2, . . . , uk+1), ui〉

= 0, i = 1, . . . , k + 1} .

Next, we will present some results of the matrix theory in order to prove
that Mρk

k is nonempty.

Lemma 2.1. [11] For any (u1, . . . , uk+1) ∈ Hρk

k with ui �= 0,i = 1, . . . , k + 1,
define the matrix A := (aij)(k+1)×(k+1) by aij = (ui, uj)α. Then the matrix
A is positive definite.

Lemma 2.2. (Gersgorin Disc Theorem [18, Theorem 1.1]) For any matrix
B = (bij) ∈ C

n×n and any eigenvalue λ ∈ σ(B) :={μ ∈ C : det(μE − B) = 0},
there is a positive integer m ∈ {1, . . . , n} such that

|λ − bm,m| ≤
k+1∑
j=1
j �=m

|bm,j |.

By this lemma, we have the following result.

Lemma 2.3. [7] For any bij=bji > 0 with i �= j ∈ {1, . . . , n} and si > 0 with
i = 1, . . . , n, define the matrix C := (cij)n×n by

cij =

⎧⎪⎨
⎪⎩

−
k+1∑
m=1
m �=i

smbim/si for i = j,

bij > 0 for i �= j.

Then the real symmetric matrix (cij)n×n is non-positive definite.

3. The proof of Theorem 1.1

In this section, we are devoted to the proof of Theorem 1.1. First, we give
the following lemma.

Lemma 3.1. Assume that ρk ∈ Γk is fixed. Then for each (v1, . . . , vk+1) ∈
Hρk

k with vi �= 0 for i = 1, . . . , k + 1, there exists a unique (k + 1) tuple
(t1, . . . , tk+1) ∈ (R > 0)k+1 such that (t1v1, . . . , tk+1vk+1) ∈ Mρk

k .
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Proof. When q ≥ p, for each (v1, . . . , vk+1) ∈ Hρk

k with vi �= 0 for i =
1, . . . , k + 1, we define G : (R ≥ 0)k+1 → R by

G(c1, . . . , ck+1) = Jb(c
1
p

1 v1, . . . , c
1
p

k+1vk+1).

Then

G(c1, . . . , ck+1) =

k+1∑
i=1

[
1

2
c

2
p

i ‖vi‖2
i +

b

4
c

4
p

i (vi, vi)∗ − 1

2p
c2i (vi, vi)α − 1

q
c

q
p

i

∫
B

ρ k
i

|vi|qdx

]

+

k+1∑
i,j=1
j �=i

(
b

4
c

2
p

i c
2
p

j (vi, vj)∗ − 1

2p
cicj(vi, vj)α

)
.

It is clearly that G is continuous and G(c1, . . . , ck+1) → 0 as |(c1, . . . , ck+1)| →
0 and G(c1, . . . , ck+1) → −∞ as |(c1, . . . , ck+1)| → ∞, due to p ∈ (4, α + 3)
and q ∈ (4, 6). Thus, G possesses a global maximum point (c̄1, . . . , c̄k+1) ∈
(R ≥ 0)k+1.

We claim that c̄i > 0 for all i = 1, . . . , k + 1. Otherwise, there exists
i0 ∈ {1, . . . , k + 1} such that c̄i = 0. Without loss of generality, we assume
c̄1 = 0. Then since

G(τ, c̄2, . . . , c̄k+1)

=
τ

2
p

2
‖v1‖2

1 +
b

4
τ

4
p (v1, v1)∗ − τ2

2p
(v1, v1)α − τ

q
p

q

∫
B

ρ k
1

|v1|qdx

+
k+1∑
j=2

[
b

2
τ

2
p c̄

2
p

j (v1, vj)∗ − 1
p
τ c̄j(v1, vj)α

]

+
k+1∑
i=2

[
1
2
c̄

2
p

i ‖vi‖2
i +

b

4
c̄

4
p

i (vi, vi)∗ − c̄2
i

2p
(vi, vi)α − c̄

q
p

i

q

∫
B

ρ k
i

|vi|qdx

]

+
k+1∑
i,j=2
j �=i

[
b

4
c̄

2
p

i c̄
2
p

j (vi, vj)∗ − 1
2p

c̄ic̄j(vi, vj)α

]

is increasing with respect to τ > 0 when τ is small enough. Thus, (0, c̄2, . . . ,
c̄k+1) is not a maximum point of G. This contradicts the assumption above.
Therefore, the claim follows.

Next, we prove that this global maximum point is unique in (R > 0)k+1.
In fact, by direct computation, we have

∂G

∂ci
=

1
p
c

2
p −1

i ‖vi‖2
i +

b

p
c

4
p −1

i (vi, vi)∗ − 1
p
ci(vi, vi)α − 1

p
c

q
p −1

i

∫
B

ρ k
i

|vi|qdx

+
b

p

k+1∑
j=1
j �=i

c
2
p −1

i c
2
p

j (vi, vj)∗ − 1
p

k+1∑
j=1
j �=i

cj(vi, vj)α,

∂2G

∂c2
i

=
2 − p

p2
c

2
p −2

i ‖vi‖2
i +

b(4 − p)
p2

c
4
p −2

i (vi, vi)∗ − 1
p
(vi, vi)α
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− q − p

p2
c

q
p −2

i

∫
B

ρ k
i

|vi|qdx +
k+1∑
j=1
j �=i

b(2 − p)
p2

c
2
p −2

i c
2
p

j (vi, vj)∗,

∂2G

∂ci∂cj
=

2b

p2
c

2
p −1

i c
2
p −1

j (vi, vj)∗ − 1
p
(vi, vj)α for i �= j.

Let the matrix(
∂2G

∂ci∂cj

)
(k+1)×(k+1)

=
1
p2

(aij)(k+1)×(k+1) +
2b

p2
(bij)(k+1)×(k+1)

+
1
p
(cij)(k+1)×(k+1),

where

aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(2 − p)c
2
p −2

i ‖vi‖2
i + (4 − p)bc

4
p −2

i (vi, vi)∗

+(4 − p)
k+1∑
m=1
m �=i

bc
2
p −2

i c
2
p
m(vi, vm)∗−

(q − p)c
2
p −2

i

∫
B

ρ k
i

|vi|qdx, i = j,

0 i �= j

bij =

⎧⎪⎪⎨
⎪⎪⎩

−
k+1∑
m=1
m �=i

c
2
p −2

i c
2
p
m(vi, vm)∗ i = j,

c
2
p −1

i c
2
p −1

j (vi, vj)∗ i �= j,

cij =
{−(vi, vi)α i = j,

−(vi, vj)α i �= j.

Note the fact that p > 4 and q ≥ p, thus (aij) is negative definite. By
Lemma 2.3, (bij) is non-positive definite. By Lemma 2.1, (cij) is negative

definite. Thus,
(

∂2G
∂ci

∂cj

)
is negative definite and G is strictly concave in (R >

0)k+1. Therefore, G has a unique maximum point in (R > 0)k+1.
When q < p, for each (v1, . . . , vk+1) ∈ Hρk

k with vi �= 0 for i = 1, . . . , k+
1, we define G : (R ≥ 0)k+1 → R by

G(c1, . . . , ck+1) = Jb(c
1
q

1 v1, . . . , c
1
q

k+1vk+1).

Then

G(c1, . . . , ck+1)

=
k+1∑
i=1

[
1
2
c

2
q

i ‖vi‖2
i +

b

4
c

4
q

i (vi, vi)∗ − 1
2p

c
2p
q

i (vi, vi)α − 1
q
ci

∫
B

ρ k
i

|vi|qdx

]

+
k+1∑
i,j=1
j �=i

(
b

4
c

2
q

i c
2
q

j (vi, vj)∗ − 1
2p

c
p
q

i c
p
q

j (vi, vj)α

)
.

By the same arguments as above, the conclusion follows. �

We define ψb : (R > 0)k+1 → R by

ψb(t1, . . . , tk+1) = Jb(t1v1, . . . , tk+1vk+1),
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where (v1, . . . , vk+1) ∈ Hρk

k . Then we have the following corollary.

Corollary 3.2. Let ρk ∈ Γk. Then for any (v1, . . . , vk+1) ∈ Hρk

k with vi �= 0
for i = 1, . . . , k+1, there exists a unique global maximal point (t̄1, . . . , t̄k+1) ∈
R

k+1
+ of ψb such that

ψb(t̄1, . . . , t̄k+1) = sup
R

k+1
+

ψb(t1, . . . , tk+1),

and (t̄1v1, . . . , t̄k+1vk+1) ∈ MρK

k .

Lemma 3.3. For p ∈ (4, 3+α), q ∈ (4, 6), Mρk

k is a differentiable manifold in
Hρk

k . Moreover, all critical points of Jb|Mρ k
k

are critical points of Jb in Hρk

k

with no zero component.

Proof. Note that

Mρk

k =
{
(u1, . . . , uk+1) ∈ Hρk

k : ui �= 0, F (u1, . . . , uk+1) = 0, i = 1, . . . , k + 1
}

,

where F = (F1, . . . , Fk+1) : Hρk

k → R is given by

Fi = ∂ui
Jb(u1, . . . , uk+1)ui.

Then

Fi = ‖ui‖2
i + b(ui, ui)∗ − (ui, ui)α −

∫
B

ρ k
i

|ui|qdx

+
k+1∑
j=1
j �=i

b(ui, uj)∗ −
k+1∑
j=1
j �=i

(ui, uj)α.

When q ≥ p, by direct computation, we have that at each point (u1, . . . , uk+1)
∈ Mρk

k , there holds that

Mii := 〈∂ui
Fi(u1, . . . , uk+1), ui〉

= 2‖ui‖2
i + 4b(ui, ui)∗ − 2p(ui, ui)α − q

∫
B

ρ k
i

|ui|qdx

+ 2b
k+1∑
j=1
j �=i

(ui, uj)∗ − p
k+1∑
j=1
j �=i

(ui, uj)α

= (2 − p)‖ui‖2
i + (4b − bp)(ui, ui)∗ − p(ui, ui)α

− (q − p)
∫

B
ρ k
i

|ui|qdx + (2b − bp)
k+1∑
j=1
j �=i

(ui, uj)∗

for i = 1, . . . , k + 1, and

Mij := 〈∂ui
Fj(u1, . . . , uk+1), ui〉

= 2b(ui, uj)∗ − p(ui, uj)α, for i �= j and i, j = 1, . . . , k + 1.

By the same arguments as Lemma 3.1, when q ≥ p, the matrix

(Mij)(k+1)×(k+1) = (aij)(k+1)×(k+1) + (bij)(k+1)×(k+1) + 2b(cij)(k+1)×(k+1)
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is negative definite and, therefore, det(Mij) �= 0, where

aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2 − p)‖ui‖2 + (4 − p)b(ui, ui)∗ − (q − p)
∫

B
ρ k
i

|ui|qdx

+(4 − p)b
k+1∑
m=1
m �=i

(ui, um)∗, if i = j,

0, if i �= j,

bij =
{−p(ui, ui)α, if i = j,

−p(ui, uj)α, if i �= j,
cij =

⎧⎪⎨
⎪⎩

−
k+1∑
m=1
m �=i

(ui, um)∗, if i = j,

(ui, uj)∗, if i �= j.

When q < p, by direct computation, we have that at each point (u1, . . . , uk+1)
∈ Mρk

k , there holds that

Mii := 〈∂ui
Fi(u1, . . . , uk+1), ui〉

=2‖ui‖2
i + 4b(ui, ui)∗ − 2p(ui, ui)α − q

∫
B

ρ k
i

|ui|qdx

+ 2b

k+1∑
j=1
j �=i

(ui, uj)∗ − p

k+1∑
j=1
j �=i

(ui, uj)α

=(2 − q)‖ui‖2
i + b(4 − q)(ui, ui)∗ − (2p − q)(ui, ui)α

+ b(2 − q)
k+1∑
j=1
j �=i

(ui, uj)∗ − (p − q)
k+1∑
j=1
j �=i

(ui, uj)α,

for i = 1, . . . , k + 1, and

Mij = 2b(ui, uj)∗ − p(ui, uj)α, for i �= j and i, j = 1, . . . , k + 1.

By the same arguments as above, when q < p, the matrix

(Mij)(k+1)×(k+1) = (aij)(k+1)×(k+1) + (bij)(k+1)×(k+1) + 2b(cij)(k+1)×(k+1),

is also negative definite and, therefore, det(Mij) �= 0, where

aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(2 − q)‖ui‖2 + (4 − q)b(ui, ui)∗ − (p − q)(ui, ui)α

+b(4 − q)
k+1∑
j=1
m �=i

(ui, um)∗, if i = j,

0, if i �= j,

bij =
{−p(ui, ui)α, if i = j,

−p(ui, uj)α, if i �= j,
cij =

⎧⎪⎨
⎪⎩

−
k+1∑
m=1
m �=i

(ui, um)∗, if i = j,

(ui, uj)∗, if i �= j.

Thus, (Mij) is nonsingular at each point (u1, . . . , uk+1) ∈ Mρk

k . So Mρk

k is
differentiable in Hρk

k .
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If (u1, . . . , uk+1) is a critical point of Jb|Mρ k
k

, by the Lagrange multiplier
principle, there exist η1, . . . , ηk+1 such that

J ′
b(u1, . . . , uk+1) = η1F

′
1(u1, . . . , uk+1) + · · · + ηk+1F

′
k+1(u1, . . . , uk+1).

Applying (u1, 0, . . . , 0),(0, u2, . . . , 0),(0, . . . , 0, uk+1) into the identity above,
we get

(Mij)

⎡
⎢⎣

η1

...
ηk+1

⎤
⎥⎦ =

⎡
⎢⎣

0
...
0

⎤
⎥⎦ .

Since det (Mij) �= 0, we see that ηi = 0 for all i = 1, . . . , k + 1. Thus
(u1, . . . , uk+1) is a critical point of Jb. �

Consider the infimum level

d(ρk) := inf
(u1,...,uk+1)∈Mρ k

k

Jb(u1, . . . , uk+1).

Then we have the following result.

Lemma 3.4. For any p ∈ (4, 3 + α), q ∈ (4, 6) and ρk ∈ Γk, there is a
minimizer (ξρk

1 , . . . , ξ
ρk

k+1) ∈ Mρk

k of Jb|Mρ k
k

with (−1)i+1ξ
ρk
i > 0 in B

ρk
i , for

i = 1, . . . , k + 1 such that

Jb(ξ
ρk
1 , . . . , ξ

ρk

k+1) = d(ρk). (3.1)

Moreover, (ξρk
1 , . . . , ξ

ρk

k+1) satisfies (2.3).

Proof. For (u1, . . . , uk+1) ∈ Mρk

k , denote by u =
k+1∑
i=1

ui, then

0 =
k+1∑
i=1

∂ui
Jb(u1, . . . , uk+1)ui = I ′

b

(
k+1∑
i=1

ui

)(
k+1∑
i=1

ui

)

=‖u‖2
V + b

(∫
R3

|∇u|2dx

)2

−
∫
R3

∫
R3

|u(x)|p|u(y)|p
|x − y|3−α

dydx −
∫
R3

|u|qdx.

By Hardy–Littlewood–Sobolev inequality and Sobolev embedding theorem,
we can see

‖u‖2
V ≤

∫
R3

∫
R3

|u(x)|p|u(y)|p
|x − y|3−α

dydx +
∫
R3

|u|qdx ≤ c‖u‖2p
V + c‖u‖q

V .

Since p ∈ (4, 3 + α), q ∈ (4, 6), we have ‖u‖V ≥ c1 > 0 for some c1 > 0.
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When q ≥ 2p, we have

Jb(u1, . . . , uk+1) = Ib

(
k+1∑
i=1

ui

)
= Ib(u) − 1

2p
I ′
b(u)u

=
(

1
2

− 1
2p

)
‖u‖2

V + b

(
1
4

− 1
2p

)(∫
R3

|∇u|2dx

)2

+
(

1
2p

− 1
q

)∫
R3

|u|qdx

≥
(

1
2

− 1
2p

)
‖u‖2

V ≥ c2 > 0. (3.2)

When q < 2p, we have

Jb(u1, . . . , uk+1) = Ib

(
k+1∑
i=1

ui

)
= Ib(u) − 1

q
I ′
b(u)u

=
(

1
2

− 1
q

)
‖u‖2

V + b

(
1
4

− 1
q

)(∫
R3

|∇u|2dx

)2

+
(

1
q

− 1
2p

)∫
R3

∫
R3

|u(x)|p|u(y)|p
|x − y|3−α

dydx

≥
(

1
2

− 1
q

)
‖u‖2

V ≥ c2 > 0. (3.3)

Thus, d(ρk) ≥ c2 > 0. We can choose a minimizing sequence
{(un

1 , . . . , un
k+1)}∞

n=1 ⊂ Mρk

k of Jb|Mρ k
k

. From (3.2), (3.3), we know that
{un

i }∞
n=1 is bounded in Hρk

k . Up to a subsequence, (un
1 , . . . , un

k+1) converges
to an element (u0

1, . . . , u
0
k+1) weakly in Hρk

k .
We claim that for all i = 1, . . . , k + 1, u0

i �= 0. If un
i → u0

i strongly in
H

ρk
i , for any i = 1, . . . , k + 1,

‖un
i ‖2

i ≤
∫
R3

∫
B

ρ k
i

∣∣∣∣∣
k+1∑
j=1

un
j (y)

∣∣∣∣∣
p

|un
i (x)|p

|x − y|3−α
dxdy +

∫
B

ρ k
i

|un
i |qdx

≤ c

(∥∥∥∥∥
k+1∑
i=1

un
i

∥∥∥∥∥
p

‖un
i ‖p

i + ‖un
i ‖q

i

)
≤ c (‖un

i ‖p
i + ‖un

i ‖q
i ) .

Hence,

lim inf
n→∞ ‖un

i ‖i > 0. (3.4)

This implies that u0
i �= 0 for all i = 1, . . . , k + 1. Thus, the claim follows.
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If un
i ⇀ u0

i weakly but not strongly in H
ρk
i , then there exists i ∈

{1, . . . , k + 1} such that ‖u0
i ‖i < lim inf

n→∞ ‖un
i ‖i, we have

‖u0
i ‖2

i + b

∫
R3

∣∣∣∣∣∇
(

k+1∑
i=1

u0
i (x)

)∣∣∣∣∣
2

dx

∫
B

ρ k
i

|∇u0
i |2dx

<

∫
R3

∫
B

ρ k
i

∣∣∣∣∣
k+1∑
j=1

u0
j (y)

∣∣∣∣∣
p

|u0
i (x)|p

|x − y|3−α
dxdy +

∫
B

ρ k
i

|u0
i (x)|qdx.

By Hardy–Littlewood–Sobolev inequality and Sobolev embedding theorem,
the claim also follows.

We further claim that (un
1 , . . . , un

k+1) → (u0
1, . . . , u

0
k+1) in Hρk

k . Suppose
by contradiction that the claim does not hold. There exists i ∈ {1, . . . , k + 1}
such that ‖u0

i ‖i < lim inf
n→∞ ‖un

i ‖i. By Lemma 3.1, there is (t01, . . . , t
0
k+1) �=

(1, . . . , 1) satisfying (t01u
0
1, . . . , t

0
k+1u

0
k+1) ∈ Mρk

k , then

d(ρk) ≤ Jb(t01u
0
1, . . . , t

0
k+1u

0
k+1)

< lim inf
n→∞

⎧⎨
⎩

1
2

k+1∑
i=1

(t0i )
2‖un

i ‖2
i +

b

4

(
k+1∑
i=1

(t0i )
2

∫
R3

|∇un
i (x)|2dx

)2

− 1
2p

k+1∑
i,j=1

(t0i )
p(t0j )

p

∫
B

ρ k
i

∫
B

ρ k
j

(|un
i (y)|p)(|un

j (x)|p)
|x − y|3−α

dxdy

−
k+1∑
i=1

(t0i )
q

∫
B

ρ k
i

|un
i (x)|qdx

}

≤ lim inf
n→∞ Jb(un

1 , . . . , un
k+1) = d(ρk),

which is a contradiction. Thus, the claim follows and (u0
1, . . . , u

0
k+1) ∈ Mρk

k

is a minimizer of Jb|Mρ k
k

.
It is easy to check that

(ξρk
1 , . . . , ξ

ρk

k+1) := (|u0
1|,−|u0

2|, . . . , (−1)k|u0
k+1|)

belongs to Mρk

k and is a minimizer of Jb|Mρ k
k

satisfying (3.1). From Lemma 3.3,
it is a critical point of Jb in Hρk

k and satisfying (2.3). Using the strong maxi-
mum principle, each component (−1)i+1ξ

ρk
i > 0 in B

ρk
i , for i = 1, . . . , k + 1.

The proof is complete. �

Lemma 3.5. For any p ∈ (4, 3 + α), q ∈ (4, 6) and ρk = (ρ1, . . . , ρk) ∈ Γk

(i) For uniformly bounded ρk, if ρi − ρi−1 → 0 for some i ∈ {1, . . . , k},
then d(ρk) → +∞.

(ii) If ρk → ∞, then d(ρk) → +∞.
(iii) d is continuous in Γk. Therefore, there exists a ρ̄k ∈ Γk such that

d(ρ̄k) = inf
ρk∈Γk

d(ρk).



Vol. 24 (2022) Nodal solutions for Kirchhoff equations Page 13 of 19 17

Proof. (i) By lemma 3.4, it is easy to see that for each ρk ∈ Γk, there exists
a solution ξρk = (ξρk

1 , . . . , ξρk

k+1) ∈ Mρk

k such that d(ρk) = Jb(ξ
ρk
1 , . . . , ξ

ρk

k+1).
By Hardy–Littlewood–Sobolev inequality, Hölder inequality and embedding
inequality, we have

‖ξ
ρk
i ‖2

i =
∫
R3

∫
B

ρ k
i

|
k+1∑
j=1

ξ
ρk
j (y)|p|ξρk

i (x)|p

|x − y|3−α
dxdy +

∫
B

ρ k
i

|ξρk
i |qdx

−
∫
R3

k+1∑
j=1

|∇ξ
ρk
j (x)|2dx

∫
B

ρ k
i

|∇ξ
ρk
i |2dx

≤ c

⎛
⎝|

k+1∑
j=1

ξ
ρk
j |p

L
6p

3+α

|ξρk
i |p

L
6p

3+α

+ |ξρk
i |qLq

⎞
⎠

≤ c

⎛
⎝|

k+1∑
j=1

ξ
ρk
j |p

L
6p

3+α

|ξρk
i |pL6 |Bρk

i | 3+α−p
6 + |ξρk

i |qL6 |Bρk
i | 6−q

6

⎞
⎠

≤ c

⎡
⎣
⎛
⎝k+1∑

j=1

‖ξ
ρk
j ‖p

j

⎞
⎠ ‖ξ

ρk
i ‖p

i |Bρk
i | 3+α−p

6 + ‖ξ
ρk
i ‖q

i |Bρk
i | 6−q

6

⎤
⎦ .

Since ρk is uniformly bounded, then if ρi − ρi−1 → 0 for some i ∈ {1, . . . , k},

we have |Bρk
i | → 0. From p ∈ (4, 3 + α), q ∈ (4, 6), we have

k+1∑
j=1

‖ξ
ρk
j ‖p

j → ∞.

By the same arguments as in (3.2) or (3.3), we have

d(ρk) ≥
(

1
2

− 1
2p

) k+1∑
j=1

‖ξ
ρk
j ‖2

j → ∞,

or

d(ρk) ≥
(

1
2

− 1
q

) k+1∑
j=1

‖ξ
ρk
j ‖2

j → ∞.

Then, (i) holds.
(ii) By the Strauss inequality [2], for every radial function u ∈ HV , we

can find a0 > 0 such that u(x) ≤ a0‖u‖V

|x| for a.e. |x| > 1.This combined with
Hardy–Littlewood–Sobolev inequality and embedding theorem, yields

‖ξ
ρ k

k+1‖2
k+1 =

∫
R3

∫
B

ρ k
k+1

|
k+1∑
j=1

ξ
ρ k
j (y)|p|ξρ k

k+1(x)|p

|x − y|3−α
dxdy +

∫
B

ρ k
k+1

|ξρ k

k+1|qdx

−
∫
R3

k+1∑
j=1

|∇ξ
ρ k
j (x)|2dx

∫
B

ρ k
k+1

|∇ξ
ρ k

k+1(x)|2dx

≤
∫
R3

∫
B

ρ k
k+1

|
k+1∑
j=1

ξ
ρ k
j (y)|p|ξρ k

k+1(x)|p

|x − y|3−α
dxdy +

∫
B

ρ k
k+1

|ξρ k

k+1|qdx
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≤ c

⎛
⎝|

k+1∑
j=1

ξ
ρ k
j |p

L
6p

3+α

⎞
⎠
(∫

B
ρ k
k+1

|ξρ k

k+1|
6p

3+α dx

) 3+α
6

+ c

∫
B

ρ k
k+1

|ξρ k

k+1|qdx

≤ c

⎛
⎝|

k+1∑
j=1

ξ
ρ k
j |p

L
6p

3+α

⎞
⎠
(∫

B
ρ k
k+1

|ξρ k

k+1|
6p

3+α
−2|ξρ k

k+1|2dx

) 3+α
6

+ c

∫
B

ρ k
k+1

|ξρ k

k+1|q−2|ξρ k

k+1|2dx

≤ c

⎛
⎝k+1∑

j=1

‖ξ
ρ k
j ‖p

j

⎞
⎠ ‖ξ

ρ k

k+1‖
(

6p
3+α

−2
)

3+α
6

k+1

(∫
B

ρ k
k+1

|x|−
(

6p
3+α

−2
)
|ξρ k

k+1(x)|2dx

) 3+α
6

+ c‖ξ
ρ k

k+1‖q−2
k+1

(∫
B

ρ k
k+1

|x|−(q−2)|ξρ k

k+1(x)|2dx

)

≤ c

⎛
⎝k+1∑

j=1

‖ξ
ρ k
j ‖p

j

⎞
⎠ |ρk|−

(
6p

3+α
−2

)
3+α
6 ‖ξ

ρ k

k+1‖
(

6p
3+α

−2
)

3+α
6

k+1

(∫
B

ρ k
k+1

|ξρ k

k+1(x)|2dx

) 3+α
6

+c|ρk|−(q−2)‖ξ
ρ k

k+1‖q−2
k+1

(∫
B

ρ k
k+1

|ξρ k

k+1(x)|2dx

)

≤ c

⎛
⎝k+1∑

j=1

‖ξ
ρ k
j ‖p

j

⎞
⎠ |ρk|−

(
6p

3+α
−2

)
3+α
6 ‖ξ

ρ k

k+1‖p
k+1 + c|ρk|−(q−2)‖ξ

ρ k

k+1‖q
k+1

= c

⎛
⎝k+1∑

j=1

‖ξ
ρ k
j ‖p

j

⎞
⎠ |ρk|−(p− 3+α

3 )‖ξ
ρ k

k+1‖p
k+1 + c|ρk|−(q−2)‖ξ

ρ k

k+1‖q
k+1,

which yields that
k+1∑
j=1

‖ξ
ρk
j ‖p

j → ∞ as ρk → ∞, due to p ∈ (4, 3 + α), q ∈
(4, 6), α ∈ (1, 3). So d(ρk) → ∞ and (ii) follows.

(iii) Take a sequence {ρn
k}∞

n=1 satisfying ρn
k → ρ̄k ∈ Γk. We will prove

the conclusion by showing d(ρ̄k) ≥ lim supn→∞ d(ρn
k ), d(ρ̄k) ≤ lim infn→∞ d(ρn

k ).
First, we prove that d(ρ̄k) ≥ lim sup

n→∞
d(ρn

k ). In order to emphasize that

v
ρn

k
i is radial in B

ρn
k

i , we will rewrite v
ρn

k
i (|x|)=v

ρn
k

i (ρ). Define v
ρn

k
i :[ρn

i−1, ρ
n
i ]

→ R by

v
ρn

k
i (ρ) =

⎧⎨
⎩

tni ξ
ρ̄k
i

(
ρ̄i−1 + ρ̄i−ρ̄i−1

ρn
i −ρn

i−1
(ρ − ρn

i−1)
)

, i = 1, . . . , k,

tnk+1ξ
ρ̄k

k+1

(
ρ̄k

ρn
k
ρ
)

, i = k + 1,

where (ξρn
k

1 , . . . , ξ
ρn

k

k+1) and (ξρ̄k
1 , . . . , ξ

ρ̄k

k+1) are minimizers of Jb|Mρ n
k

k

and Jb|Mρ̄ k
k

respectively. (tn1 , . . . , tnk+1) is the unique (k+1) tuple of positive numbers such

that (vρn
k

1 , . . . , v
ρn

k

k+1) ∈ Mρn
k

k . By the definition of (ξρn
k

1 , . . . , ξ
ρn

k

k+1), we know
that

Jb(v
ρn

k
1 , . . . , v

ρn
k

k+1) ≥ Jb(ξ
ρn

k
1 , . . . , ξ

ρn
k

k+1) = d(ρn
k ). (3.5)
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Since ρn
k → ρ̄k ∈ Γk, we can easily get the following equations,∫

B
ρ n

k
i

|vρn
k

i |2 = (tni )2
∫

B
ρ̄ k
i

|ξρ̄k
i |2dx + o(1)

‖v
ρn

k
i ‖2

i = (tni )2‖ξ
ρ̄k
i ‖2

i + o(1)∫
B

ρ n
k

i

|vρn
k

i |qdx = (tni )q

∫
B

ρ̄ k
i

|ξρ̄k
i |qdx + o(1)

∫
B

ρ n
k

i

∫
B

ρ n
k

j

|vρn
k

i (x)|p|vρn
k

j (y)|p
|x − y|3−α

dxdy

= (tni )p(tnj )p

∫
B

ρ̄ k
i

∫
B

ρ̄ k
j

|ξρ̄k
i (x)|p|ξρ̄k

j (y)|p
|x − y|3−α

dxdy + o(1),

and ∫
B

ρ n
k

i

|∇v
ρn

k
i (x)|2dx

∫
B

ρ n
k

j

|∇v
ρn

k
j (x)|2dx

= (tni )2(tnj )2
∫

B
ρ̄ k
i

|∇ξ
ρ̄k
i (x)|2dx

∫
B

ρ̄ k
j

|∇ξ
ρ̄k
j (x)|2dx + o(1).

Since (vρn
k

1 , . . . , v
ρn

k

k+1) ∈ Mρn
k

k and (ξρ̄k
1 , . . . , ξ

ρ̄k

k+1) ∈ Mρ̄k

k , there holds that

‖ξ
ρ̄k
i ‖2

i + b

k+1∑
j=1

∫
B

ρ̄ k
i

|∇ξ
ρ̄k
i (x)|2dx

∫
B

ρ̄ k
j

|∇ξ
ρ̄k
j (x)|2dx

−
k+1∑
j=1

∫
B

ρ̄ k
i

∫
B

ρ̄ k
j

|ξρ̄k
i (x)|p|ξρ̄k

j (y)|p
|x − y|3−α

dxdy −
∫

B
ρ̄ k
i

|ξρ̄k
i |qdx = 0,

and

(tni )2‖ξ
ρ̄ k
i ‖2i + b(tni )2(tnj )2

k+1∑
j=1

∫
B

ρ̄ k
i

|∇ξ
ρ̄ k
i (x)|2dx

∫
B

ρ̄ k
j

|∇ξ
ρ̄ k
j (x)|2dx

− (tni )p(tnj )p
k+1∑
j=1

∫
B

ρ̄ k
i

∫
B

ρ̄ k
j

|ξρ̄ k
i (x)|p|ξρ̄ k

j (y)|p
|x − y|3−α

dxdy − (tni )q

∫
B

ρ̄ k
i

|ξρ̄ k
i |qdx = o(1).

This combined with Lemma 3.1, we have lim
n→∞ tni = 1 for all i. Hence, from

(3.5) we can see that

d(ρ̄k) = Jb(ξ
ρ̄k
1 , . . . , ξ

ρ̄k

k+1) = lim sup
n→∞

Jb(v
ρn

k
1 , . . . , v

ρn
k

k+1) ≥ lim sup
n→∞

d(ρn
k ).

(3.6)

Next, we prove that d(ρ̄k) ≤ lim inf
n→∞ d(ρn

k ). By the same argument as former

case, let u
ρn

k
i = [ρ̄i−1, ρ̄i] → R be defined by

u
ρn

k
i (ρ) =

⎧⎨
⎩

sn
i ξ

ρn
k

i

(
ρn

i−1 + ρn
i −ρn

i−1
ρ̄i−ρ̄i−1

(ρ − ρ̄i−1)
)

, if i = 1, . . . , k,

sn
k+1ξ

ρn
k

k+1

(
ρn

k

ρ̄k
ρ
)

, if i = k + 1,
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where (sn
1 , . . . , sn

k+1) ∈ (R+)k+1 such that (uρn
k

1 , . . . , u
ρn

k

k+1) ∈ Mρ̄k

k .
By the same arguments, we can deduce sn

i → 1 as n → ∞ for all
i = 1, . . . , k + 1. Thus

d(ρ̄k) = Jb(ξ
ρ̄k
1 , . . . , ξ

ρ̄k

k+1)

≤ lim inf
n→∞ Jb(u

ρn
k

1 , . . . , u
ρn

k

k+1) = lim inf
n→∞ Jb(ξ

ρn
k

1 , . . . , ξ
ρn

k

k+1) = lim inf
n→∞ d(ρn

k ).

This combined with (3.6) yields that d is continuous in Γk. Furthermore,
this combined with (i), (ii), we know that there is a ρ̄k ∈ Γk such that
d(ρ̄k) = inf

ρk∈Γk

d(ρk). Hence, (iii) holds. �

Proof of Theorem 1.1. By Lemmas 3.4 and 3.5, there exist ρ̄k ∈ Γk and
(ξρ̄k

1 , . . . , ξ
ρ̄k

k+1) ∈ Mρ̄k

k with (−1)i+1ξ
ρk
i > 0 in B

ρk
i such that

Jb(ξ
ρ̄k
1 , . . . , ξ

ρ̄k

k+1) = d(ρ̄k) = inf
ρk∈Γk

d(ρk).

This implies that

ck = d(ρ̄k) = Ib

(
k+1∑
i=1

ξ
ρ̄k
i

)
.

�

We claim that ub
k =

k+1∑
i=1

ξ
ρ̄k
i is a solution of (1.3). Suppose by contradic-

tion that the claim does not hold, that is, ub
k is not a weak solution of (1.3).

Then by the density argument, there is a radial function φ ∈ C
∞
0 (R3) such

that

I ′
b

(
k+1∑
i=1

ξ
ρ̄k
i

)
φ = −2. (3.7)

For s = (s1, . . . , sk+1) and 1 = (1, . . . , 1) ∈ R
k+1, we define function

g := R
k+1 × R → H1(R3) by

g(s, ε) :=
k+1∑
i=1

s
1
p

i ξ
ρ̄k
i + εφ.

Since
k+1∑
i=1

ξ
ρ̄k
i is continuous and has k nodes, we know that there exists a neigh-

borhood Bτ (1) :=
{
s ∈ R

k+1 : |s − 1| < τ
}

such that g(s, τ) also changes
signs exactly k times and

J ′
b(g(s, ε))φ < −1 ∀(s, ε) ∈ Bτ (1) × [0, τ ] (3.8)

for all (s, ε) ∈ Bτ (1) × [0, τ ].
Let η ∈ C

∞(R3), 0 ≤ η ≤ 1 with η(s) = 1 if s ∈ B τ
4
(1, . . . , 1) and η(s) =

0 if s �∈ B τ
2
(1, . . . , 1). We define another continuous function ḡ : Rk+1 → HV



Vol. 24 (2022) Nodal solutions for Kirchhoff equations Page 17 of 19 17

by

ḡ(s) =
k+1∑
i=1

s
1
p

i ξ
ρ̄k
i + τη(s)φ.

Obviously, for any s ∈ Bτ (1), ḡ(s) also changes signs exactly k times and has
k nodes 0 < ρ1(s) < · · · < ρk(s) < ∞. Moreover,

J ′
b(g(s, ε))φ < −1 ∀(s, ε) ∈ Bτ (1) × [0, τ ].

Next, we will prove that there exists s̄ ∈ B τ
2
(1) such that ḡ(s̄) ∈ Nk

changing sign k times. Denote

G(s) = Jb

(
s

1
p

1 ξ
ρ̄k
1 , . . . , s

1
p

k+1ξ
ρ̄k

k+1

)
.

For any s ∈ ∂B τ
2
(1), we have

∇G(s)(1 − s) =∇Jb

(
s

1
p

1 ξ
ρ̄k
1 , . . . , s

1
p

k+1ξ
ρ̄k

k+1

)
(1 − s)

=
k+1∑
i=1

1
p
s

1
p −1

i

〈
∂ui

Jb

(
s

1
p

1 ξ
ρ̄k
1 , . . . , s

1
p

k+1ξ
ρ̄k

k+1

)
, ξ

ρ̄k
i

〉
(1 − si)

=
k+1∑
i=1

1
psi

(1 − si)
〈

∂ui
Jb(s

1
p

1 ξ
ρ̄k
1 , . . . , s

1
p

k+1ξ
ρ̄k

k+1), s
1
p

i ξ
ρ̄k
i

〉
.

By Lemma 3.1 and Corollary 3.2, we obtain G(s) is strictly concave function
in R

k+1
+ and attains its unique global maximum point at 1. By the Taylor

expansion at s �= 1 in [0,∞)k+1, and the strictly concavity, we have

0 < ϕb(1) − ϕb(s) − D2ϕb(s)(1 − s)2 = ∇G(s)(1 − s),

that is

∇G(s)(1 − s) > 0.

Set G̃i(s) = 1
ps−1

i

〈
∂uj

Jb(s
1
p

1 ξ
ρ̄k
1 , . . . , s

1
p

k+1ξ
ρ̄k

k+1), s
1
p

i ξ
ρ̄k
i

〉
and G̃(s) = (G̃1(s),

. . . , G̃k+1(s)). Define a map F (θ, s) : [0, 1] × B̄ τ
2
(1) → R

k+1 by

F (θ, s) = θG̃(s) + (1 − θ)(1 − s).

Obviously, F (0, s) = 1−s, F (1, s) = G̃(s). Thus, 1−s and G̃(s) are homotopy.
Moreover, for any θ ∈ [0, 1] and s ∈ B τ

2
(1), we obtain F (θ, s) · (1 − s) > 0.

Thus, F (θ, s) �= 0. By the Brouwer degree theory, we have

deg(G̃, B τ
2
(1), 0) = deg(1 − id,B τ

2
(1), 0) = (−1)k+1 �= 0.

Therefore, there exists some s̄ ∈ B τ
2
(1) such that ḡ(s̄) ∈ Nk . The claim

follows.
According to the claim, we have

Jb(ḡ(s̄)) ≥ ck. (3.9)
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On the other hand, by the mean value theorem and (3.8), we have

Jb(ḡ(s̄)) = Ib

(
k+1∑
i=1

s̄
1
p

i ξ
ρ̄k
i

)
+
∫ 1

0

〈
I ′
b

(
k+1∑
i=1

s
1
p

i ξ
ρ̄k
i + θτη(s̄)φ

)
, τη(s̄)φ

〉
dθ

≤ Ib

(
k+1∑
i=1

s̄
1
p

i ξ
ρ̄k
i ) − τη(s̄

)
.

If s ∈ B τ
2
(1) for each i, then η(s̄) > 0, by Corollary 3.2

Jb(ḡ(s̄)) < Ib

(
k+1∑
i=1

s̄
1
p

i ξ
ρ̄k
i

)
= Jb(s̄

1
p

1 ξ
ρ̄k
1 , . . . , s̄

1
p

k+1ξ
ρ̄k

k+1)

≤ Jb(ξ
ρ̄k
1 , . . . , ξ

ρ̄k

k+1) = d(ρ̄k) = ck,

and if s �∈ B τ
2
(1), then η(s̄) = 0, by corollary 3.2

Jb(ḡ(s̄)) = Ib

⎛
⎝k+1∑

j=1

s̄
1
p

j ξ
ρ̄k
j

⎞
⎠ = Jb

(
s̄

1
p

1 ξ
ρ̄k
1 , . . . , s̄

1
p

k+1ξ
ρ̄k

k+1

)

< Jb(ξ
ρ̄k
1 , . . . , ξ

ρ̄k

k+1) = d(ρ̄k) = ck,

which also contradicts to (3.9). Therefore, the function ub
k is a solution of

(1.3), such that Jb(ub
k) = ck. The proof of Theorem 1.1 is complete.
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