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Abstract. We consider the nonlinear elliptic equation Δu + V (x)u +
f(x, u(x)) = 0 on D \ {0}, where D is a bounded domain containing
0 in R

n, n ≥ 2, and V and f are Borel measurable functions. Under
general conditions on the functions V and f , we prove the existence of
positive singular solutions globally comparable to the Dirichlet Green’s
function of the Laplacian with pole at the origin. Our result applies to
various types of semilinear equations, in particular to Δu + W (x)up =
0 for all real exponent p which was extensively studied for the range
p > 1. Moreover for this equation with sign-unchanging function W our
condition is the optimal one.
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1. Introduction

There is a vast literature on the topic of isolated singularities for second or-
der nonlinear elliptic equations (see [1–4,6–8,11–13,17–21] and the references
therein). In particular complete classification of singularities of positive solu-
tions has been established for various types of semilinear elliptic equations.
Véron [19] and Brezis and Véron [4] studied the equation with absorption
term Δu = up in Ω \ {0}, where Ω is a bounded domain containing 0 in
R

n, n ≥ 1, in the superlinear case p > 1 which appears in the modeling of
many physical phenomena. They proved that, for p ≥ n/(n − 2), n ≥ 3, any
singularity is removable, i.e. u is a classical solution on the whole domain
Ω; and for 1 < p < n/(n − 2), n ≥ 3, we have a trichotomy of nonnegative
solutions (u is either with removable singularity or u(x) ∼ E(x) near 0, i.e.
u blows up at the origin with the same speed as the fundamental solution
E(x) of −Δ (weak singularity) or u(x) ∼ |x|−2/(p−1) near 0 (strong singu-
larity)). See also Brezis and Oswald [3] for a simpler proof of the result. The
equation with source term −Δu = up in Ω \ {0} which behaves differently
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has been studied by Lions [12], Gidas and Spruck [8] and Aviles [1], and
all possible singularities are described. For the two equations, with source
or absorption term, solutions with weak singularity do not exist in the case
p ≥ n/(n−2), n ≥ 3. Ni [13] also proved that the equation Δu+K(x)up = 0
on Ω \ {0} with K satisfying some integrability condition and p > 1, does
not possess any positive solution with an isolated singularity at the origin.
His result covers the case where C1|x|σ ≤ K(x) ≤ C2|x|σ for some positive
constants C1, C2 and σ ≤ −2. Vazquez and Véron [18] studied the equation
−Δu + g(u) = 0 in Ω \ {0} where g is a nondecreasing real-valued function
and they proved that solutions with weak singularity exist if and only if g
satisfies for some α > 0,

∫ ∞
α

g(t)t−2(n−1)/(n−2)dt < ∞ (see also Véron [20]).
Existence of weak and strong singularities is also proved by Ĉırstea and Du
[6] for the equation Δu = h(u) in Ω \ {0}, where h is a positive locally Lip-
schitz continuous function on [0,∞) which is regularly varying at infinity of
index q ∈ (1, n/(n− 2)). Necessary and sufficient conditions for the existence
of solutions with weak singularity are also proved by Brandolini et al. [2] for
the equation −div(A(|x|)∇u) + up = 0 in B1(0) \ {0} where p > 1. Recall
also that the existence of positive solutions with weak singularity subject to
a Dirichlet boundary condition is investigated in [2,3,7,11,17,21]. In particu-
lar, Zhang and Zhao [21] proved the existence of solutions, which are globally
comparable to the Dirichlet Green’s function of the Laplacian, for the equa-
tion Δu + W (x)up = 0 on D \ {0}, where D is a bounded Lipschitz domain
in R

n, n ≥ 3, p > 1 and W is in the Kato class Kn. Their result was later
extended by the second author in [17] to a more general class of functions W
and a more general non-smooth domain D (NTA-domain) in R

n, n ≥ 2. In
this paper, we aim to prove the existence of solutions with the same type of
singularity for the more general nonlinear problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δu(x) + V (x)u(x) + f(x, u(x)) = 0, x ∈ D \ {0},

u(x) > 0, x ∈ D \ {0},

u(x) ∼ G(x, 0) near x = 0,

u(x) = 0, x ∈ ∂D,

(1.1)

where Δ is the Laplace operator and D is a bounded domain containing the
origin point 0 in R

n, n ≥ 2 which is assumed to be regular for the Dirichlet
problem with Green’s function G. In particular, this covers smooth domains
and a wide range of nonsmooth domains. The functions V and f are Borel
measurable satisfying some general conditions related to a functional class
Kn(D) defined below and which properly contains the Kato class Kn used
in [21]. Solutions of problem (1.1) are understood in the distribution sense.
Under our conditions to be specified later, these solutions are continuous
except at x = 0. Solutions with weak singularity fail to exist in many sit-
uations as it is explained before, for the special equations Δu = ±up with
p ≥ n/(n − 2), n ≥ 3; and for the equation Δu + |x|σup = 0 in B1(0) \ {0}
with either 1 < (n+σ)/(n− 2) < p < (n+2)/(n− 2), n ≥ 3 and −2 < σ < 2
or p > 1 and σ ≤ −2 (see [8] and [13]). See also examples in Sect. 4 where
solutions with strong singularity exist and solutions with weak singularity do
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not exist. Our approach is based on arguments from potential theory and the
Schauder fixed point theorem. Our results apply to various types of nonlin-
ear equations, in particular to Δu + W (x)up = 0 for all exponent p ∈ R (not
restricted to the superlinear case p > 1 as in the above mentioned papers).
Moreover, for this equation with sign-unchanging function W our condition
is the optimal one.

To state our main result, we first define the functional class Kn(D).

Definition 1.1. A function V ∈ L1
loc(D) is said to be in the class Kn(D) if it

satisfies

lim
r→0

sup
x∈D

∫

D∩(|y−x|<r)

G(x, y)G(y, 0)
G(x, 0)

|V (y)|dy = 0, (1.2)

where G(x, y) is the Green’s function of the operator −Δ with the homo-
geneous Dirichlet boundary condition on D (note that for each y ∈ D the
function x → G(x, y)/G(x, 0) = G(y, x)/G(0, x) has a Hölder continuous ex-
tension to D and its value at ξ ∈ ∂D is given by M(y, ξ), where M(., ξ) is
the Martin kernel at ξ).

Clearly, since D is bounded, by a compactness argument if V ∈ Kn(D),
then

‖V ‖ := sup
x∈D

∫

D

G(x, y)G(y, 0)
G(x, 0)

|V (y)|dy < ∞. (1.3)

Throughout this work, the function V belongs to the class Kn(D) and ac-
cording to our purpose the nonlinear term f is assumed to satisfy (H1) and
(H2) or (H1) and (H ′

2) below.
(H1) f : D × (0,∞) → R, (x, t) → f(x, t) is Borel measurable and
continuous with respect to t, and
(H2) there is a Borel measurable function ψ : D × (0,∞) → [0,∞) such
that

• for each x, t → ψ(x, t) is nondecreasing on (0,∞) and lim
t→0+

ψ(x, t) =

0,
• |f(x, t)| ≤ tψ(x, t), for all t ≥ 0, x ∈ D,
•ψ(x,G(x, 0)) ∈ Kn(D).

(H ′
2) there is a Borel measurable function ψ : D × (0,∞) → [0,∞) such

that
• for each x, t → ψ(x, t) is decreasing on (0,∞) and lim

t→∞ ψ(x, t) =
0,
• |f(x, t)| ≤ tψ(x, t), for all t ≥ 0, x ∈ D,
• ψ(x,G(x, 0)) ∈ Kn(D).

Examples. 1. Let W ∈ L1
loc(D) and p ∈ R such that W (x)(G(x, 0))p−1 ∈

Kn(D). Then f(x, t) = W (x)tpg(t), where g is a bounded continuous
function on (0,∞), satisfies (H1) and (H2) when p > 1, and it satisfies
(H1) and (H ′

2) when p < 1. The power nonlinearity f(x, t) = W (x)tp

which extensively studied corresponds to g = 1. Very complicated exam-
ples such as g(t) = cos(h(t)) or g(t) = sin(h(t)) with h any continuous
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function on (0,∞), are also allowed.

2. Let W ∈ L1
loc(D) and p ∈ R such that W (x)(G(x, 0))p+α−1 ∈ Kn(D), α ≥

0. Then f(x, t) = W (x)tp(ln(1 + t))α satisfies (H1) and (H2) when
p + α > 1, and it satisfies (H1) and (H ′

2) when p + α < 1.
Our main result is the following.

Theorem 1.1. Assume that V ∈ Kn(D) with ‖V ‖ < 1/3 and f satisfies (H1)
and (H2) (resp. (H1) and (H ′

2)). Then there exists a number λ0 ∈ (0, 1) (resp.
λ0 > 1) such that for 0 < λ < λ0 (resp. λ > λ0), problem (1.1) has a positive
solution u satisfying

u

G(., 0)
∈ C(D), λ/2 ≤ u

G(., 0)
≤ 3λ/2 and lim

x→0

u(x)
G(x, 0)

= λ.(1.4)

Remark 1. By Theorem 1.1, problem (1.1) with the power nonlinearity f(x, u) =
W (x)up with W ∈ L1

loc(D) and p ∈ R, has a positive solution u satisfying
(1.4) if WGp−1(., 0) is in the class Kn(D). The following theorem shows that
this condition is the optimal one for the existence of such solutions, whenever
W is sign-unchanging.

Theorem 1.2. Let W ∈ L1
loc(D) which it does not change sign. Assume that

problem (1.1) with V = 0 and f(x, u) = W (x)up has a positive solution u
satisfying (1.4). Then the function WGp−1(., 0) is in the class Kn(D).

Theorems 1.1 and 1.2 together with Lemma 2.3 below yield the following
result on smooth domains.

Corollary 1.3. Consider the problem:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δu(x) + V (x)u ± up = 0, x ∈ D \ {0},

u(x) > 0, x ∈ D \ {0},

u(x) ∼ G(x, 0) near x = 0,

u(x) = 0, x ∈ ∂D,

(1.5)

where D is a bounded C1,γ-domain with γ ∈]0, 1] in R
n, n ≥ 2, p ∈ R, and

V ∈ Kn(D) with ‖V ‖ < 1/3. We have the following.
(1) Assume n ≥ 3. Then for 1 < p < n/(n − 2) (resp. −1 < p < 1) there

exists a number λ0 ∈ (0, 1) (resp. λ0 > 1) such that for any 0 < λ < λ0

(resp. λ > λ0), problem (1.5) has a positive solution u satisfying (1.4).
For either p ≤ −1 or n/(n − 2) ≤ p, problem (1.5) has no positive
solution satisfying (1.4).

(2) Assume n = 2. Then for 1 < p (resp. −1 < p < 1) there exists a number
λ0 ∈ (0, 1) (resp. λ0 > 1) such that for any 0 < λ < λ0 (resp. λ > λ0),
problem (1.5) has a positive solution u satisfying (1.4). For p ≤ −1,
problem (1.5) has no positive solution satisfying (1.4).

In Sect. 2, we give some preliminary results that will be needed to prove
our results. In Sect. 3, we prove Theorems 1.1 and 1.2. In Sect. 4, we give
some interesting examples of problems having singular solutions with different
behaviors near the singularity.
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2. Preliminary results

Throughout this work D is a bounded domain in R
n, n ≥ 2, containing the

origin point 0 which is regular for the Dirichlet problem. Let G(x, y) be the
Green’s function of the operator −Δ with the Dirichlet boundary condition
on D.

Lemma 2.1. Let V ∈ Kn(D). Then
∫

D

G(y, 0)|V (y)|dy ≤ ‖V ‖, (2.1)

and the family of functions
{

G(x,y)G(y,0)
G(x,0) |V (y)|

}

x∈D
is uniformly integrable

over D.

Proof. By [14, Theorem 2.1 in chapter 6] for any nonnegative superharmonic
function s on D, there is an increasing sequence (μn)n of measures on D such
that

s(y) = sup
n

∫

D

G(x, y)μn(dx) for all y ∈ D.

Moreover, by (1.3), for all x ∈ D,
∫

D

G(x, y)G(y, 0)V (y)dy ≤ ‖V ‖G(x, 0).

So multiplying by μn(dx) this inequality and integrating with respect to x,
we get

∫

D

s(y)G(y, 0)V (y)dy ≤ ‖V ‖s(0).

Take s = 1 we get (2.1). By (1.2) for a given ε > 0, there is a number r > 0
such that

sup
x∈D

∫

D∩(|x−y|<r)

G(x, y)G(y, 0)
G(x, 0)

|V (y)|dy < ε.

For a Borel set A ⊂ D we then have
∫

A

G(x, y)G(y, 0)
G(x, 0)

|V (y)|dy =
∫

A∩(|x−y|<r)

...dy +
∫

A∩(|x−y|≥r)

...dy

≤ ε +
C

rn

∫

A

G(y, 0)|V (y)|dy.

The last inequality holds using the estimate G(x, y)/G(x, 0) ≤ C/|x−y|n for
all x, y ∈ D for some constant C = C(D,n) > 0. By (2.1), it follows that

lim
m(A)→0

sup
x∈D

∫

A

G(x, y)G(y, 0)
G(x, 0)

|V (y)|dy = 0,

where m(A) denotes the Lebesgue measure of A.
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Proposition 2.2. Let V ∈ Kn(D), V ≥ 0. Let F be the collection of all Borel
measurable functions Φ : D → R, |Φ| ≤ V . For Φ ∈ F , let

HΦ(x) =
∫

D

G(x, y)G(y, 0)
G(x, 0)

Φ(y)dy.

Then the family {HΦ, Φ ∈ F} is uniformly bounded, equicontinuous on D
and HΦ(0) = 0.

Proof. We have

|HΦ(x)| ≤
∫

D

G(x, y)G(y, 0)
G(x, 0)

V (y)dy ≤ ‖V ‖

and so {HΦ, Φ ∈ F} is uniformly bounded. By Lemma 2.1, the family of
functions

{
G(x,y)G(y,0)

G(x,0) |V (y)|
}

x∈D
is uniformly integrable over D. Moreover,

for each y ∈ D \ {0}, the function x → G(x,y)G(y,0)
G(x,0) is continuous on D. So by

the Vitali convergence theorem we have, for all x0 ∈ D,

lim
x→x0

∫

D

∣
∣
∣
G(x, y)
G(x, 0)

− G(x0, y)
G(x0, 0)

∣
∣
∣G(y, 0)V (y)dy = 0,

and so the family {HΦ, Φ ∈ F} is equicontinuous on D. We prove that
HΦ(0) = 0. By (1.2), for each ε > 0 there is a number r > 0 such that

sup
x∈D

∫

D∩(|y−x|<r)

G(x, y)G(y, 0)
G(x, 0)

V (y)dy < ε.

Using the estimate G(x, y) ≤ C/|x − y|n for all x, y ∈ D for some constant
C = C(D,n) > 0 and (2.1), it follows that

|HΦ(x)| ≤
∫

D

G(x, y)G(y, 0)
G(x, 0)

V (y)dy

=
∫

D∩(|y−x|<r)

G(x, y)G(y, 0)
G(x, 0)

V (y)dy

+
∫

D∩(|y−x|≥r)

G(x, y)G(y, 0)
G(x, 0)

V (y)dy

≤ ε +
C

rnG(x, 0)

∫

D

G(y, 0)V (y)dy

≤ ε +
C‖V ‖

rnG(x, 0)
.

Since G(x, 0) → ∞ as x → 0, we obtain HΦ(0) = 0. �

The following lemma together with Theorems 1.1 and 1.2 yield Corol-
lary 1.3.

Lemma 2.3. Assume that D is a bounded C1,γ-domain with γ ∈]0, 1] in R
n, n ≥

2 and p ∈ R. Then we have the following.
(1) For n ≥ 3, Gp−1(y, 0) ∈ Kn(D) if and only if −1 < p < n/(n − 2).
(2) For n = 2, Gp−1(y, 0) ∈ Kn(D) if and only if −1 < p.
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Proof. In what follows for two functions f and g we use the notation f ≈ g
to mean that there is a constant C > 1 such that C−1g ≤ f ≤ Cg.
(1) Assume that n ≥ 3. By [16, Corollary 4.5] the Green’s function G on

the bounded C1,γ-domain D in R
n, n ≥ 3, satisfies the following global

estimates:

G(x, y) ≈ min
{

1,
δ(x)δ(y)
|x − y|2

} 1
|x − y|n−2

, x, y ∈ D, (2.2)

with a constant of comparison C = C(D,n) > 0, where δ(x) = d(x, ∂D)
is the Euclidean distance from x to the boundary ∂D of D. Assume that
Gp−1(y, 0) ∈ Kn(D). Then

lim
r→0

sup
x∈D

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy = 0. (2.3)

Since by (2.2)

sup
2r<|x|<3r

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy ≈ rn−(n−2)p, (2.4)

(2.3) yields p < n/(n− 2). Moreover, take ξ ∈ ∂D, let x → ξ in (2.3) and use
(2.2), we get by Fatou’s lemma,

∫

D∩(|y−ξ|<r)

δp+1(y)
|ξ − y|n dy < ∞.

Since D is a Lipschitz domain, there is a cone Vξ(θ) with vertex ξ and aperture
θ ∈ (0, π/2) congruent to V0(θ) = {y : yn > |y| cos θ} such that Vξ(θ) ∩
B(ξ, r) ⊂ D for r small. We have |ξ − y| sin(θ/2) ≤ δ(y) ≤ |ξ − y| for all
y ∈ Vξ(θ/2) ∩ B(ξ, r). It follows that

∫

Vξ(θ/2)∩(|y−ξ|<r)

dy

|ξ − y|n−p−1
< ∞,

and so −1 < p. Conversely, assume that −1 < p < n/(n − 2). To prove
Gp−1(x, 0) ∈ Kn(D) we treat two cases.
Case 1: 1 ≤ p < n/(n − 2).
Put ρ = δ(0) > 0 and let 0 < r < ρ/8. Using the global bounds (2.2) we
obtain, for some positive constant C = C(D,n, p),

sup
x∈D

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

≤ sup
|x|≤ρ/2

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

+ sup
|x|>ρ/2

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy
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≤ C sup
|x|≤ρ/2

∫

|y−x|<r

dy

|y − x|(n−2)p
+ C sup

|x|>ρ/2

∫

|y−x|<r

dy

|y − x|n−1

≤ C(rn−(n−2)p + r),

and so (1.2) is satisfied.
Case 2: −1 < p < 1.
Put ρ = δ(0) > 0 and let 0 < r < ρ/8. Using the global bounds (2.2) we
obtain, for some positive constant C = C(D,n, p),

sup
x∈D

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

≤ sup
|x|≤ρ/2

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

+ sup
|x|>ρ/2

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

≤ C sup
|x|≤ρ/2

∫

|y−x|<r

dy

|y − x|(n−2)p
+ C sup

|x|>ρ/2

∫

|y−x|<r

dy

|y − x|(n−2)p+2

≤ C(rn−(n−2)p + r(n−2)(1−p)),

and so (1.2) is satisfied.
(2) Assume that n = 2. The C1,γ-domain D is a Dini-smooth domain in R

2

and so by [15] its Green’s function G satisfies the following global estimates:

G(x, y) ≈ ln
(
1 +

δ(x)δ(y)
|x − y|2

)
, x, y ∈ D, (2.5)

with a constant of comparison C = C(D) > 0, where δ(x) = d(x, ∂D)
is the Euclidean distance from x to the boundary ∂D of D. Assume that
Gp−1(y, 0) ∈ K2(D). Then

lim
r→0

sup
x∈D

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy = 0. (2.6)

Moreover, take ξ ∈ ∂D, let x → ξ in (2.6) and use (2.5) we get by Fatou’s
lemma,

∫

D∩(|y−ξ|<r)

δp+1(y)
|ξ − y|2 dy < ∞,

which yields −1 < p as in (1). Conversely, assume that −1 < p. To prove
Gp−1(x, 0) ∈ K2(D) we treat two cases.
Case 1: 1 ≤ p.
Put ρ = δ(0) > 0 and let 0 < r < ρ/8. Using the global bounds (2.5) we
obtain, for some positive constant C = C(D, p),

sup
x∈D

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

≤ sup
|x|≤ρ/2

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy
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+ sup
|x|>ρ/2

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

≤ C sup
|x|≤ρ/2

∫

|y−x|<r

(ln(
1

|x − y| ))
p+2dy + C sup

|x|>ρ/2

∫

|y−x|<r

dy

|y − x|
≤ C(r2(ln r)p+3 + r),

and so (1.2) is satisfied.
Case 2: −1 < p < 1.
Put ρ = δ(0) > 0 and let 0 < r < ρ/8. Using the global bounds (2.5) we
obtain, for some positive constant C = C(D, p),

sup
x∈D

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

≤ sup
|x|≤ρ/2

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

+ sup
|x|>ρ/2

∫

D∩(|y−x|<r)

G(x, y)Gp(y, 0)
G(x, 0)

dy

≤ C sup
|x|≤ρ/2

∫

|y−x|<r

dy

|y − x| + C sup
|x|>ρ/2

∫

|y−x|<r

dy

|y − x|(3−p)/2

≤ C(r + r(1+p)/2),

and so (1.2) is satisfied. �
In what follows we prove that our class Kn(D) is more general than the

class K(D) considered in [16] and [17] in some special domains. First recall
that in smooth domains and a wide range of nonsmooth domains the Green’s
function G satisfies the following 3G-inequality (this includes bounded Lips-
chitz domains (see [16]) or more generally non-tangentially accessible (NTA
for short) domains in the sense of [10] in R

n, n ≥ 3 (see [9]), and bounded
Jordan domains in the plane R

2 as defined in [5], i.e. domains with boundary
∂D consisting of finitely many disjoint closed Jordan curves (see [15])).

The 3G-inequality: There exists a constant C0 = C0(n,D) > 0 such
that for all x, y, z ∈ D,

G(x, y)G(y, z)
G(x, z)

≤ C0

[ϕ(y)
ϕ(x)

G(x, y) +
ϕ(y)
ϕ(z)

G(y, z)
]
, (2.7)

where ϕ(x) = min{1, G(x, 0)}, x ∈ D.

The class K(D) is defined as the set of all functions V ∈ L1
loc(D) satisfying:

lim
r→0

sup
x∈D

∫

D∩(|y−x|<r)

ϕ(y)
ϕ(x)

G(x, y)|V (y)|dy = 0. (2.8)

Clearly by the compactness of D, if V ∈ K(D), then

‖V ‖ϕ := sup
x∈D

∫

D

ϕ(y)
ϕ(x)

G(x, y)|V (y)|dy < ∞. (2.9)

We have the following.
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Proposition 2.4. Assume that the 3G-inequality (2.7) is satisfied on the do-
main D. Then V ∈ K(D) if and only if for any positive Δ-superharmonic
function s on D, we have

lim
r→0

sup
x∈D

∫

D∩(|y−x|<r)

s(y)
s(x)

G(x, y)|V (y)|dy = 0. (2.10)

Proof. The condition is sufficient since ϕ is a positive Δ-superharmonic func-
tion on D. Assume that V ∈ K(D). Let s be a positive Δ-superharmonic
function. By [14, Theorem 2.1 in chapter 6], there is an increasing sequence
(μn)n of measures on D such that s(x) = supn

∫
D

G(x, z)μn(dz) for all x ∈ D.
Multiplying the 3G-inequality by |V (y)|μn(dz) and integrating with respect
to y and next with respect to z, it follows that

sup
x∈D

∫

D∩(|y−x|<r)

s(y)
s(x)

G(x, y)|V (y)|dy

≤ 2C0 sup
x,z∈D

∫

D∩(|y−x|<r)

ϕ(y)
ϕ(z)

G(y, z)|V (y)|dy. (2.11)

Moreover, as in Lemma 2.1, by (2.8) and (2.9) the family
{

ϕ(y)
ϕ(x)G(x, y)|V (y)|

}

x∈D

is uniformly integrable over D. Thus, the right-hand side member in (2.11)
vanishes as r → 0 and so (2.10) holds. �

By (1.2) and (2.10), we have the following.

Corollary 2.5. Assume that the 3G-inequality (2.7) is satisfied on the domain
D. Then K(D) ⊂ Kn(D).

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. As in [21] we convert the problem (1.1) into an inte-
gral equation and we use the Schauder fixed point theorem.

(1) Assume that V ∈ Kn(D) with ‖V ‖ < 1/3 and f satisfies (H1) and (H2).
We will show that there exists a number λ0 ∈ (0, 1) such that for any
λ ∈ (0, λ0), there is a function u satisfying the integral equation

u(x) = λG(x, 0) +
∫

D

G(x, y)(V (y)u(y) + f(y, u(y)))dy, (3.1)

and (1.4).
Indeed, if u satisfies (3.1), then consider a test function φ ∈ C∞(D) with
the closure of suppφ be a subset of D \ {0}, it is easy to see that u is a
solution, in the distribution sense, of the equation Δu+V (x)u+f(x, u) =
0 in D \ {0}.

Let C(D) be the space of all real functions continuous on D. For
λ ∈ (0, 1/3), consider the set

Fλ = {w ∈ C(D) : λ/2 ≤ w ≤ 3λ/2}.
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Clearly Fλ is a nonempty bounded, convex and closed set in the Banach
space (C(D), ‖.‖∞), where ‖w‖∞ = sup

x∈D
|w(x)|. Define the integral op-

erator Tλ on Fλ by

Tλw(x) = λ +
∫

D

G(x, y)G(y, 0)
G(x, 0)

[
V (y)w(y) +

f(y,G(y, 0)w(y))
G(y, 0)

]
dy, (3.2)

for x ∈ D. We will use Schauder’s theorem to show that Tλ has a fixed
point in Fλ for λ ∈ (0, λ0) with λ0 small. So we need to check the
following.

(i) Tλ(Fλ) ⊂ Fλ.
(ii) Tλ(Fλ) has a compact closure in Fλ.
(iii) Tλ is a continuous operator.

We prove (i). Let w ∈ Fλ. For simplicity, write

Φ(y) = V (y)w(y) +
f(y,G(y, 0)w(y))

G(y, 0)
. (3.3)

We have

Tλw(x) = λ +
∫

D

G(x, y)G(y, 0)
G(x, 0)

Φ(y)dy. (3.4)

Since by (H2),

|Φ(y)| ≤ w(y)(|V (y)| + ψ(y,G(y, 0)w(y)))

≤ 3λ

2
(|V (y)| + ψ(y, 3λG(y, 0)/2))

≤ |V (y)| + ψ(y,G(y, 0)) ∈ Kn(D), (3.5)

by Proposition 2.3, it follows that Tλw ∈ C(D). Moreover by (3.3)–(3.5)
and (1.3),

|Tλw(x) − λ| ≤ 3λ

2

∫

D

G(x, y)G(y, 0)
G(x, 0)

(|V (y)| + ψ(y, 3λG(y, 0)/2))dy

≤ 3λ

2
(‖V ‖ + ‖ψ(., 3λG(., 0)/2)‖). (3.6)

Note that by the assumption (H2) and the Dini theorem
lim
λ↓0

‖ψ(., 3λG(., 0)/2)‖ = 0, and so since ‖V ‖ < 1/3, there is a num-

ber λ0 > 0 such that for λ ∈ (0, λ0),

‖ψ(., 3λG(., 0)/2)‖ < 1/3 − ‖V ‖.

By (3.6) we obtain λ/2 ≤ Tλw ≤ 3λ/2, and so Tλw ∈ Fλ for λ ∈ (0, λ0).
Thus (i) is proved.
By Proposition 2.2 and Ascoli’s theorem Tλ(Fλ) has a compact closure
in Fλ which proves (ii).
We prove (iii). Let (wm) be a sequence in Fλ converging to w with
respect to ‖.‖∞. Using (3.2), the inequality

|V (y)wm(y) + f(y,G(y, 0)wm(y))/G(y, 0)| ≤ |V (y)| + ψ(y,G(y, 0)) ∈ Kn(D)
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and the dominated convergence theorem, it follows that Tλwm(x) →
Tλw(x) as m → ∞, for all x ∈ D. Since Tλ(Fλ) has a compact closure
in Fλ, it follows that

‖Tλwm − Tλw‖∞ → as m → ∞,

and so the operator Tλ is continuous. By the Schauder fixed point the-
orem, for any λ ∈ (0, λ0) there is w ∈ Fλ such that Tλw = w. The
function u(x) = G(x, 0)w(x) satisfies the integral equation (3.1) and
(1.4).

(2) Assume that V ∈ Kn(D) with ‖V ‖ < 1/3 and f satisfies (H1) and (H ′
2).

For λ > 2 we consider the set Fλ and the operator Tλ as in (1). Since
by (H ′

2)

|Φ(y)| ≤ w(y)(|V (y)| + ψ(y,G(y, 0)w(y)))

≤ 3λ

2
(|V (y)| + ψ(y, λG(y, 0)/2))

≤ 3λ

2
(|V (y)| + ψ(y,G(y, 0))) ∈ Kn(D), (3.7)

by Proposition 2.2, it follows that Tλw ∈ C(D). Moreover by (3.2), (3.3),
(3.7) and (1.3),

|Tλw(x) − λ| ≤ 3λ

2

∫

D

G(x, y)G(y, 0)
G(x, 0)

(|V (y)| + ψ(y, λG(y, 0)/2))dy

≤ 3λ

2
(‖V ‖ + ‖ψ(., λG(., 0)/2)‖). (3.8)

By the assumption (H ′
2) and the Dini theorem lim

λ↑∞
‖ψ(., λG(., 0)/2)‖ = 0,

and so since ‖V ‖ < 1/3, there is a number λ0 > 1 such that for λ > λ0,

‖ψ(., λG(., 0)/2)‖ < 1/3 − ‖V ‖.

By (3.8) we obtain λ/2 ≤ Tλw ≤ 3λ/2, and so Tλw ∈ Fλ for λ > λ0. Thus
(i) is proved. The remainder of the proof is the same as in (1). �

Proof of Theorem 1.2. Assume that W ∈ L1
loc(D) is nonnegative and u is

a solution, in the distribution sense, of the problem (1.1) with V = 0 and
f(x, u) = W (x)up satisfying (1.4). Then u satisfies the integral equation

u(x) = λG(x, 0) +
∫

D

G(x, y)W (y)up(y)dy, x ∈ D \ {0}.

It follows that the function w(x) = u(x)
G(x,0) ∈ C(D) and satisfies

w(x) = λ +
∫

D

G(x, y)G(y, 0)
G(x, 0)

W (y)Gp−1(y, 0)wp(y)dy, x ∈ D

with λ/2 ≤ w ≤ 3λ/2. So the function

p(x) =
∫

D

G(x, y)G(y, 0)
G(x, 0)

W (y)Gp−1(y, 0)wp(y)dy



Vol. 24 (2022) Singular solutions for nonlinear elliptic equations... Page 13 of 17 6

is in C(D). Since for each r > 0 small the function

pr(x) =
∫

D∩(|x−y|≥r)

G(x, y)G(y, 0)
G(x, 0)

W (y)Gp−1(y, 0)wp(y)dy

is in C(D), we deduce that the function

qr(x) = p(x) − pr(x) =
∫

D∩(|x−y|<r)

G(x, y)G(y, 0)
G(x, 0)

W (y)Gp−1(y, 0)wp(y)dy

is in C(D), and so by the Dini theorem, we have

lim
r→0

sup
x∈D

∫

D∩(|x−y|<r)

G(x, y)G(y, 0)
G(x, 0)

W (y)Gp−1(y, 0)wp(y)dy = 0.

Since λ/2 ≤ w ≤ 3λ/2, we obtain

lim
r→0

sup
x∈D

∫

D∩(|x−y|<r)

G(x, y)G(y, 0)
G(x, 0)

W (y)Gp−1(y, 0)dy = 0,

i.e. WGp−1(., 0) ∈ Kn(D). �

4. Examples

Example 1. Assume that n ≥ 3. For −1 < p < 1 and 2 < α < 2+(n−2)(1−p),
the function

uα(x) =
[(α − 2)(2 + n(1 − p) − α)/(p − 1)2]1/(p−1)

|x|(α−2)/(1−p)

is a solution of the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ C2(B(0, R) \ {0}),
Δu(x) + 1

|x|α up = 0, x ∈ B(0, R) \ {0},

u(x) > 0, x ∈ B(0, R) \ {0},

lim
x→0

u(x) = ∞.

(4.1)

Moreover, since Gp−1(x,0)
|x|α is in the class Kn(B(0, R)), by Theorem 1.1 problem

(4.1) has a positive solution u ∈ C(B(0, R) \ {0}) with u(x) ∼ 1
|x|n−2 near

x = 0 and u = 0 on ∂B(0, R). Since u is locally bounded on B(0, R) \ {0},
by Theorem 6.6 in [14] u ∈ C2(B(0, R) \ {0}). It is clear that the singularity
of u near 0 is stronger than the singularity of uα.

Example 2. Assume that n = 2. For −1 < p < 1, the function

v(x) =
(

(1 − p)2

2(1 + p)

)1/(1−p) (

ln
(

1
|x|

))2/(1−p)
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is a solution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ C2(B(0, 1) \ {0}),
Δu(x) − 1

|x|2 up = 0, x ∈ B(0, 1) \ {0},

u(x) > 0, x ∈ B(0, 1) \ {0},

lim
x→0

u(x) = ∞,

u(x) = 0, x ∈ ∂B(0, 1).

(4.2)

Since Gp−1(x,0)
|x|2 does not belong to the class K2(B(0, 1)), by Theorem 1.2

problem (4.2) does not have a positive solution u ∈ C(B(0, 1)\{0}) satisfying
u(x) ∼ ln( 1

|x| ) near x = 0.

Example 3. Assume that n ≥ 4. For p < 1 and α = (n − 1)(1 − p)/2 + 2, the
function

u(x) =
( (n − 3)(n − 1)

4

)1/(p−1) 1 − |x|
|x|(n−1)/2

is a solution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ C2(B(0, 1) \ {0}),

Δu(x) + (1−|x|)1−p

|x|α up = 0, x ∈ B(0, 1) \ {0},

u(x) > 0, x ∈ B(0, 1) \ {0},

lim
x→0

u(x) = ∞,

u(x) = 0, x ∈ ∂B(0, 1).

(4.3)

Since (1−|x|)1−p

|x|α Gp−1(x, 0) ∈ K2(B(0, 1)), by Theorem 1.1 problem (4.3) has
a positive solution v ∈ C(B(0, 1) \ {0}) satisfying v(x) ∼ 1

|x|n−2 near x = 0.
Clearly, the singularity of v near 0 is stronger than the singularity of u.

In the next example, we discuss the existence of singular solutions in
the one-dimensional case.

Example 4. In the case n = 1, consider, for p ∈ R, the problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ C2(] − 1, 1[\{0}),
u′′(x) + up(x) = 0, x ∈] − 1, 1[\{0},

u(x) > 0, x ∈] − 1, 1[\{0},

lim
x→0+

u(x) = +∞.

(4.4)

Clearly (4.4) has no solution since any solution u should be concave on ]0, 1[.
Now consider, for p ∈ R, the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u ∈ C2(] − 1, 1[\{0}),
u′′(x) − up(x) = 0, x ∈] − 1, 1[\{0},

u(x) > 0, x ∈] − 1, 1[\{0},

lim
x→0+

u(x) = +∞.

(4.5)
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For p > 1 the function

u(x) =
(2(p + 1)

(p − 1)2
)1/(p−1) 1

|x|2/(p−1)

is a singular solution of (4.5).

Assume p ≤ 1 with p = −1. If (4.5) has a solution, then clearly there is a
constant c such that

(u′)2

2
=

up+1

p + 1
+ c on ]0, 1[.

By the condition lim
x→0+

u(x) = +∞, it follows that

(u′)2 ≤ Cu2 on ]0, ε[,

for some constants C > 0 and ε > 0. We then have

|u
′

u
| ≤ C on ]0, ε[,

which yields

0 < ln
( ε

x

)
≤ Cε, x ∈]0, ε[,

and this is impossible.
Assume p = −1. If (4.5) has a solution, then clearly there is a constant c such
that

(u′)2

2
= lnu + c on ]0, 1[.

Since u → ∞ as x → 0+, it follows that

|u
′

u
| ≤ C on ]0, ε[,

for some constants C > 0 and ε > 0, which yields

0 < ln
( ε

x

)
≤ Cε, x ∈]0, ε[,

and this is impossible.
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[6] Ĉırstea, F.C., Du, Y.: Asymptotic behavior of solutions of semilinear elliptic
equations near an isolated singularity. J. Funct. Anal. 250, 317–346 (2007)
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