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1. Introduction and results

Symplectic capacities are important invariants in studies of symplectic topol-
ogy. Different symplectic capacities measure the “symplectic size” of sets from
different views. Precise computations of them are usually difficult.

For a compact convex domain K with smooth boundary S = ∂K in
the standard symplectic Euclidean space (R2n, ω0), Ekeland-Hofer [6] (see
also [16]) and Hofer-Zehnder [8] showed, respectively, that its Ekeland-Hofer
capacity cEH(K) and Hofer-Zehnder capacity cHZ(K) were equal to

cEHZ(K) := min{A(x) > 0 |x is a closed characteristic on S} (1.1)

(called the Ekeland-Hofer-Zehnder capacity below), where by a closed char-
acteristic on S we mean a C1 embedding z from S1 = [0, T ]/{0, T} into S
satisfying ż(t) ∈ (LS)z(t) for all t ∈ [0, T ], where

LS = {(x, ξ) ∈ TS | ω0x(ξ, η) = 0,∀η ∈ TxS}

and the action of a path z ∈ W 1,2([0, T ],R2n) is defined by

A(z) =
1
2

∫ T

0

〈−Jż, z〉dt (1.2)

with J =
(

0 −In

In 0

)
, where z ∈ W 1,2([0, T ],R2n) if z is absolutely continuous

and
∫ T

0

‖z(t)‖2dt < ∞ and
∫ T

0

‖ż(t)‖2dt < ∞.

We equip H1([0, T ],R2n) := W 1,2([0, T ],R2n) the natural Sobolev norm:

‖z‖W 1,2 :=

(∫ T

0

‖z(t)‖2 + ‖ż(t)‖2dt

) 1
2

.

When the smoothness assumption of the boundary S is thrown away, then
(1.1) is still true if “closed characteristic” in the right side of (1.1) may be
replaced by “generalized closed characteristic”, where a generalized closed
characteristic on S is a T -periodic nonconstant absolutely continuous curve
z : R → R

2n (for some T > 0) such that z(R) ⊂ S and ż(t) ∈ JNS(z(t)) a.e.,
where NS(x) = {y ∈ R

2n | 〈u − x, y〉 � 0,∀u ∈ K} is the normal cone to K
at x ∈ S. The action of such a generalized closed characteristic x : [0, T ] → S
is still defined by (1.2).

In general, it is difficult to compute cEHZ(K) by finding minimal closed
characteristics with (1.1). If K is a convex polytope with (2n−1)-dimensional
facets {Fi}FK

i=1, ni is the unit outer normal to Fi, and hi = hK(ni) the
“oriented height” of Fi given by the support function of K, hK(y) := supx∈K
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〈x, y〉, starting from (1.1) Pazit Haim-Kislev [15] recently established the fol-
lowing beautiful combinatorial formula for cEHZ(K):

cEHZ(K) =
1
2

⎡
⎣ max

σ∈SFK
,(βi)∈M(K)

∑
1≤j<i≤FK

βσ(i)βσ(j)ω0(nσ(i), nσ(j))

⎤
⎦

−1

,

(1.3)
where SFK

is the symmetric group on FK letters and

M(K) =

{
(βi)FK

i=1

∣∣∣∣ βi ≥ 0,

FK∑
i=1

βihi = 1,

FK∑
i=1

βini = 0

}
.

As an important application, Pazit Haim-Kislev [15] proved a subadditiv-
ity property of the capacity cEHZ for hyperplane cuts of arbitrary convex
domains, which solved a special case of the subadditivity conjecture for ca-
pacities ([2]).

Recently, motivated by Clarke [3,4] and Ekeland [7] Rongrong Jin and
the second named author introduced relative versions (or generalizations) of
the Ekeland-Hofer capacity and the Hofer-Zehnder capacity in [10]. Precisely,
for a symplectic manifold (M,ω) and for a Ψ ∈ Symp(M,ω) with Fix(Ψ) �= ∅,
we defined a relative version of the Hofer-Zehnder capacity cHZ(M,ω) of
(M,ω) with respect to Ψ, cΨ

HZ(M,ω), which becomes cHZ(M,ω) if Ψ = idM .
For a symplectic matrix Ψ ∈ Sp(2n,R) with Fix(Ψ) �= ∅, and for each B ⊂
R

2n such that B ∩ Fix(Ψ) �= ∅, we also introduced a relative version of
the Ekeland-Hofer capacity cEH(B) of B with respect to Ψ, cΨ

EH(B), which
becomes cEH(B) if Ψ = I2n. If a compact convex domain K ⊂ R

2n with
boundary S = ∂K contains a fixed point of Ψ ∈ Sp(2n,R) in the interior of
it, we proved in [10]:

cΨ
EH(K) = cΨ

HZ(K)
= min{A(x) > 0 |x is a generalized Ψ − characteristic on S},

(1.4)

where a generalized Ψ-characteristic on S is a nonconstant absolutely con-
tinuous curve z : [0, T ] → R

2n (for some T > 0) such that z([0, T ]) ⊂ S,
z(T ) = Ψz(0) and ż(t) ∈ JNS(z(t)) a.e., where NS(x) is the normal cone to
K at x ∈ S as above, and the action A(z) of z is still defined by (1.2). (If S
is C1,1-smooth, “generalized closed characteristic” in the right side of (1.4)
may be replaced by “closed characteristic”, where a Ψ-characteristic on S is a
C1 embedding z from [0, T ] (for some T > 0) into S such that z(T ) = Ψz(0)
and ż ∈ (LS)z(t) for all t ∈ [0, T ]). Our first result is an analogue of (1.3) for
cΨ
EHZ(K) := cΨ

EH(K) = cΨ
HZ(K).

Theorem 1.1. Let K be a convex polytope as above (1.3). Suppose that Ψ ∈
Sp(2n,R) has a fixed point sitting in the interior of K. Then

cΨ
EHZ(K) = min(

(βi)
FK
i=1,v,σ

)
∈MΨ(K)

2

4
∑

1�j<i�FK
βσ(i)βσ(j)ω0(nσ(j), nσ(i)) − ω0(Ψv, v)

,
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where

MΨ(K)

=

{(
(βi)

FK
i=1, v, σ

) ∣∣∣∣ σ ∈ SFK
, βi � 0,

∑FK
i=1 βihi = 1,

∑FK
i=1 2βiJni = Ψv − v,

4
∑

1�j<i�FK
βσ(i)βσ(j)ω0(nσ(j), nσ(i)) > ω0(Ψv, v), v ∈ EΨ

}

with EΨ being the orthogonal complement of Ker(Ψ − I2n) in R
2n.

Note: Under our convention 〈x, y〉 = ω0(x, Jy), ω0(nσ(i), nσ(j)) in (1.3)
should be changed into ω0(nσ(j), nσ(i)).

Lisi and Rieser [13] introduced the notion of a coisotropic capacity and
constructed a coisotropic Hofer-Zehnder capacity, which is a relative version
of the Hofer-Zehnder capacity with respect to a coisotropic submanifold. Ron-
grong Jin and the second named author recently constructed a relative version
of the Ekeland-Hofer capacity with respect to a special class of coisotropic
subspaces in [12]. Consider coisotropic subspaces of (R2n, ω0),

R
n,k = {x ∈ R

2n|x = (q1, · · · , qn, p1, · · · , pk, 0, · · · , 0)}, k = 0, · · · , n.

The isotropic leaf through x ∈ R
n,k is x + V n,k

0 , where

V n,k
0 = {x ∈ R

2n |x = (0, · · · , 0, qk+1, · · · , qn, 0, · · · , 0)}.

The leaf relation ∼ on R
n,k is that x ∼ y if and only if y ∈ x + V n,k

0 .
From now on we fix an integer 0 � k < n and assume that K ⊂ R

2n is a
compact convex domain with C1,1-smooth boundary S = ∂K and satisfying
Int(K) ∩ R

n,k �= ∅. A nonconstant absolutely continuous curve z : [0, T ] →
R

2n (for some T > 0) is called a generalized leafwise chord (abbreviated GLC)
on S for R

n,k if z([0, T ]) ⊂ S, ż(t) ∈ JNS(z(t)) a.e., z(0), z(T ) ∈ R
n,k and

z(0) − z(T ) ∈ V n,k
0 . The action A(z) of such a chord is still defined by (1.2).

In [11,12] Rongrong Jin and the second named author proved respectively
that the coisotropic Hofer-Zehnder capacity cLR(K,K ∩ R

n,k) of K relative
to R

n,k and the coisotropic Ekeland-Hofer capacity cn,k(K) of K relative to
R

n,k satisfy

cLR(K,K ∩ R
n,k) = cn,k(K) = min{A(x) > 0 | x is a GLC on S for Rn,k}.

(1.5)
Here is our second result.

Theorem 1.2. Let K be a convex polytope as above (1.3). Suppose K∩R
n,k �=

∅. Then

cLR(K,K ∩ R
n,k) =

1
2

min
((βi)

FK
i=1,σ)∈M(K)

1∑
1�j<i�FK

βσ(i)βσ(j)ω0(nσ(j), nσ(i))
,

where

M(K) =
{

((βi)FK
i=1, σ)

∣∣∣∣ βi � 0,
∑FK

i=1 βihi = 1,
∑FK

i=1 βiJni ∈ V n,k
0 ,∑

1�j<i�FK
βσ(i)βσ(j)ω0(nσ(j), nσ(i)) > 0, σ ∈ SFK

}
.

(1.6)

Unlike Ekeland-Hofer-Zehnder capacity, one cannot expect that the
coisotropic Hofer-Zehnder capacity satisfies the subadditivity as stated in
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[15, Theorem 1.8] in general. In fact, when n = 1 and k = 0, our following
result is opposite to the expected one.

Theorem 1.3. Let D ⊂ R
2 be a convex domain satisfying D∩R

1,0 �= ∅, and let
L ⊂ R

2 be a straight line through D such that L �= R
1,0 and D∩L∩R

1,0 �= ∅.
Denote by D1 and D2 the two parts divided by L. Then

cLR(D,D ∩ R
1,0) ≥ cLR(D1,D1 ∩ R

1,0) + cLR(D2,D2 ∩ R
1,0). (1.7)

Remark 1.4. Inequality (1.7) is sharp, and it can be strict in some cases.
Consider the following example. Let P = {(x, y) | |x| � 1, |y| � 1} and L =
{(x, x) |x ∈ R}. Then L divides P into two parts P1 := {(x, y) |x � y} ∩ P
and P2 := {(x, y) |x � y} ∩ P . Using Theorem 1.2, we can easily compute
cLR(P, P ∩ R

1,0) = 2, cLR(P1, P1 ∩ R
1,0) = cLR(P2, P2 ∩ R

1,0) = 1
2 . Thus

cLR(P, P ∩ R
1,0) > cLR(P1, P1 ∩ R

1,0) + cLR(P2, P2 ∩ R
1,0).

Moreover, for any t ∈ (−1, 1), the line Lt := {(t, y) | y ∈ R} divides P into
two parts

P+ := {(x, y) ∈ P |x ≥ t} and P− := {(x, y) ∈ P |x ≤ t}.

It is easily computed that

cLR(P+, P+ ∩ R
1,0) = 1 − t and cLR(P−, P− ∩ R

1,0) = 1 + t,

and hence cLR(P+, P+ ∩ R
1,0) + cLR(P−, P− ∩ R

1,0) = cLR(P, P ∩ R
1,0).

In higher dimensions, we have cLR(G,G ∩ R
n,n) = cEHZ(G) for any

nonempty convex domain G ⊂ R
2n. Thus some coisotropic Hofer-Zehnder

capacities of higher dimensions have subadditivity because of the subadditiv-
ity of cEHZ under the conditions of [15, Theorem 1.8]. There is no nice result
in more general case yet.

For the symmetrical Hofer-Zehnder symplectic capacity of a symmetric
convex domain in R

2n introduced by Liu and Wang [14], using a representa-
tion formula of it given by Rongrong Jin and the second named author in [9]
one is able to generalize the formula in [15], but this is outside the scope of
this paper and would appear elsewhere.

This paper is organized as follows. In the next section we collect detailed
conclusions coming from [10, §4.1] and [11, §3.1] about proofs of representa-
tion formulas of the Ψ-Ekeland-Hofer-Zehnder capacity and the coisotropic
Ekeland-Hofer-Zehnder capacity for convex bodies in R

2n, respectively. Then
we generalize some results on piecewise affine loops in [15, §3] to piecewise
affine paths in Sect. 3. Theorem 1.1 will be proved in Sect. 4. Finally, in
Sect. 5 we prove Theorems 1.2, 1.3.

2. Preliminaries

For simplicity of the reader’s convenience we list two results, which come
from [10, Section. 4.1] and [11, Section 3.1], respectively.

Let K ⊂ R
2n be a compact convex domain K with boundary S = ∂K

and with 0 ∈ Int(K). Denote by HK = (jK)2 the square of the Minkowski



67 Page 6 of 21 K. Shi, G. Lu JFPTA

functional jK of K, and by H∗
K the Legendre transformation of HK defined

by

H∗
K(w) = max

ξ∈R2n
(〈x, ξ〉 − HK(ξ)).

Then h2
K = 4H∗

K (see e.g.[1]).
Given Ψ ∈ Sp(2n,R) let EΨ be the orthogonal complement of Ker(Ψ −

I2n) ⊂ R
2n with respect to the standard inner product in R

2n. (In [10] we
wrote Ker(Ψ − I2n) and EΨ as E1 and E⊥

1 , respectively.) Define

FΨ = {x ∈ W 1,2([0, 1],R2n) |x(1) = Ψx(0) and x(0) ∈ EΨ},

which was denoted by F in [10]. If dimEΨ = 0, the problem reduces to the
periodic case. So we only consider the non-periodic case in which dimEΨ � 1.
Define

AΨ = {x ∈ FΨ |A(x) = 1},

where A(x) is defined by (1.2) with T = 1, and

IK : FΨ → R, x �→
∫ 1

0

H∗
K(−Jẋ).

By Theorems 1.8, 1.9, Remark 1.10 and arguments in [10, §4.1] we have

Theorem 2.1. Under the above assumptions, IK attains its minimum minx∈AΨ

IK(x) over AΨ, which is positive. For each minimier u of IK over AΨ, there
exists a0 ∈ Ker(Ψ − I2n) such that the W 1,2-path

[0, IK(u)] � t �→ x∗(t) =
√

IK(u)u(t/IK(u)) + a0/
√

IK(u) (2.1)

satifies A(x∗) = IK(u) = cΨ
EHZ(K) and

{
−Jẋ∗(t) ∈ ∂HK(x∗(t)), a.e.,
x∗(T ) = Ψx∗(0) and x∗([0, T ]) ⊂ ∂K; (2.2)

in particular x∗ is a generalized Ψ-characteristic on ∂K because

∂HK(x) = {v ∈ N∂K(x) | 〈x, v〉 = 2} ∀x ∈ ∂K. (2.3)

(cf. Lemma 2 of [5, Chap.V, §1]). Conversely, if z : [0, T ] → ∂K is a gen-
eralized Ψ-characteristic on ∂K with action A(z) = cΨ

EHZ(K), then (by [10,
Lemma 4.2]) there is a differentiable homeomorphism ϕ : [0, T ] → [0, T ] with
an absolutely continuous inverse ψ : [0, T ] → [0, T ] such that z∗ = z ◦ ϕ is
a W 1,∞-map with action A(z∗) = A(z) = T and satisfying (2.2); moreover
we can choose b ∈ Ker(Ψ − I2n) so that the path u : [0, 1] → R

2n defined by
u(t) = z∗(Tt)/

√
T + b belongs to AΨ and satisfies IK(u) = T , i.e., u is a

minimier u of IK over AΨ. When this K is also a convex polytope as above
(1.3), then there holds

u̇(t) =
√

T ż∗(Tt) ∈
√

T conv{pi |
√

T (u(t) − b) ∈ Fi}, a.e. (2.4)

where pi = 2
hi

Jni.
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To see the final claim, note that for each i = 1, · · · ,FK , HK is smooth
at each relative interior point x of Fi and the subdifferential ∂HK(x) =
{∇HK(x)} = { 2

hi
ni}. For any x ∈ ∂K we have ∂HK(x) = conv{ 2

hi
ni |x ∈

Fi} (cf. [15, page 445]), and therefore J∂HK(x) = conv{pi |x ∈ Fi}. (The
outward normal cone of K at x ∈ ∂K, N∂K(x), is equal to R+conv{ni : x ∈
Fi}.)

Fix an integer 0 ≤ k < n. Following [11] consider the Hilbert subspace
of W 1,2([0, 1],R2n),

F2 :=

{
x ∈ W 1,2([0, 1],R2n)

∣∣∣ x(0), x(1) ∈ R
n,k, x(1) ∼ x(0),

∫ 1

0

x(t)dt ∈ JV n,k
0

}

(where x(1) ∼ x(0) means x(1) − x(0) ∈ V n,k
0 ), its subset A2 = {x ∈

F2 |A(x) = 1}, and the related convex functional

I2 : F2 → R, x �→
∫ 1

0

H∗
K(−Jẋ(t))dt.

From [11, §3.1], we obtain the following corresponding result of Theo-
rem 2.1.

Theorem 2.2. Under the above assumptions, I2 attains its minimum minx∈A2

I2(x) over A2, which is positive. For each minimier u of I2 over A2, there
exists a0 ∈ R

n,k such that the W 1,2-path

[0, 1] � t �→ x∗(t) :=
√

I2(u)u(t) + a0/
√

I2(u) (2.5)

satisfies A(x∗) = I2(u) = cLR(K,K ∩ R
n,k) = cn,k(K) and{

−Jẋ∗(t) = ∂HK(x∗(t)), a.e., x∗(0), x∗(1) ∈ R
n,k,

x∗(1) − x∗(0) ∈ V n,k
0 and x∗([0, 1]) ⊂ ∂K;

(2.6)

in particular x∗ is a generalized leafwise chord on ∂K for R
n,k because of

(2.3). Conversely, if z : [0, T ] → ∂K is a generalized leafwise chord on ∂K
with action A(z) = cn,k(K) for R

n,k, then (by [10, Lemma 4.2]) there is a
differentiable homeomorphism ϕ : [0, T ] → [0, T ] with an absolutely contin-
uous inverse ψ : [0, T ] → [0, T ] such that z∗ = z ◦ ϕ is a W 1,∞-map with
action A(z∗) = A(z) = T and satisfying{

−Jż∗(t) = ∂HK(z∗(t)), a.e., z∗(0), z∗(T ) ∈ R
n,k,

z∗(T ) − z∗(0) ∈ V n,k
0 and z∗([0, T ]) ⊂ ∂K;

(2.7)

moreover the path u : [0, 1] → R
2n defined by

u(t) =
1√
T

z∗(Tt) − 1√
T

Pn,k

∫ 1

0

z∗(Tt)dt (2.8)

where Pn,k : R2n = JV n,k
0 ⊕R

n,k → R
n,k is the orthogonal projection, belongs

to A2 and satisfies I2(u) = T , i.e., u is a minimier u of I2 over A2. When
this K is also a convex polytope as above (1.3), there holds

u̇(t) =
√

T ż∗(Tt) ∈
√

T conv{pi |
√

T (u(t) − b) ∈ Fi}, a.e.

where pi = 2
hi

Jni and b = − 1√
T

Pn,k

∫ 1

0
z∗(Tt)dt.

The final claim is obtained as below Theorem 2.1.
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3. Piecewise affine paths

In this section we will generalize some results on piecewise affine loops in [15,
§3] to piecewise affine paths.

Recall in [15, Definition 3.2] that a finite sequence of disjoint open inter-
vals (Ii)m

i=1 is called a partition of [0, 1] if there exists an increasing sequence
of numbers 0 = τ0 ≤ τ1 ≤ . . . ≤ τm = 1 with Ii = (τi−1, τi). (Note that the
open interval Ii may be empty!) As usual let χI denote the characteristic
function of a subset I ⊂ R. A path z ∈ H1([0, 1],R2n) is said to be piecewise
affine if ż can be written as ż(t) =

∑m
j=1 χIj

(t)wj for almost every t ∈ [0, 1],
where (Ij)m

j=1 is a partition of [0, 1] and (wj)m
j=1 ∈ R

2n is a finite sequence of
vectors.

Lemma 3.1. ([15, Lemma 3.1]) Fix a set of vectors v1, · · · , vk ∈ R
2n. Suppose

z ∈ H1([0, 1],R2n) satisfies that for almost every t ∈ [0, 1], one has ż(t) ∈
conv{v1, · · · , vk}. Then for every ε > 0, there exists a piecewise affine path
ς with ‖ z − ς ‖W 1,2< ε, and so that ς̇ is composed of vectors from the set
conv{v1, · · · , vk}, and ς(0) = z(0), ς(1) = z(1).

The following is an analouge of [15, Proposition 3.3].

Proposition 3.2. If a path z ∈ H1([0, 1],R2n) is such that ż(t) =
∑m

i=1 χIi
(t)wi

almost everywhere, where (Ii = (τi−1, τi))
m
i=1 is a partition of [0, 1], and w1, · · · ,

wm ∈ R
2n, then

∫ 1

0

〈−Jż, z〉dt =
m∑

i=1

i−1∑
j=1

|Ij ||Ii|ω0(wj , wi) + ω0(z(0), z(1)). (3.1)

As usual
∑i−1

j=1 |Ij ||Ii|ω0(wj , wi) for i = 1 is understood as zero.

Proof. The case m = 1 is clear. Now we assume m > 1. Since

∫ 1

0

〈−Jż(t), z(0)〉dt = −〈Jz(1), z(0)〉 = −ω0(Jz(1), Jz(0)) = ω0(z(0), z(1))

we deduce
∫ 1

0

〈−Jż, z〉dt

=
∫ 1

0

〈−Jż, z(0) +
∫ t

0

ż(s)ds〉dt

=
∫ 1

0

〈−Jż(t), z(0)〉dt

+
m∑

i=1

∫
Ii

〈−J

m∑
l=1

χIl
(t)wl,

∫ τi−1

0

m∑
l=1

χIl
(s)wlds +

∫ t

τi−1

wids〉dt
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= ω0(z(0), z(1)) +
m∑

i=1

∫
Ii

〈−Jwi,
∑
j<i

∫
Ij

m∑
l=1

χIl
(s)wlds + (t − τi−1)wi〉dt

= ω0(z(0), z(1)) +
m∑

i=1

∫
Ii

〈−Jwi,
∑
j<i

∫
Ij

wjds〉dt

= ω0(z(0), z(1)) +
m∑

i=1

∑
j<i

|Ii||Ij |ω0(wj , wi).

�

Following the proof ideas of [15, Lemma 3.1] we can obtain:

Lemma 3.3. Given a set of vectors, v1, . . . , vk ∈ R
2n, for any piecewise affine

path z ∈ H1([0, 1],R2n) with ż(t) ∈ conv{v1, . . . , vk} for almost every t ∈
[0, 1], there exists another piecewise affine path z′ ∈ H1([0, 1],R2n) so that
z′(0) = z(0), z′(1) = z(1), ż′(t) ∈ {v1, . . . , vk} for almost every t, and

∫ 1

0

〈−Jż′, z′〉dt ≥
∫ 1

0

〈−Jż, z〉dt.

Proof. Write ż(t) =
∑m

j=1 χIj
(t)wj , where wj ∈ conv{v1, . . . , vk} for each j,

and (Ij)
m
j=1 is a partition of [0, 1]. Clearly, there exists l = l(i) ∈ N such that

wi =
∑l

j=1 aij
vij

, where aij
> 0, ij ∈ {1, . . . , k}, and

∑l
j=1 aij

= 1. Consider
the partition of Ii to disjoint subintervals, {Iij

}l
j=1, where the length of Iij

is |Iij
| = aij

|Ii|. Define

ż∗(t) =
∑
j<i

χIj
(t)wj +

l∑
j=1

χIij
(t)vij

+
∑
j>i

χIj
(t)wj (3.2)

and z∗(t) = z(0) +
∫ t

0
ż∗(s)ds for t ∈ [0, 1]. Since

∫ 1

0
ż∗(t)dt =

∫ 1

0
ż(t)dt, we

deduce z(0) = z∗(0) and z(1) = z∗(1). Then Proposition 3.2 leads to

∫ 1

0

〈−Jż∗, z∗〉dt

= ω0(z∗(0), z∗(1))

+
∑
r<s
r,s 	=i

|Ir||Is|ω0(wr, ws) +
l∑

j=1

∑
r<i

|Ir||Ii|aij
ω0(wr, vij

)

+
l∑

j=1

∑
r>i

|Ir||Ii|aij
ω0(vij

, wr) +
∑

1≤r<s≤l

|Ii|2air
ais

ω0(vir
, vis

)
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= ω0(z(0), z(1)) +
∑
r<s

r,s 	=i

|Ir||Is|ω0(wr, ws) +
∑
r<i

|Ir||Ii|ω0(wr, wi)

+
∑
r>i

|Ir||Ii|ω0(wi, wr) +
∑

1≤r<s≤l

|Ii|2air
ais

ω0(vir
, vis

)

=
∫ 1

0

〈−Jż, z〉dt + |Ii|2
∑

1≤r<s≤l

air
ais

ω0(vir
, vis

).

Define bij
= ail+1−j

and uij
= vil+1−j

for j = 1, · · · , l, and

Îj = Ij for j < i or j > i, Îij
= Iil+1−j

for j = 1, · · · , l.

As above we may show that z∗∗(t) = z(0) +
∫ t

0
ż∗∗(s)ds for t ∈ [0, 1], where

ż∗∗(t) =
∑
j<i

χÎj
(t)wj +

l∑
j=1

χÎij
(t)uij

+
∑
j>i

χÎj
(t)wj ,

satisfies z(0) = z∗∗(0), z(1) = z∗∗(1) and
∫ 1

0

〈−Jż∗∗, z∗∗〉dt =
∫ 1

0

〈−Jż, z〉dt + |Ii|2
∑

1≤r<s≤l

bir
bis

ω0(uir
, uis

).

A straightforward computation as above gives rise to
∑

1≤r<s≤l

bir
bis

ω0(uir
, uis

) = −
∑

1≤r<s≤l

air
ais

ω0(vir
, vis

).

Hence we can always choose u ∈ {z∗, z∗∗} so that
∫ 1

0

〈−Ju̇, u〉dt ≥
∫ 1

0

〈−Jż, z〉dt. (3.3)

Now starting from z and choosing i = 1 we get a path z1 as above, Then
starting from z1 and choosing i = 2 we get a path z2 again. Continuing this
progress we obtain z1, z2, · · · , zm. Then z′ := zm satisfies the requirements
of the lemma. �

Suitably modifying the proof of [15, Lemma 3.5], we can get the follow-
ing analogues of it.

Lemma 3.4. Given a finite sequence of pairwise distinct vectors (v1, · · · , vk),
if z ∈ H1([0, 1],R2n) is a piecewise affine path such that ż(t) =

∑m
i=1 χIi

(t)wi

with wi ∈ {v1, · · · , vk} for each i, where (Ii = (τi−1, τi))
m
i=1 is a partition

of [0, 1], then there exists another piecewise affine path z′ such that ż′(t) ∈
{v1, · · · , vk} for almost every t, z′(0) = z(0), z′(1) = z(1), and {t : ż′(t) = vj}
is connected for every j = 1, · · · , k. In addition,

∫ 1

0

〈−Jż′, z′〉dt ≥
∫ 1

0

〈−Jż, z〉dt. (3.4)
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Proof. Assume wr = ws for some r < s. Consider a rearrangement of the in-
tervals Ii by deleting the intervals Is and increasing the length of the interval
Ir by |Is| = τs − τs−1, that is,

I∗
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(τi−1, τi), i < r,

(τi−1, τi + τs − τs−1), i = r,

(τi−1 + τs − τs−1, τi + τs − τs−1), r < i < s,

∅, i = s,

(τi−1, τi), i > s.

Define z∗ by z∗(t) = z(0) +
∫ t

0
ż∗(s)ds, where ż∗(t) =

∑m
i=1 χI∗

i
(t)wi. Then

∫ 1

0

ż∗dt =
m∑

i=1

|I∗
i |wi =

m∑
i=1

|Ii|wi =
∫ 1

0

żdt

and thus z∗(0) = z(0) and z∗(1) = z(1). Since I∗
i = Ii for i < r or i > s, by

Proposition 3.2, one can get
∫ 1

0

〈−Jż∗, z∗〉dt −
∫ 1

0

〈−Jż, z〉dt =
s−1∑

i=r+1

2|Is||Ii|ω0(ws, wi).

Similarly, by erasing Ir and increasing the length of Is by |Ir|, we get a z∗∗
such that∫ 1

0

〈−Jż∗∗, z∗∗〉dt −
∫ 1

0

〈−Jż, z〉dt =
s−1∑

i=r+1

2|Ir||Ii|ω0(wi, wr).

It follows that either z∗ or z∗∗ satisfies (3.4). Denote by z1 ∈ {z∗, z∗∗} satis-
fying (3.4). Then

z1(t) = z(0) +
∫ t

0

ż1(s)ds with ż1(t) =
m∑

i=1

χI1
i
(t)wi.

Repeating this methods for different disjoint nonempty interval I1
r , I1

s when-
ever wr = ws we get a z2 again. Proceeding with this progress for z2, after
finite steps we get a z′ with the expected properties. �

Having the above lemmas we have the following corresponding result
with [15, Proposition 3.5], which may be proved by repeating the arguments
therein because H∗

K = 1
4h2

K .

Proposition 3.5. For a convex polytope K ⊂ R
2n containing 0 in the interior

of it, let {Fi}FK
i=1 be the (2n−1)-dimensional facets of it, let ni be the unit outer

normal to Fi, let pi = J∂HK |Fi
= 2

hi
Jni, where hi := hK(ni) and hK(x) =

sup{〈y, x〉 | y ∈ K}. Let c > 0 be a constant and let z ∈ H1([0, 1],R2n)
satisfies that for almost every t, there is a non-empty face of K, Fj1 ∩ · · · ∩
Fjl

�= ∅, with ż(t) ∈ c · conv{pj1 , · · · , pjl
}. Then

∫ 1

0

H∗
K(−Jż(t))dt = c2.
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4. Proof of Theorem 1.1

We begin with a similar result to [15, Theorem 1.5].

Theorem 4.1. Let K be a convex polytope as above (1.3). Suppose 0 ∈ Int(K).
Then for any Ψ ∈ Sp(2n,R) there exists a generalized Ψ-characteristic γ :
[0, 1] → ∂K with action

A(γ) = min{A(x) > 0 |x is a generalized Ψ-characteristic on ∂K}
such that γ̇ is piecewise constant and is composed of a finite sequence of
vectors, i.e. there exists a sequence of vectors (w1, . . . , wm), and a sequence
(0 = τ0 < · · · < τm−1 < τm = 1) so that γ̇(t) = wi for τi−1 < t < τi.
Moreover, for each j ∈ {1, · · · ,m} there exists i ∈ {1, · · · ,FK} so that wj =
CjJni for some Cj > 0, and for each i ∈ {1, · · · ,FK} and for every C > 0
the set {t ∈ [0, 1] | γ̇(t) = CJni} is either empty or connected, i.e. for every
i there is at most one j ∈ {1, . . . , m} with wj = CjJni. Hence γ̇ has at most
FK discontinuous points, and γ visits the interior of each facet at most once.

Proof. Let z : [0, T ] → ∂K be a generalized Ψ-characteristic with action
A(z) = cΨ

EHZ(K) = T . By Theorem 2.1 we have b ∈ Ker(Ψ − I2n) and
the W 1,2-path u ∈ AΨ satisfying IK(u) = T and (2.4). Thus we obtain∫ 1

0
H∗

K(−Ju̇(t))dt = T by Proposition 3.5. For convenience let c = T 1/2. The
next argument is the same as the proof of [15, Theorem 1.5], we write it for
completeness.

For every N ∈ N, Lemma 3.1 yields a piecewise affine path ζN such
that

‖ u − ζN ‖W 1,2� 1
N

and ζ̇N (t) ∈ c · conv{p1, · · · , pFK
}

for almost every t, ζN (0) = u(0), ζN (1) = u(1). By applying Lemma 3.3
with vi = cpi, i = 1, · · · ,FK to ζN , we get a piecewise affine path ζ ′

N ∈
W 1,2([0, 1],R2n) such that

ζ′
N (0) = u(0), ζ′

N (1) = u(1), ζ̇′
N (t) ∈ {v1, . . . , vFK

} a.e., and A(ζ′
N ) ≥ A(ζN ).

Applying Lemma 3.4 to ζ ′
N again, we get a piecewise affine path uN : [0, 1] →

R
2n from u(0) to u(1) such that

u̇N (t) =
mN∑
i=1

χIN
i

(t)vN
i

where vN
i = vj for some j ∈ {1, · · · ,FK} and for every j there is at most one

such i, and that

AN :=
√

A(uN ) �
√

A(ζN ).

Define u′
N := uN

AN
∈ AΨ and cN =: c

AN
. Write wN

i := vN
i

AN
for the velocities of

u′
N , which sits in the set c

AN
· {p1, · · · , pFK

}. Since ‖ u − ζN ‖W 1,2� 1
N

we deduce that A(ζN ) → 1 as N → ∞. Hence limN→∞ AN � 1, and
limN→∞ cN � c. Moreover Proposition 3.5 and the minimality of IK(u)
imply c2

N = IK(u′
N ) � IK(u) = c2. We deduce limN→∞ cN = c and thus

limN→∞ AN = 1.
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Let A1 consist of z ∈ H1([0, 1],R2n) for which there exist C > 0 and an
increasing sequence of numbers 0 = τ0 ≤ τ1 ≤ . . . ≤ τFK

= 1 such that

ż(t) =
FK∑
i=1

χIi
(t)C · pσ(i)

with Ii = (τi−1, τi), where σ ∈ SFK
is the permutations on {1, · · · ,FK}.

Define a map

Φ : A1 → SFK
× R

FK , z �→ (σ, (|I1|, · · · , |IFK
|)). (4.1)

Clearly, the image Im(Φ) is contained in the compact subset of SFK
×R

FK ,

SFK
×

{
(t1, · · · , tFK

) ∈ R
FK

∣∣∣∣ ti � 0 ∀i,

FK∑
i=1

ti = 1

}
.

Since u′
N ∈ A1 with C = cN , we can write Φ(u′

N ) = (σN , (tN1 , · · · , tNFK
)).

After passing to a subsequence, we can assume that σN = σ is constant, and
(tN1 , · · · , tNFK

) converges to a vector (t∞1 , · · · , t∞FK
). Define

τ∞
0 = 0, τ∞

1 = τ∞
0 + t∞1 , τ∞

j = τ∞
0 +

j∑
i=1

t∞i , j = 2, · · · ,FK ,

I∞
i = (τ∞

i−1, τ
∞
i ), i = 1, · · · ,FK

and the piecewise affine path u′
∞(t) := u(0) +

∫ t

0
u̇′

∞(s)ds with

u̇′
∞(t) =

FK∑
i=1

χI∞
i

(t)c · pσ(i).

Let T N = {t ∈ [0, 1] | u̇′
N (t) = c

cN
u̇′

∞(t)}. Then

∫
T N

‖ u̇′
N (t) − u̇′

∞(t) ‖2 dt → 0 as N → ∞.

Since ‖ u̇′
N (t)−u̇′

∞(t) ‖2 is bounded on {t ∈ [0, 1] | ż′
N (t) and ż′

∞(t) are defined},
as N → ∞ we get |T N | → 1 and therefore

∫
[0,1]\T N

‖ u̇′
N (t) − u̇′

∞(t) ‖2 dt → 0.

Observe that limN→∞
∫ 1

0
u̇′

N (t)dt =
∫ 1

0
u̇(t)dt implies

∫ 1

0
u̇′

∞(t)dt =
∫ 1

0
u̇(t)dt.

We deduce

u′
∞(1) = u′

∞(0) +
∫ 1

0

u̇′
∞(t)dt = u(0) +

∫ 1

0

u̇(t)dt = u(1)
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and so u′
∞(1) = Ψu′

∞(0). Moreover

|A(u′
∞) − 1| =|A(u′

∞) − A(u′
N )|

=
∣∣∣∣12

∫ 1

0

〈−Ju̇′
∞(t), u′

∞(t)〉 − 〈−Ju̇′
N (t), u′

N (t)〉dt

∣∣∣∣
�

∣∣∣∣12
∫ 1

0

〈−J(u̇′
∞(t) − u̇′

N (t)), u′
∞(t)〉dt

∣∣∣∣
+

∣∣∣∣12
∫ 1

0

〈−Ju̇′
N (t), u′

∞(t) − u′
N (t)〉dt

∣∣∣∣
�1

2

∫ 1

0

|u̇′
∞(t) − u̇′

N (t)||u′
∞(t)|dt

+
1
2

∫ 1

0

|u̇′
N (t)||u′

∞(t) − u′
N (t)|dt → 0

because u̇′
N and u′

∞ are bounded. Then A(u′
∞) = 1, and thus u′

∞ ∈ AΨ and

IK(u′
∞) = lim

N→∞
IK(u′

N ) = lim
N→∞

c2
N = c2 = T = cΨ

EHZ(K).

By Theorem 2.1 we have a0 ∈ Ker(Ψ − I2n) such that the W 1,2-path

[0, T ] � t �→ γ∗(t) =
√

Tu′
∞(t/T ) + a0/

√
T (4.2)

is a piecewise affine generalized Ψ-characteristic on ∂K with action A(γ∗) =
cΨ
EHZ(K). Then the generalized Ψ-characteristic on ∂K, [0, 1] � t �→ γ(t) :=

γ∗(Tt), has action A(γ) = cΨ
EHZ(K) and satisfies γ̇(t) ∈ T · {p1, · · · , pFK

} for
almost every t ∈ [0, 1] and that the set {t : γ̇(t) = pi} is connected for every
i. Recall pi = 2

hi
Jni. Theorem 4.1 is proved. �

Proof of Theorem 1.1. Step 1. Case 0 ∈ Int(K). Let A0
Ψ consist of z ∈ AΨ

for which there exist C > 0 and an increasing sequence of numbers 0 = τ0 ≤
τ1 ≤ . . . ≤ τFK

= 1 such that

ż(t) =
FK∑
i=1

χIi
(t)C · pσ(i) (4.3)

with Ii = (τi−1, τi), where σ ∈ SFK
is a permutation on {1, · · · ,FK}. Then

u′
∞ in the proof of Theorem 4.1 belongs to A0

Ψ and satisfies IK(u′
∞) =

cΨ
EHZ(K). Thus

cΨ
EHZ(K) = min{IK(z) | z ∈ AΨ} = min{IK(z) | z ∈ A0

Ψ}. (4.4)

For any z ∈ A0
Ψ, ż has the form of (4.3) and hence

z(1) − z(0) =
∫ 1

0

ż(t)dt = C

FK∑
i=1

Tipσ(i)

where Ti = |Ii|, and Proposition 3.2 yields

1 =
1
2

∫ 1

0

〈−Jż, z〉dt =
1
2
C2

∑
1�j<i�FK

TiTjω0(pσ(j), pσ(i)) +
1
2
ω0(z(0), z(1)).
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Let v = z(0)/C. The above two formulas become, respectively, Ψv − v =∑FK

i=1 Tipσ(i) and

1 =
1
2

∫ 1

0

〈−Jż, z〉dt =
1
2
C2

∑
1�j<i�FK

TiTjω0(pσ(j), pσ(i)) + C2 1
2
ω0(v,Ψv).

By Proposition 3.5 we have IK(z) = C2, and thus

IK(z) =
2∑

1�j<i�FK
TiTjω0(pσ(j), pσ(i)) − ω0(Ψv, v)

> 0. (4.5)

With EΨ defined as in Theorem 1.1 let

M∗
Ψ(K) =

{
((Ti)

FK
i=1, v, σ)

∣∣∣∣ σ ∈ SFK
, Ti � 0,

∑FK
i=1 Ti = 1,

∑FK
i=1 Tipσ(i) = Ψv − v,∑

1�j<i�FK
TiTjω0(pσ(j), pσ(i)) > ω0(Ψv, v), v ∈ EΨ

}
,

For every triple ((Ti)FK
i=1, v, σ) ∈ M∗

Ψ(K), as the construction of u′
∞ in the

proof of Theorem 4.1 we can use it to construct a z ∈ A0
Ψ such that (4.5)

holds. It follows from these and (4.4) that

cΨ
EHZ(K) = min

((Ti)
FK
i=1,v,σ)∈M∗

Ψ(K)

2∑
1�j<i�FK

TiTjω0(pσ(j), pσ(i)) − ω0(Ψv, v)
,

Let βσ(i) = Ti

hσ(i)
. Since pi = 2

hi
Jni, we get

cΨ
EHZ(K) = min

((βi)
FK
i=1,v,σ)∈MΨ(K)

2

4
∑

1�j<i�FK
βσ(i)βσ(j)ω0(nσ(j), nσ(i)) − ω0(Ψv, v)

,

where MΨ(K) is as in Theorem 1.1.
Step 2. General case. Let p ∈ Int(K) be a fixed point of Ψ. Consider the
symplectomorphism

φ : (R2n, ω0) → (R2n, ω0), x �→ x − p. (4.6)

Since Ψ(p) = p, φ ◦ Ψ = Ψ ◦ φ and thus cΨ
EHZ(K) = cΨ

EHZ(φ(K)) by the argu-
ments below Proposition 1.2 of [10]. Let us write K̂ = φ(K) for convenience.
Denote all (2n−1)-dimensional facets of it by {F̂i}FK̂

i=1, the unit outer normal
to F̂i by n̂i, the support function of K̂ by hK̂ . Then FK̂ = FK , F̂i = Fi − p
and n̂i = ni for i = 1, · · · ,FK , and hK̂(y) = hK(y)−〈p, y〉. By Step 1 we get

cΨ
EHZ(K̂) = min(

(βi)
FK
i=1,v,σ

)
∈MΨ(K̂)

2

4
∑

1�j<i�FK
βσ(i)βσ(j)ω0(nσ(j), nσ(i)) − ω0(Ψv, v)

,

where with ĥi = ĥK̂(ni) = hK(ni) − 〈p, ni〉 = hi − 〈p, ni〉 for i = 1, · · · ,FK ,

MΨ(K̂)

=

{(
(βi)

FK
i=1, v, σ

) ∣∣∣∣ σ ∈ SFK
, βi � 0,

∑FK
i=1 βiĥi = 1,

∑FK
i=1 2βiJni = Ψv − v,

4
∑

1�j<i�FK
βσ(i)βσ(j)ω0(nσ(j), nσ(i)) > ω0(Ψv, v), v ∈ EΨ

}
.

Clearly, it remains to prove MΨ(K̂) = MΨ(K). In fact, for any
(
(βi)FK

i=1, v, σ
)

∈
MΨ(K̂), since

1 =
FK∑
i=1

βiĥi =
FK∑
i=1

βihi − 〈p,

FK∑
i=1

βini〉,
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it suffices to prove 〈p,
∑FK

i=1 βini〉 = 0. Note that
∑FK

i=1 2βiJni = Ψv − v,
v ∈ EΨ. We have

〈p,

FK∑
i=1

βini〉 = ω0(p,

FK∑
i=1

βiJni) =
1

2
ω0(p, Ψv − v) =

1

2
(ω0(p, Ψv) − ω0(p, v)) = 0

because ω0(p,Ψv) = ω0(Ψp,Ψv) = ω0(p, v). Hence MΨ(K̂) ⊂ MΨ(K), and
hence MΨ(K) ⊂ MΨ(K̂) since K = K̂ − (−p) and Ψ(−p) = −p. �

5. Proofs of Theorems 1.2, 1.3

We have an analogue of Theorem 4.1:

Theorem 5.1. Let K be a convex polytope as above (1.3). If 0 ∈ Int(K), there
exists a generalized leafwise chord on ∂K for R

n,k: γ : [0, 1] → ∂K with
A(z) = min{A(x)|x is a generalized leafwise chord on ∂K for R

n,k} such
that γ̇ is piecewise constant and is composed of a finite sequence of vectors,
i.e. there exists a sequence of vectors (w1, . . . , wm), and a sequence (0 = τ0 <
· · · < τm−1 < τm = 1) so that γ̇(t) = wi for τi−1 < t < τi. Moreover, for each
j ∈ {1, · · · ,m} there exists i ∈ {1, · · · ,FK} so that wj = CjJni , for some
Cj > 0, and for each i ∈ {1, · · · ,FK}, the set {t : ∃C > 0, γ̇(t) = CJni}
is connected, i.e. for every i there is at most one j ∈ {1, . . . , m} with wj =
CjJni. Hence there are at most FK points of discontinuity in γ̇, and γ visits
the interior of each facet at most once.

Proof. Let z : [0, T ] → ∂K be a generalized leafwise chord with action A(z) =
cLR(K,K ∩ R

n,k) = cn,k(K) for R
n,k. By Theorem 2.2 we can assume it to

satisfy (2.7) (by a reparametrization if necessary), and obtain that the path

u : [0, 1] → R
2n, t �→ 1√

T
z(Tt) − 1√

T
Pn,k

∫ 1

0

z(Tt)dt

belongs to A2 and satisfies I2(u) = T = cn,k(K). Moreover

u̇(t) =
√

T ż(Tt) ∈
√

T conv{pi |
√

T (u(t) − b) ∈ Fi} ⊂ T 1/2 · conv{p1, · · · , pFK
}

with b = − 1√
T

Pn,k

∫ 1

0
z(Tt)dt and with c = T 1/2, and so I2(u) = c2 by

Proposition 3.5.
For every N ∈ N, Lemma 3.1 yields a piecewise affine path ζN such

that

‖ u − ζN ‖W 1,2� 1
N

, ζN (0) = u(0), ζN (1) = u(1) and

ζ̇N (t) ∈ c · conv{p1, · · · , pFK
}

for almost every t. By applying Lemma 3.3 with vi = cpi, i = 1, · · · ,FK to
ζN , we get a piecewise affine path ζ ′

N ∈ W 1,2([0, 1],R2n) such that

A(ζ ′
N ) ≥ A(ζN ), ζ ′

N (0) = u(0), ζ ′
N (1) = u(1), ζ̇ ′

N (t) ∈ {v1, . . . , vFK
}
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for almost every t. Applying Lemma 3.4 to ζ ′
N again, we can obtain a piecewise

affine path uN : [0, 1] → R
2n from u(0) to u(1) such that

u̇N (t) =
mN∑
i=1

χIN
i

(t)vN
i

where vN
i = vj for some j ∈ {1, · · · ,FK} and for every j there is at most one

such i, and that

AN :=
√

A(uN ) �
√

A(ζN ).

Define u′
N := uN

AN
and cN =: c

AN
. Notice that

∫ 1

0
u′

N (t)dt may not belong
to JV n,k

0 and u′
N may not belong to F2. Recall that Pn,k : R2n = JV n,k

0 ⊕
R

n,k → R
n,k is the orthogonal projection. Define

yN := u′
N − Pn,k

(∫ 1

0

u′
N (t)dt

)
.

Then
∫ 1

0
y(t)dt ∈ JV n,k

0 and

A(yN ) =
∫ 1

0

〈
− Ju̇′

N , u′
N (t) − Pn,k

( ∫ 1

0

u′
N (t)dt

)〉
dt

= A(u′
N ) −

〈
J(u′

N (1) − u′
N (0)), Pn,k

( ∫ 1

0

u′
N (t)dt

)〉
.

Since u′
N (1) − u′

N (0) ∈ V n,k
0 , A(yN ) = A(u′

N ) = 1. Thus, yN ∈ A2. Write

wN
i := vN

i

AN
for the velocities of yN , which sits in the set c

AN
· {p1, · · · , pFK

}.
Since ‖ u − ζN ‖W 1,2� 1

N we deduce that A(ζN ) → 1 as N → ∞. Hence
limN→∞ AN � 1, and limN→∞ cN � c. Moreover Proposition 3.5 and the
minimality of I2(u) imply that c2

N = IK(yN ) � IK(u) = c2. Then limN→∞ cN =
c and thus limN→∞ AN = 1.

Recall that the set A1 is defined as above (4.1) and that the map Φ is
as in (4.1). By the proof of Theorem 4.1, the image Im(Φ) is contained in the
compact subset of SFK

× R
FK ,

SFK
× {(t1, · · · , tFK

) ∈ R
FK | ti � 0 ∀i,

FK∑
i=1

ti = 1}.

Since yN ∈ A1 with C = cN , we can write Φ(yN ) = (σN , (tN1 , · · · , tNFK
)).

After passing to a subsequence, we can also assume that σN = σ is constant,
and (tN1 , · · · , tNFK

) converges to a vector (t∞1 , · · · , t∞FK
). Define

τ∞
0 = 0, τ∞

1 = τ∞
0 + t∞1 , τ∞

j = τ∞
0 +

j∑
i=1

t∞i , j = 2, · · · ,FK ,

I∞
i = (τ∞

i−1, τ
∞
i ), i = 1, · · · ,FK

and the piecewise affine path u′
∞(t) = u(0) +

∫ t

0
u̇′

∞(s)ds with

u̇′
∞(t) =

FK∑
i=1

χI∞
i

(t)c · pσ(i).
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Similar to the proof of Theorem 4.1, one gets u′
∞ satisfying u′

∞(0) =
u(0), u′

∞(1) = u(1), A(u′
∞) = 1 and I2(u′

∞) = c2. Define

u∞ := u′
∞ − Pn,k

( ∫ 1

0

u′
∞(t)dt

)
.

Then u∞ ∈ A2 and I2(u∞) = T = cn,k(K). By Theorem 2.2 we have a0 ∈
R

n,k such that

[0, 1] � t �→ γ(t) :=
√

Tu∞(t) + a0/
√

T

is a piecewise affine generalized leafwise chord on ∂K for R
n,k with action

A(γ) = I2(u) = cLR(K,K ∩ R
n,k)

and satisfying γ̇(t) ∈ T ·{p1, · · · , pFK
} for almost every t ∈ [0, 1] and that the

set {t : γ̇(t) = pi} is connected for every i. Recall pi = 2
hi

Jni. Theorem 5.1
is proved. �

Proof of Theorem 1.2. Step 1. Case 0 ∈ Int(K). Let A0
2 consist of z ∈ A2 for

which there exist C > 0 and an increasing sequence of numbers 0 = τ0 ≤
τ1 ≤ . . . ≤ τFK

= 1 such that

ż(t) =
FK∑
i=1

χIi
(t)C · pσ(i) (5.1)

with Ii = (τi−1, τi), where σ ∈ SFK
is the permutation on {1, · · · ,FK}.

Then u′
∞ in the proof of Theorem 5.1 belongs to A0

2 and satisfies IK(u′
∞) =

cLR(K,K ∩ R
n,k). Thus

cLR(K,K ∩ R
n,k) = min{I2(z) | z ∈ A2} = min{I2(z) | z ∈ A0

2}. (5.2)

For any z ∈ A0
2, we have z(0), z(1) ∈ R

n,k, ż has the form of (5.1) and hence

V n,k
0 � z(1) − z(0) =

∫ 1

0

ż(t)dt = C

FK∑
i=1

Tipσ(i)

where Ti = |Ii|, and Proposition 3.2 yields

1 =
1
2

∫ 1

0

〈−Jż, z〉dt =
1
2
C2

∑
1�j<i�FK

TiTjω0(pσ(j), pσ(i)) +
1
2
ω0(z(0), z(1)).

Note that ω0(z(0), z(1)) = ω0(z(0), z(1) − z(0)) = 0, and I2(z) = C2 by
Proposition 3.5. Then

I2(z) =
2∑

1�j<i�FK
TiTjω0(pσ(j), pσ(i))

> 0. (5.3)

Let

M∗(K) =

{
((Ti)

FK
i=1, σ)

∣∣∣∣ σ ∈ SFK
, Ti � 0,

∑FK

i=1 Ti = 1,
∑FK

i=1 Tipσ(i) ∈ V n,k
0∑

1�j<i�FK
TiTjω0(pσ(j), pσ(i)) > 0

}
.
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For every pair ((Ti)FK
i=1, σ) ∈ M∗(K), as in the construction of u′

∞ in the
proof of Theorem 4.1 we can use ((Ti)FK

i=1, σ) to construct a z ∈ A0
2 such that

(5.3) holds. It follows that

cLR(K,K ∩ R
n,k) = min

((Ti)
FK
i=1,σ)∈M∗(K)

2∑
1�j<i�FK

TiTjω0(pσ(j), pσ(i))
,

Define βσ(i) := Ti

hσ(i)
. Since pi = 2

hi
Jni, The above two formulas give the

desired formula in this case.
Step 2. General case. Let p ∈ Int(K)∩R

n,k. Then the symplectomorphism φ
defined by (4.6) satisfies cLR(φ(K), φ(K) ∩R

n,k) = cLR(K,K ∩R
n,k) by the

arguments at the beginning of [11, §3]. As in Step 2 of the proof of Theorem
1.1 let K̂ = φ(K). By Step 1 we obtain

cLR(K̂, K̂ ∩ R
n,k) =

1
2

min
((βi)

FK
i=1,σ)∈M(K̂)

1∑
1�j<i�FK

βσ(i)βσ(j)ω0(nσ(j), nσ(i))
,

where

M(K̂) =

{
((βi)

FK
i=1, σ)

∣∣∣∣ βi � 0,
∑FK

i=1 βiĥi = 1,
∑FK

i=1 βiJni ∈ V n,k
0 ,∑

1�j<i�FK
βσ(i)βσ(j)ω0(nσ(j), nσ(i)) > 0, σ ∈ SFK

}
.

Now we are in position to prove that M(K̂) is equal to M(K) in (1.6).
We only need to prove M(K̂) ⊂ M(K) because of obvious reasons. Since
((βi)FK

i=1, σ) ∈ M(K̂) satisfies

1 =
FK∑
i=1

βiĥi =
FK∑
i=1

βihi −
〈
p,

FK∑
i=1

βini

〉
,

it suffices to prove 〈p,
∑FK

i=1 βini〉 = 0. Note that
∑FK

i=1 βiJni ∈ V n,k
0 . We

have
〈
p,

FK∑
i=1

βini

〉
= ω0

(
p,

FK∑
i=1

βiJni

)
= 0

because R
n,k and V n,k

0 are ω0-orthogonal. Hence M(K̂) ⊂ M(K). �

Proof of Theorem 1.3. Let p ∈ D ∩ L ∩ R
1,0, define φ : R2 → R

2, x �→ x − p.
As in [11, §3] we have cLR(D,D ∩ R

1,0) = cLR(φ(D), φ(D) ∩ R
1,0) and

cLR(D1,D1 ∩ R
1,0) = cLR(φ(D1), φ(D1) ∩ R

1,0),
cLR(D2,D2 ∩ R

1,0) = cLR(φ(D2), φ(D2) ∩ R
1,0).

Thus we can assume 0 ∈ D ∩ L ∩ R
1,0 below.

Let H+ := {(x, y) ∈ R
2 | y � 0}, H− := {(x, y) ∈ R

2 | y � 0}, and write
K+ = H+ ∩ K and K− = H− ∩ K for any subset K ⊂ R

2. On each of ∂D,
∂D1 and ∂D2 there only exist two generalized leafwise chords for R1,0, that is,
(∂D)+ and (∂D)− on ∂D, (∂D1)+ and (∂D1)− on ∂D1, (∂D2)+ and (∂D2)−

on ∂D2. Note that a GLC x on ∂D for R
1,0 and the line segment D ∩ R

1,0

form a loop γ and that 〈−Jż, z〉 vanishes along the line segment D ∩ R
1,0.
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Using these and Stokes theorem we deduce that A(x) =
∫

x
qdp =

∫
γ

qdp is
equal to the symplectic area of the domain surrounded by γ. Hence

cLR(D,D ∩ R
1,0) = min{Area(D+),Area(D−)},

cLR(D1,D1 ∩ R
1,0) = min{Area(D+

1 ),Area(D−
1 )},

cLR(D2,D2 ∩ R
1,0) = min{Area(D+

2 ),Area(D−
2 )}.

Assume without loss of generality that cLR(D,D ∩R
1,0) = Area(D+). Then

cLR(D1,D1 ∩ R
1,0) + cLR(D2,D2 ∩ R

1,0) � Area(D1 ∩ D+) + Area(D2 ∩ D+)
= Area(D+) = cLR(D,D ∩ R

1,0).

�
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[16] Sikorav, J.-C.: Systémes Hamiltoniens et topologie symplectique. Dipartimento
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