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3, Paper No. 104, 18 pp.], the authors raised the question about the
existence of a fixed point free continuous INEA mapping T defined on
a closed convex and bounded subset (or on a weakly compact convex
subset) of a Banach space with normal structure. Our main goal is to
give the affirmative answer to this problem in the very special case of a
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1. Introduction and preliminaries

Let C be a weakly compact convex subset of a Banach space. In [1], the
following concept of iterated nonexpansive mappings (INE in short) was
stated:
The mapping T : C → C is INE if satisfies

‖T (Tx) − Tx‖ ≤ ‖Tx − x‖, for all x ∈ C.

It is not surprising that an INE mapping does not have to have fixed points
even if it is defined on a subset of a finite-dimensional Hilbert space (see, for
instance, [2, Example 1.1]). Thus, it seems natural to raise the question of
whether the same mapping must have a fixed point provided it is continuous.
Clearly, according to the Klee result (see [3]), in this case we are considering
a noncompact domain C, so the space must have infinite dimension (but
still being a Hilbert space or a Banach one with normal structure). A Banach
space is said to have normal structure if each convex subset C which contains
more than one point has a point x ∈ C which is not a diametral one of C,
i.e., the following condition holds: sup{‖x − y‖ : y ∈ C} < diam C (see, for
instance, [4]).
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The negative answer to this question was given in [2,5], where the au-
thors presented an example of a class of fixed point free mappings which
are INE and continuous on any closed convex bounded but noncompact sub-
set of a Banach space. The same is true when the set is convex and weakly
compact (and noncompact with respect to the norm topology). The common
denominator of these mappings was the fact that all of them satisfy

‖Tx − x‖ = ‖T (Tx) − Tx‖;

therefore, they were not asymptotically regular. Let us remind that the self-
mapping T : C → C is asymptotically regular if for each x ∈ C the sequence
‖Tnx − Tn+1x‖ tends to 0. This condition can be generalized to the case of
mappings which have the so-called almost fixed point sequence. A sequence
(xn) in C is called an almost fixed point sequence (a.f.p.s. for short) for the
mapping T on C whenever ‖xn−T (xn)‖ → 0 . It is well known that if the self-
mapping T : C → C is nonexpansive then T has an a.f.p.s. in C. Combining
this fact with the normal structure of a space leads to the existence of fixed
points (see, for instance, [6, Theorem 4.1] and [7, Theorem 2.7]). Iterated
nonexpansive mappings which have a.f.p.s. are called INEA for short. Since
the assumption of the existence of a.f.p.s. seems to play a crucial role, one
may ask whether there is any fixed point free continuous INEA self-mapping
of a closed convex bounded (or weakly-compact convex) subset C of a Banach
space into C. Here we suppose additionally that the Banach space is a Hilbert
one or Banach with normal structure.

As it was mentioned before, our main goal is to give an example of
a continuous and INEA mapping T defined on a closed convex bounded
subset (more precisely, on a closed unit ball) of the Hilbert space into itself
for which the set of fixed points is empty. To do it, let us take the Hilbert
space l2and let B be its closed unit ball. Further, we will apply two kinds
of geometry. The first one is Cartesian geometry based on the standard base
of l2 denoted by {en : n ∈ N}. Then let 〈·, ·〉 mean the inner product in
l2. Moreover, we denote the unit sphere by S. This set will be very often
considered with spherical geometry based on the spherical metric ρ, i.e.,

ρ(A,B) = arccos〈A,B〉
for a pair of two elements A,B ∈ S. By the angle between two curves c and c̃
(c(0) = c̃(0)) on the sphere with respect to spherical geometry we mean the
Alexandrov angle, defined by

lim
s,t→0+

∠c(0)(c(s), c̃(t)).

This limit always exists (see, for instance, [8, p. 16]). More details about
spherical geometry can be found in [8,9]).

2. Example

Our example may seem to be rather complicated. So, for the reader’s conve-
nience, we divide its description into six steps.

Step 1—construction of the curve
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Figure 1. The construction of the curve

Let us take an infinite set of points {tn : n ∈ N}, where

tn =
en + en+1√

2
,

and first consider the convex hull of {e1, e2, e3} with respect to spherical
geometry, i.e., the set

convS({e1, e2, e3}) = {x ∈ S : 〈x, e1〉, 〈x, e2〉, 〈x, e3〉 ≥ 0, 〈x, en〉 = 0, n > 3} .

Further, we will use the same denotation convS(A) for any nonempty set
A ⊂ S.

Now, still with respect to spherical geometry on convS({e1, e2, e3}), let
us notice that a = 3−1/2(e1 + e2 + e3) ∈ convS({e1, e2, e3}). Moreover, if we
join points a and t1 and points t1 and ei, i = 1, 2, with the geodesic segments,
then the angle between the segments is equal to π/2. Notice that the same is
true for t2 and ei, i = 2, 3; hence, we can join points t1 and t2 with the curve

convS({e1, e2, e3}) ∩ S(a, ‖a − t1‖),

where S(a, r) is a sphere in l2 with the radius with respect to the norm. The
angle between the curve and the segments [a, t1] or [a, t2] is also equal to
π/2, so the curve is tangent to [e1, e2] and [e2, e3] at the points t1 and t2,
respectively (Fig. 1).

Now, we repeat our construction on each three-dimensional set convS

({en, en+1, en+2}) and we obtain a smooth curve of infinite length joining
all points tn, n = 1, 2, . . .. Let us notice that points of the curve between
tn and tn+1 can be treated as points of the circle centered at a point ã =√

2
3
√

3
(en + en+1 + en+2) with a radius of r =

√
11 − 4

√
3

9
(now with respect

to Cartesian geometry). Then, the angle between radiuses [ã, tn] and [ã, tn+1]
is independent of n and smaller than π.

Let us denote this angle by α and for all t ∈ [0,∞) we define ϕ(t) as
a point of the curve. If t = n α + τ then ϕ(t) is located between tn and tn+1

in such a way that ∠ã(tn, ϕ(t)) = τ .
Step 2—definition of the map on the curve
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Figure 2. The construction of the map

Now, we would like to define the map T : ϕ → ϕ. Let us divide the curve
between points t1 and t2 into 128 equal parts and let α0 = α/128. Then, for
points of the form ϕ(t), t ∈ [0, α − α0], we take T (ϕ(t)) = ϕ(t + α0). So far,
the map T is an isometry.

To extend the map T on the whole curve, we need to make some calcu-
lations because our map must be INEA. To do it, first, let us choose α1 in
such a way that

α1

α0
=

sin(2α0)
2α0

.

Hence, for t = 127α0 + τ , τ ∈ (0, α0) we define

T (ϕ(t)) = ϕ

(
α + τ · α1

α0

)
.

Next we will show that so far

‖T (x) − T (T (x))‖ ≤ ‖x − T (x)‖ (1)

for x = ϕ(t), t ≤ 127α0.
Let us consider x = ϕ(t), where t ∈ (126α0, 127α0]. Then T (x) = ϕ(t +

α0) and

‖x − T (x)‖ = 2r sin
α0

2
, r = ‖ã − t2‖.

Simultaneously,

‖T (x) − T (T (x))‖ ≤ ‖T (x) − t2‖ + ‖t2 − T (T (x))‖ = 2r sin
sα0

2
+ 2r sin

(1 − s)α1

2
,

where s ∈ [0, 1). To prove (1), it is sufficient to notice that

sin
α0

2
− sin

sα0

2
= 2 sin

(1 − s)α0

4
cos

(1 + s)α0

4

= sin
(1 − s)α0

2
· cos (1+s)α0

4

cos (1−s)α0
4

≥ sin
(1 − s)α0

2
· cos

α0

2
.
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On the other hand,

sin
(1 − s)α1

2
≤ (1 − s)α1

2
(2)

and

sin
(1 − s)α0

2
≥ (1 − s)α0

2
· sin α0

α0
. (3)

Therefore,

sin
(1 − s)α1

2
≤ sin

(1 − s)α0

2
· α1

α0
· α0

sinα0
= sin

(1 − s)α0

2
· sin(2α0)

2α0
· α0

sinα0

= sin
(1 − s)α0

2
· cos α0 ≤ sin

(1 − s)α0

2
· cos

α0

2
and finally

2r sin
(1 − s)α1

2
+ 2r sin

sα0

2
≤ 2r sin

α0

2
.

Now, using the angle α1 we define

T (ϕ(α + t)) = ϕ(α + t + α1) as long as t ≤ 2α − α1.

Let us take the same point x as above (see Fig. 2) and notice that

‖T (T (x)) − T (T (T (x)))‖ = 2r sin
α1

2
.

We would like to show that

2r sin
α1

2
≤ ‖T (x) − T (T (x))‖.

Let us denote ∠t2(T (x), T (T (x))) = β. In the sequel, we will show that

β > π − α0. (4)

Let us notice that, on account of the cosine law, we get

‖T (x) − T (T (x))‖2 =
(
2r sin

sα0

2

)2

+
(

2r sin
(1 − s)α1

2

)2

−2 ·
(
2r sin

sα0

2

)
·
(

2r sin
(1 − s)α1

2

)
· cos β.

Simultaneously,

‖T (T (x)) − T (T (T (x)))‖ =
(
2r sin

sα1

2

)2

+
(

2r sin
(1 − s)α1

2

)2

−2 ·
(
2r sin

sα1

2

)
·
(

2r sin
(1 − s)α1

2

)
· cos π.

So, it is sufficient to prove the following inequality

sin
sα0

2
· cos(π − β) ≥ sin

sα1

2
.

We know that (see (2) and (3))

sin
sα1

2
sin

sα0

2

≤
sα1

2
sα0

2

· α0

sinα0
=

sin(2α0)
2α0

· α0

sin α0
= cos α0.
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Figure 3. Estimation of β

Thus, showing (4) we complete the proof of the inequality

‖T (T (x)) − T (T (T (x)))‖ ≤ ‖T (x) − T (T (x))‖.

The angle between the arcs
�

t1t2 and
�

t2t3 is equal to π. Since these two
arcs are the subsets of two different two-dimensional spaces, the angle between
segments [T (x), t2] and [t2, T (T (x))] (with respect to Cartesian geometry) is
greater than in the case when all points are located on one two-dimensional
space. The same situation can be observed in Fig. 3, where

∠O(a, b) ≥ ∠O(a, b′).

Next, if all points are on one two-dimensional space, then the angle between
the metric segments is greater than the angle between two metric segments
joining points on the same circle and having the same length 2r sin

α0

2
greater

than ‖T (x)− t2‖ and ‖t2 −T (T (x))‖. See also points a, a′, b′ and b′′ (Fig. 3).
Thus, the angle ∠t2(T (x), T (T (x))) is not smaller than β′. To estimate β′,
let us consider the triangle of the sides of length equal to 2r sin

α0

2
, 2r sin

α0

2
and 2r sin

2α0

2
(all vertices are located on a circle with radius r). Therefore,

sin
β′

2
=

r sin
2α0

2
2r sin

α0

2

= cos
α0

2
,

which completes the proof of (4).
To define the map on {ϕ(t) : t ∈ (2α − α1, 2α)}, let us choose

α2 = α1 · sin(2α0)
2α0

.
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Since α1 < α0 one may repeat considerations from the previous part to show
that T is still INEA. We can also define the map on {ϕ(t) : t ∈ (α, 3α − α2)}
as a movement along the curve. Repeating all steps with

αn+1 = αn · α1

α0
, n ∈ N

one may extend the map T on the whole curve γ. Let us notice that T is also
continuous.

Step 3—neighborhood of the curve
In this step, we consider the neighborhood of the curve. Mainly, let us

consider the set

U = {x ∈ B : ∃t ∈ [0,∞) : ‖ϕ(t) − x‖ ≤ αm−1, if t ∈ [(m − 1)α,mα]} .

We will see that this set is closed. Indeed, let us take any Cauchy sequence
(xn), xn ∈ U . Let xn → x̄ ∈ B. Since ‖tn − tm‖ ≥ 1 >> α0 for n �= m,
without loss of generality we may assume that there is a sequence (τn) such
that τn ∈ [mα, (m+1)α] and ‖xn −ϕ(τn)‖ ≤ αm. Then, there is a convergent
subsequence (denoting again by (τn)) such that τn → τ̄ . If τ̄ ∈ (mα, (m+1)α],
then the same holds for almost all τn, so ‖x̄ − ϕ(τ̄)‖ as the limit is also not
greater than αm. If τ̄ = mα, then

‖xn − ϕ(τn)‖ ≤ αm

and so

‖x̄ − ϕ(τ̄)‖ ≤ αm < αm−1

and x̄ is also an element of U .
Step 4—definition of the hyperplanes
Now, for each point x ∈ ϕ there is a unique hyperplane

Hx = {y ∈ l2 : 〈y − x, T (x) − x〉 = 0}. (5)

We will show that two hyperplanes do not intersect inside U as long as
they are determined by points which are not located too far from each other.
Let us fix a point x = ϕ(t0) and let x′ = ϕ(t0 + τ), where τ ∈ (0, 9α0). Let
us also assume that t0 ∈ [mα, (m + 1)α).
Claim: For all possible positions of x, x′, T (x) and T (x′), the angle between
vectors x T (x) and x′ T (x′) is not greater than τ .

• Case 1. First, we assume that all points are located on the curve between
tm and tm+1. So, the aforementioned vectors x T (x) and x′ T (x′) span
one two-dimensional space and it is sufficient to consider only points on
this space. Clearly, the intersection of Hx (or Hx′) with this space is
a line—see Fig. 4.
From the equality ‖x − T (x)‖ = ‖x′ − T (x′)‖ = αm it follows that

∠x(p, ã) = ∠x′(p, ã),

where p is the projection of x onto the set of common points of Hx

and Hx′ . Clearly, p also belongs to the same two-dimensional space.
Since ∠x(p, T (x)) = ∠x′(p, T (x′)) = π/2, we get that the angle between
vectors x T (x) and x′ T (x′) is equal to the angle ∠ã(x, x′), i.e., is equal
to τ .
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• Case 2. Now, we assume that the three points x, x′, T (x) are located on
the curve between tm and tm+1 and T (x′) is between tm+1 and tm+2—
see Fig. 5. Without loss of generality we may assume that τ < αm.
Let ã be the center of the circle containing tm and tm+1 while b̃ is the
center of the circle containing tm+1 and tm+2. Then, there is a number
s ∈ (0, 1) such that

∠ã(x′, tm+1) = (1 − s)αm and ∠b̃(tm+1, T (x′)) = s αm+1.

Let us choose T ′ on the same circle as tm and tm+1 (Fig. 5) for which

∠ã(x′, T ′) = (1 − s)αm + s αm+1.

Since the curve is smooth and T (x′) does not belong to the same two-
dimensional space as the rest of the points, the following inequalities
hold

‖x′ − T (x′)‖ > ‖x′ − T ′‖ and ∠x′(T (x), T ′) > ∠x′(T (x), T (x′)). (6)

Clearly, the angle between vectors x T (x) and x′ T ′ is equal to the sum
of angles ∠T (x)(x, x′) and ∠x′(T (x), T ′). Moreover, this sum is smaller
than τ , because

‖x − T (x)‖ > ‖x′ − T ′‖.

However, from (6) and the fact that T (x′) does not belong on the same
space as the rest of points it follows that the angle between vectors
x T (x) and x′ T (x′) is smaller than the angle between vectors x T (x)
and x′ T ′ and so smaller than τ .
The proofs for the cases where τ ≥ αm or three points x′, T (x) and
T (x′) are between tm+1 and tm+2 go with the same patterns.

• Case 3. Now we assume that x and x′ are located between tm and tm+1

while T (x) and T (x′) are between points tm+1 and tm+2—see Fig. 6
Let us fix T and T ′ on the circle containing x and x′ in such a way that

∠ã(x, T ) = ∠ã(x, tm+1) + ∠b̃(tm+1, T (x))

and

∠ã(x′, T ′) = ∠ã(x′, tm+1) + ∠b̃(tm+1, T (x′)),

where ã and b̃ are defined in the same way as in Case 2.
We want to show that

∠T (x)(x, x′) < ∠T (x, x′). (7)

To do it, let us notice that

‖x − T (x)‖ > ‖x − T‖
while

∠x′(x, T (x)) > ∠x′(x, T ) >
π

2
.

Hence, the inequality (7) follows directly from the sine law.
In a similar way one may see that

∠x′(T (x), T (x′)) < ∠x′(T, T ′).
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Figure 4. Estimation of ‖p − x‖

Figure 5. Estimation of angle between vectors

Figure 6. Estimation of the angle between vectors

Moreover, since all four points do not belong to the same two-dimensional
space, the angle between vectors x T (x) and x′ T (x′) is smaller than the
sum of ∠T (x)(x, x′) and ∠x′(T (x), T (x′)). This completes the proof for
Case 3.
The case where two points x and T (x) are between tm and tm+1 is
slightly easier.

Now, we consider the projection of x′ onto Hx.
First, we want to estimate the angle ∠x(x′, T (x)). We may consider

three cases as it was done in the previous part when we studied the angle
between vectors but here we do not need to make the estimation so precise;
therefore, only notice that this angle is smaller than the sum of the angle
between the vector x x′ and the curve at the point x and the angle between
the vector x T (x) and the curve at the same point x.

In both cases, the angles are of the largest measure if all points x, x′

and T (x) are located between points tm and tm+1. Hence, using denotations
from Fig. 7, we get

∠x(y, z) =
π

2
− ∠x(y, ã) =

∠ã(x, y)
2

.
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Figure 7. Measure of the angle ∠xy, z

Since ∠ã(x, T (x)) ≤ αm and ∠ã(x, x′) = τ ≤ 9α0, it follows finally that

∠x(x′, T (x)) ≤ 5α0.

Now we find the projection of x′ onto the hyperplane Hx and denote
this by px. Since Hx is determined by the vector x T (x) and

x T (x) ‖ px x′,

we obtain two estimations:

‖x′ − px‖ ≥ ‖x − x′‖ · cos(5α0) ≥ 2r sin
τ

2
· cos(5α0)

and

‖x − px‖ ≤ ‖x − x′‖ · sin(5α0) ≤ τ · sin(5α0).

Let p be the projection of px onto the set Hx ∩ Hx′ . Clearly, this set
is closed and convex, so the projection is a single, i.e., is well defined. Since
vectors x T (x) and px x′ are parallel, we can calculate the measure of the
angle ∠x′(px, T (x′)) in the following way:

∠x′(px, T (x′)) = π − γ,

where γ denotes the angle between vectors x T (x) and x′ T (x′) (Fig. 8).

∠x′(T (x), p) =
π

2
,

we can estimate ∠x′(px, p) by

∠x′(px, p) =
π

2
− γ ≥ π

2
− τ.

For all points h ∈ Hx ∩ Hx′ , we have

‖h − x‖ ≥ ‖h − px‖ − ‖px − x‖ ≥ ‖p − px‖ − ‖px − x‖.
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Figure 8. Measure of the angle ∠xy, z

Simultaneously,

‖p − px‖ = ‖x′ − px‖ · tan ∠x′(p, px) = ‖x′ − px‖ · cot γ ≥ ‖x′ − px‖ · cot τ.

Combining it with the earlier estimations, we obtain

‖h − x‖ ≥ 2r sin
τ

2
· cos(5α0) · cot τ − τ · sin(5α0).

The minuend is equal to

r · 2 sin τ
2

sin τ
· cos(5α0) · cos τ = r · cos(5α0) cos τ

cos τ
2

≥ r · cos2(9α0).

In a similar way, we can estimate the subtrahend by

τ · sin(5α0) ≤ 45(α0)2.

Our considerations finally lead to

‖h − x‖ ≥ r · cos2(9α0) − 45(α0)2 ≥
√

11 − 4
√

3
9

· cos2(9 · π/128)

−45(π/128)2 ≥ 0.6

for all points belonging to Hx ∩ Hx′ .
In this way, we have shown that the hyperplane Hx and Hx′ inter-

sect outside the set U as long as τ ≤ 9α0. Furthermore, each point of
the closed ball B̄(x, αm) can belong to at most one hyperplane Hy with
|γ−1(y) − γ−1(x)| ≤ 9α0.

Next, we will show that almost all points of the set U (more precisely,
all points from V ) satisfy the following condition:

x satisfies (P ) if x ∈ U ∧ (∃t ∈ [0,∞) : ‖x − ϕ(t)‖ ≤ 4α0 ∧ x ∈ Hϕ(t)

)
.

Let us consider the Cauchy sequence of points (xn) such that xn ∈ U and
all of them satisfy this property. As it was shown the limit point x0 = lim xn

belongs to U and we will prove that x0 also satisfies (P ).
Since (xn) is a Cauchy sequence, we may take a subsequence with ‖xn −

xm‖ ≤ α0. Then there must be

‖ϕ(sn) − ϕ(sm)‖ ≤ 9α0,
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where xn ∈ Hϕ(sn).
So, without loss of generality we may assume that all sn belong to

[mα, (m + 1)α] and x0 �∈ ϕ. Otherwise, x0 ∈ Hx0 and the proof of the claim
is complete. Then there is at least one accumulation point sA. Let us assume
that sl(n) → sA. Since xn �→ ϕ(sA) and sl(n) → sA, it must be

cosϕ(sA)(xl(n), T (ϕ(sA))) → 0.

This leads to

cosϕ(sA)(x0, T (ϕ(sA))) = 0

and completes the proof of our claim.
However, we will apply our considerations to prove an additional point.

Namely, we will prove that the whole sequence (sn) must tend to sA. To see
it, let us repeat our pattern for sB—another accumulation point of (sn). Let
us assume that sk(n) → sB . And again if x0 �∈ ϕ, there must be

cosϕ(sB)(xk(n), T (ϕ(sB))) → 0,

which yields

cosϕ(sB)(x0, T (ϕ(sB))) = 0,

but x0 cannot belong to both hyperplanes Hϕ(sA) and Hϕ(sB), because it is
too close to ϕ(sA). The proof of uniqueness of accumulation point for x0 ∈ ϕ
is obvious.

Let us consider a subset V of U containing points u for which

〈t0 − T (t0), u − T (t0)〉 ≥ 0 as long as ‖u − t0‖ ≤ 3α0.

Clearly, V is also closed. We will show that each point u ∈ V satisfies the
property (P ).

Let us fix u ∈ V . From the inclusion u ∈ U it follows that there is
a positive number τ such that ‖u − ϕ(τ)‖ ≤ αm, when τ ∈ [mα, (m + 1)α].
Let us denote x = ϕ(τ). Let us assume that 〈x−u, x−T (x)〉 �= 0 is a negative
number and we consider the line k containing u and parallel to the vector
x T (x). Let y1 = k ∩ Hx.

Taking x′ = ϕ(τ −3αm), we obtain that u belongs to the metric segment
[y0, y1], where y0 = k∩Hx′ . Otherwise, the hyperplanes Hx and Hx′ intersect
too close to x. For each t ∈ [τ − 3αm, τ ] one can find a point ut = k ∩
Hϕ(t). Let t0 = sup{t ∈ [τ − 3αm, τ ] : u ∈ [ut, y1]}. It is sufficient to prove
that u = ut0 . Indeed, for all t > t0 there is ut ∈ [u, y1], which means that
〈ϕ(t) − u, ϕ(t) − T (ϕ(t))〉 ≤ 0. And from the continuity of T it follows that
〈ϕ(t0) − u, ϕ(t0) − T (ϕ(t0))〉 ≤, i.e., ut0 ∈ [u, y1]. Therefore u = ut0 , i.e.,
u ∈ Hϕ(t0). Moreover,

‖u − ϕ(t0)‖ ≤ ‖u − x‖ + ‖x − ϕ(t0)‖ ≤ αm + 3αm ≤ 4α0

and finally u satisfies the property (P ).
Step 5—definition of the map on U
Now, for each y ∈ V there is precisely one point x on the curve such

that y ∈ Hx, i.e.,

〈x − y, x − T (x)〉 = 0 and ‖x − y‖ ≤ 4α0.
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Hence, since T is INEA on the curve, we obtain

‖y − T (x)‖ ≥ ‖x − T (x)‖ ≥ ‖T (x) − T (T (x))‖.

So, one can set T (y) = T (x). Then T is INEA on the whole set V .
Simultaneously, applying the same denotations as in the proof of the

closedness of V , if the sequence (xn) tends to x0 (i.e., xn ∈ Hϕ(sn)), then
x0 ∈ Hϕ(s0), where sn → s0. So, T (xn) = T (ϕ(sn)) tends to T (ϕ(s0)) =
T (x0) and T is also continuous on V . Now, we must only consider points
from B̄(t0, 3α0). Let u be such a point. If

〈t0 − u, t0 − T (t0)〉 ≥ 0,

then T (u) has already been defined. Otherwise, we set T (u) = T (t0). Let us
notice that T is still continuous and INEA also on the set U .

Step 6—definition of the map on the whole set B
In the previous step, we defined the mapping T on the whole set U . Since

this is a closed subset of B and the curve ϕ is isomorphic to the set [0,∞),
applying the Tietze extension theorem the mapping T can be extended to
the whole set B. Therefore, we must show only that the continuous extension
T̃ is also a fixed point free INEA mapping. The fact that T̃ is fixed point free
is obvious. So let us take x0 ∈ B \ U . Then T̃ (x0) ∈ ϕ. Since T̃ (x0) = ϕ(t0),
one may assume that t0 ∈ [mα, (m + 1)α]. Since x0 does not belong to
U , the distance between x0 and ϕ(t0) is bigger than αm. Simultaneously,
‖T (ϕ(t0)) − ϕ(t0)‖ < αm. Hence,

‖x0 − T̃ (x0)‖ > ‖T̃ (x0) − T (T̃ (x0))‖ = ‖T̃ (x0) − T̃ (T̃ (x0))‖
and T̃ is INE. Moreover, since T̃ |ϕ = T |ϕ, the extension is asymptotically
regular and so is INEA. This fact completes the proof.
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