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Abstract. In this paper, we introduce the concept of generalized F -
proximal contraction mappings and prove some best proximity point
theorems for a non-self mapping in a complete metric space. Then
some of the well-known results in the existing literature are general-
ized/extended using these newly obtained results. An example is being
given to demonstrate the usefulness of our results.
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1. Introduction

Following question was one of the major point of reseach in applied mathe-
matics and nonlinear functional analysis during the last decade see [1,2,4,6,
9–11];

Is there a point u0 in the metric space (U, d) such that d(u0, Pu0) =
d(E,G) where E,G are non-empty subsets of U , P : E → G is a non-self
mapping and d(E,G) = inf{d(e, g) : e ∈ E, g ∈ G}?

The point u0 ∈ U is called the best proximity point. In best proximity
point theory we attempt to find minimum conditions on the non-self mapping
P to ensure the existence and uniqueness of the best proximity point. This
new setting is richer and more general than the metric fixed point theory.
The mappings considered are not essentially self-mappings like fixed point
theory. Fixed point theory incorporates different mathematical disciplines,
such as topology, operator theory and geometry, to demonstrate the exis-
tence of Pu = u solutions under certain conditions. On the other hand, if
P is not a self-mapping, there may be no solutions to the Pu = u equation
and in this case, it is of fundamental importance to decide an element u
that is closest to Pu in any way. Wardowski [12] introduced a new contrac-
tion definition and proved a fixed point theorem that generalizes the theory of
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Banach contraction. Cosentino and Vetro [5] recently presented a new Hardy-
Rogers-type definition of F -contraction and proved a fixed point theorem for
self-mapping on complete metric spaces. A new idea, F -contractive non-self
mappings, was introduced by Omidvari et al. [7] and proved the best proxim-
ity point theorems. In this paper, we introduce a new concept of generalized
F -proximal contractions (of first and second kind) and then prove the best
proximity point results on complete metric spaces. The paper is arranged as
follows: In Sect. 2 we recall some basic notations and definitions from the
existing literature for subsequent use. In Sect. 3, by using Hardy-Rogers-type
F -contraction, we obtain sufficient conditions for the existence of the best
proximity point. Also we define generalized F - proximal contractions of the
first and second kind and prove the best proximity point results on complete
metric spaces.

2. Preliminaries

In this article, U , R+, N and N0 denote the non-void set, the positive real
number set, the positive integer set, and the non-negative integer set.
First, we recall the concept of a control function which is introduced by War-
dowski [12]. Let � denote the family of all functions F : R+ → R satisfying
the following properties:
(F1) F is strictly increasing;
(F2) for each sequence {αn} of positive numbers, we have

lim
n→∞ αn = 0 ⇐⇒ lim

n→∞ F (αn) = −∞;

(F3) there exists k ∈ (0, 1) such that limα→0+ αkF (α) = 0.
We give some examples of functions belonging to � as follows:

Example 2.1. Let functions F1, F2, F3, F4 : R
+ → R be defined by:

1. F1(β) = lnβ for β > 0;
2. F2(β) = β + lnβ for all β > 0;
3. F3(β) = − 1√

β
for all β > 0;

4. F4(β) = ln(β2 + β) for all β > 0.
Then F1, F2, F3, F4 ∈ �.

Definition 2.1. [12] A self-mapping P on a metric space U is called an F
-contraction if there exist F ∈ � and τ ∈ R

+ such that

τ + F (d(Pu, Pv)) ≤ F (d(u, v)),

for all u, v ∈ U with d(Pu, Pv) > 0.

Next we state some notations for subsequent use. If E and G non-void
subsets of U , then we denote by.

d(e,G) := inf{d(e, g) : g ∈ G}, e ∈ E,

E0 := {e ∈ E : d(e, g) = d(E,G) for some g ∈ G},

G0 := {g ∈ G : d(e, g) = d(E,G) for some e ∈ E}.
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In case E and G are closed subsets of a normed space and d(E,G) > 0, then
E0 and G0 are contained in the boundaries of E and G respectively [3].

Definition 2.2. [8] Let (U, d) be a metric space and (E,G) be a pair of non-
void subsets of (U, d) with E0 	= φ. If for every u1, u2 ∈ E and every v1, v2 ∈ G

d(u1, v1) = d(E,G)

d(u2, v2) = d(E,G)

}
⇒ d(u1, u2) = d(v1, v2),

then the pair (E,G) is said to have the p-property.

Definition 2.3. [3] A set G is called approximately compact with respect to
E if every sequence {gn} of G with d(e, gn) → d(e,G) for some e ∈ E has a
convergent subsequence.

3. Main results

In this section, inspired by the notions of F -contraction of Hardy–Rogers-
type, we introduce new generalized F - proximal contractions of the first and
second kind and prove some best proximity point theorems for generalized F -
proximal contractions of the first and second kind on complete metric space.

Definition 3.1. A mapping P : E → G is said to be a generalized F -proximal
contraction of the first kind if there exist F ∈ � and a, b, c, h, τ > 0 with
a + b + c + 2h = 1, c 	= 1 such that the conditions

d(u1, Pv1) = d(A,B)

d(u2, Pv2) = d(A,B)

}
⇒ τ + F (d(u1, u2))

≤ F
(
ad(v1, v2) + bd(u1, v1)

+ cd(u2, v2) + h(d(v1, u2)

+ d(v2, u1))
)

for all u1, u2, v1, v2 in E and u1 	= u2.

Definition 3.2. A mapping P : E → G is said to be a generalized F -proximal
contraction of the second kind if there exist F ∈ � and a, b, c, h, τ > 0 with
a + b + c + 2h = 1, c 	= 1 such that the conditions

d(u1, Pv1) = d(A,B)

d(u2, Pv2) = d(A,B)

}
⇒ τ + F (d(Pu1, Pu2))

≤ F
(
ad(Pv1, Pv2)

+ bd(Pu1, Pv1) + cd(Pu2, Pv2)

+ h(d(Pv1, Pu2) + d(Pv2, Pu1))
)

for all u1, u2, v1, v2 in E and Pu1 	= Pu2.

Theorem 3.1. Let (U, d) be a complete metric space and (E,G) be a pair of
non-void closed subsets of (U, d). If G is approximately compact with respect
to E and P : E → G satisfy the following conditions:



49 Page 4 of 11 I. Beg et al. JFPTA

(i) P (E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P is a generalized F -proximal contraction of the first kind.

Then, there exists a unique u ∈ E such that d(u, Pu) = d(E,G). In
addition, for any fixed element u0 ∈ E0, sequence {un} defined by

d(un+1, Pun) = d(E,G),

converges to the best proximity point u.

Proof. Choose an element u0 ∈ E0. As, P (E0) ⊆ G0, therefore there is an
element u1 ∈ E0 satisfying

d(u1, Pu0) = d(E,G).

Since Pu1 ∈ P (E0) ⊆ G0, it further implies that there is an element u2 ∈
E0 such that

d(u2, Pu1) = d(E,G).

Continuing in this way, we can choose an element un+1 ∈ E0 satisfying the
condition that

d(un+1, Pun) = d(E,G), (3.1)

for every non-negative integer n owing to the hypothesis that P (E0) is con-
tained in G0. From the p-property framework and (3.1) we get

d(un, un+1) = d(Pun−1, Pun), ∀n ∈ N.

If for some n0, d(un0 , un0+1) = 0, consequently d(Pun0−1, Pun0) = 0. So
Pun0−1 = Pun0 , hence d(E,G) = d(un0 , Pun0). Thus the conclusion is im-
mediate. So let for any n ≥ 0, d(un, un+1) > 0. In view of the fact P is a
generalized F -proximal contraction of the first kind, we have that

τ + F (d(un, un+1)) ≤ F
(
ad(un−1, un) + bd(un−1, un) + cd(un, un+1)

+ hd(un−1, un+1)
)

≤ F
(
ad(un−1, un) + bd(un−1, un) + cd(un, un+1)

+ h[d(un−1, un) + d(un, un+1)]
)

= F
(
(a + b + h)d(un−1, un) + (c + h)d(un, un+1)

)
.

Since F is strictly increasing, we deduce

d(un, un+1) ≤ (a + b + h)d(un−1, un) + (c + h)d(un, un+1).

Thus

d(un, un+1) ≤
(

a + b + h

1 − c − h

)
d(un, un−1), ∀n ∈ N

From a + b + c + 2h = 1 and c 	= 1, we have that 1 − c − h > 0 and so

d(un, un+1) ≤
(

a + b + h

1 − c − h

)
d(un, un−1) = d(un, un−1), ∀n ∈ N.

Consequently,

τ + F (d(un, un+1)) ≤ F (d(un, un−1)), ∀n ∈ N.
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It implies

F (d(un, un+1)) ≤ F (d(un, un−1)) − τ ≤ · · ·
≤ F (d(u0, u1)) − nτ, ∀n ∈ N. (3.2)

Put tn := d(un, un+1). From (3.2) limn→∞ F (tn) = −∞. By the properties
(F2), we get that

tn → 0 as n → ∞.

Now, let k ∈ (0, 1) such that limn→∞ tknF (tn) = 0. By (3.2), the following
holds for all n ∈ N:

tknF (tn) − tknF (t0) ≤ −ntknτ ≤ 0. (3.3)

Letting k → ∞ in (3.3) , we have

limn→∞ ntkn = 0.

Therefore limn→∞ n
1
k tn = 0. Now, limn→∞ n

1
k tn = 0 implies that the series∑∞

n=1 tn is convergent.It further implies that {un} is a Cauchy sequence.
Because the space is complete, the sequence {un} converges to some element
u in E.
Also,

d(u,G) ≤ d(u, Pun) ≤ d(u, un+1) + d(un+1, Pun)

= d(u, un+1) + d(E,G)

≤ d(u, un+1) + d(u,G).

Therefore, d(u, Pun) → d(u,G). In spite of the fact that G is approximately
compact with respect to E, the sequence {Pun} has a subsequence {Punk

}
converging to some element v in G. So it turns out that

d(u, v) = lim
n→∞ d(unk+1, Punk

) = d(E,G). (3.4)

Thus u must be an element of E0. Owing to the fact that P (E0) ⊆ G0,

d(t, Pu) = d(E,G)

for some element t in E. Using the p-property and (3.4) we have

d(unk+1, t) = d(Punk
, Pu), ∀nk ∈ N.

If for some n0, d(t, un0+1) = 0, consequently d(Pun0 , Pu) = 0 . So Pun0 =
Pu, hence d(E,G) = d(u, Pu). Thus the conclusion is immediate. So let for
any n ≥ 0, d(t, un+1) > 0. Since P is a generalized F -proximal contraction
of the first kind, it follows from this that

τ + F (d(t, un+1)) ≤ F
(
ad(u, un) + bd(t, u) + cd(un, un+1)

+ h[d(u, un+1) + d(un, t)]
)
.

Since F is strictly increasing, we have

d(t, un+1) ≤ ad(u, un) + bd(t, u) + cd(un, un+1)

+ h[d(u, un+1) + d(un, t)].
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As n → ∞,

d(t, u) ≤ (b + h)d(t, u),

which further implies that u and t must be identical. It follows, that

d(u, Pu) = d(t, Pu) = d(E,G).

Uniqueness; Suppose that there is another best proximity point u∗ of the
mapping P such that

d(u∗, Pu∗) = d(E,G).

Since P is a generalized F -proximal contraction of the first kind, thereore

τ + F (d(u, u∗)) ≤ F
(
(a + 2h)d(u, u∗)

)
.

Since F strictly increasing,

d(u, u∗) ≤ (a + 2h)d(u, u∗).

Therefore, u and u∗ must be identical. Hence, P has a unique best proximity
point. �

Next, we state and prove the best proximity point theorem for non-self
generalized F -proximal contraction of the second kind.

Theorem 3.2. Let (U, d) be a complete metric space and (E,G) be a pair of
non-void closed subsets of (U, d) such that E is approximately compact with
respect to G . Let P : E → G satisfy the following conditions:

(i) P (E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P is a continuous generalized F -proximal contraction of the second kind.

Then, there exists a u ∈ E such that

d(u, Pu) = d(E,G),

and un → u, where u0 is any fixed point in E0 and d(un+1, Pun) = d(E,G)
for n ≥ 0. Further, if u∗ is another best proximity point of P , then Pu = Pu∗

.

Proof. Similar to Theorem 3.1, we can find a sequence {un} in E0 such that

d(un+1, Pun) = d(E,G), (3.5)

for all non-negative integral values of n. From the p-property and (3.5) we
get

d(un, un+1) = d(Pun−1, Pun), ∀n ∈ N.

If for some n0, d(un0+1, un0+2) = 0, consequently d(Pun0 , Pun0+1) = 0. So
Pun0 = Pun0+1, hence d(E,G) = d(un0+1, Pun0+1). Thus the conclusion is
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immediate. So let for any n ≥ 0, d(Pun, Pun+1) > 0. In view of the reality
that P is a generalized second-kind F -proximal contraction,

τ + F
(
d(Pun, Pun+1)

) ≤ F
(
ad(Pun−1, Pun) + bd(Pun−1, Pun)

+ cd(Pun, Pun+1) + hd(Pun−1, Pun+1)
)

≤ F
(
ad(Pun−1, Pun) + bd(Pun−1, Pun)

+ cd(Pun, Pun+1) + h[d(Pun−1, Pun)

+ d(Pun, Pun+1)]
)

≤ F
(
(a + b + h)d(Pun−1, Pun)

+ (c + h)d(Pun, Pun+1)
)
.

We deduce that since F strictly increasing,

d(Pun, Pun+1) ≤ (a + b + h)d(Pun−1, Pun) + (c + h)d(Pun, Pun+1)

and thus

d(Pun, Pun+1) ≤
(

a + b + h

1 − c − h

)
d(Pun, Pun−1), ∀n ∈ N

From a + b + c + 2h = 1 and c 	= 1, we deduce that 1 − c − h > 0 and so

d(Pun, Pun+1) ≤
(

a + b + h

1 − c − h

)
d(Pun, Pun−1) = d(Pun, Pun−1), ∀n ∈ N.

Therefore,

τ + F (d(Pun, Pun+1)) ≤ F (d(Pun, Pun−1)), ∀n ∈ N.

It further implies that

F (d(Pun, Pun+1)) ≤ F (d(Pun, Pun−1)) − τ

...

≤ F (d(Pu0, Pu1)) − nτ, ∀n ∈ N. (3.6)

Put sn := d(Pun, Pun+1). From (3.6) limn→∞ F (sn) = −∞. By the proper-
ties (F2), we get that

sn → 0 as n → ∞.

Now, let k ∈ (0, 1) such that limn→∞ sk
nF (sn) = 0. By (3.6), the following

holds for all n ∈ N:

sk
nF (sn) − sk

nF (s0) ≤ −nsk
nτ ≤ 0. (3.7)

As k → ∞ in (3.7) , we deduce

lim
n→∞ nsk

n = 0.

Thus limn→∞ n
1
k sn = 0. Now, limn→∞ n

1
k sn = 0 ensures that the series∑∞

n=1 sn is convergent. This implies that {Pun} is a Cauchy sequence. Be-
cause the space is complete, the sequence {Pun} converges to some element
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v in G.
Moreover,

d(v,E) ≤ d(v, un+1) ≤ d(v, Pun) + d(Pun, un+1)

= d(v, Pun) + d(E,G)

≤ d(v, Pun) + d(v,E).

Therefore, d(v, un) → d(v,E). Since E is approximately compact with respect
to G, the sequence {un} has a subsequence {unk

} converging to some u ∈ E.
Because P is a continuous mapping,

d(u, Pu) = lim
n→∞ d(un+1, Pun) = d(E,G).

Uniqueness; Assume that in E, there exist another best point of proximity,
u∗, so that

d(u∗, Pu∗) = d(E,G).

Because P is a generalized proximal contraction of the second kind,

τ + F (d(Pu, Pu∗)) ≤ F
(
(a + 2h)d(Pu, Pu∗)

)
.

We deduce that since F strictly increasing,

d(Pu, Pu∗) ≤ (a + 2h)d(Pu, Pu∗).

Thus Pu = Pu∗. Hence, P has a unique best proximity point. �

Our next result is for non-self generalized proximal contractions of the
first kind as well as generalized F -proximal contractions of the second kind
without the assumption of approximately compactness of the domains or the
co-domain of the mappings..

Theorem 3.3. Let (U, d) be a complete metric space and (E,G) be a pair
of non-void closed subsets of (U, d). Let P : E → G satisfy the following
conditions:

(i) P (E0) ⊆ G0 and (E,G) satisfies the p -property;
(ii) P is a generalized F -proximal contraction of the first kind as well as a

generalized F -proximal contraction of the second kind.
Then, there exists a unique element u ∈ E such that

d(u, Pu) = d(E,G),

and un → u, where u0 is any fixed element in E0 and d(un+1, Pun) = d(E,G)
for n ≥ 0.

Proof. Similar to Theorem 3.1, we find a sequence {un} in E0 such that

d(un+1, Pun) = d(E,G)

for all non-negative integral values of n. Similar to Theorem 3.1, we can show
that sequence {un} is a Cauchy sequence. Thus converges to some element
u in E. As in Theorem 3.2, it can be shown that the sequence {Pun} is a
Cauchy sequence and converges to some element v in G. Therefore,

d(u, v) = lim
n→∞ d(un+1, Pun) = d(E,G). (3.8)
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Eventually, u becomes an element of E0. In light of the fact that P (E0) is
contained in G0,

d(t, Pu) = d(E,G)

for some element t in E. From the p-property framework and (3.8) we get

d(un+1, t) = d(Pun, Pu), ∀n ∈ N.

If for some n0, d(t, un0+1) = 0, consequently d(Pun0 , Pu) = 0 . So Pun0 =
Pu, hence d(E,G) = d(u, Pu). Thus the conclusion is immediate. So let for
any n ≥ 0, d(t, un+1) > 0. Since P is a generalized F -proximal contraction
of the first kind, it can be seen that

τ + F (d(t, un+1)) ≤ F
(
ad(u, un) + bd(t, u) + cd(un, un+1)

+ h[d(u, un+1) + d(un, t)]
)
.

We deduce that since F strictly increasing,

d(t, un+1) ≤ ad(u, un) + bd(t, u) + cd(un, un+1)

+ h[d(u, un+1) + d(un, t)].

As n → ∞, d(t, u) ≤ (b + h)d(t, u), which means that u and t must be
identical. It follows, thus, that

d(u, Pu) = d(t, Pu) = d(E,G).

Also, as in the theorem 3.1, the uniqueness of the best proximity point of
mapping P follows. �

Example 3.4. Consider U = R
2 and define the metric d on U by

d((u1, u2), (v1, v2)) = |u1 − v1| + |u2 − v2|, ∀ (u1, u2), (v1, v2) ∈ R
2

We know, (U, d) is a complete metric space. Let F : R+ → R be denoted
by F (a) = ln a. It is obvious that, for any k ∈ (0, 1), the function F satisfies
the conditions (F1) − (F3). Let E = {(e, 0) : e ≥ 0} and G = {(g, 1) : g ≥ 0}.
We have E = E0 and G = G0. Let P : E → G be a mapping defined by, for
each (e, 0) ∈ E,

P (e, 0) = (T (e), 1),

where

T (e) =
1
2

− 1
e + 2

.

It is clear that, for each c, d ≥ 0,∣∣T (c) − T (d)
∣∣ ≤ ∣∣c − d

∣∣.
It is clear that E is approximately compact with respect to G, (E,G) satisfies
the p-property, P is continuous and P (E0) ⊆ G0. We show that In fact,
r, s, i, j be elements in E such that d(r, P i) = d(s, P j) = d(E,G). We write
i = (e1, 0) and j = (e2, 0) for some e1, e2 ≥ 0. So r = (T (e1), 1) and s =
(T (e2), 1). We obtain

d(Pr, Ps) =
∣∣T 2(e1) − T 2(e2)

∣∣ ≤ e−τd(Pi, P j).
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Consequently, P is a generalized F -proximal contraction of the second kind
with e−τ = 16

7 or τ = ln 7
16 , b = c = h = 0. Thus, all the conditions of

Theorem 3.2 are satisfied. Hence, P has a unique best proximity point (0, 0).
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