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Abstract. We consider both Hammerstein integral equations and non-
local boundary value problems in possession of two different nonlocal
elements. The first occurs in the differential equation itself and takes
the form ‖u‖q

q. The second occurs in the boundary condition and takes
the form of a Stieltjes integral. Because the nonlocal elements are not
necessarily related, a careful analysis is required to control each nonlocal
element simultaneously. Topological fixed point theory is used to deduce
existence of at least one positive solution to the boundary value problem.
And we illustrate the application of the results with an example.
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1. Introduction

In this paper we consider the perturbed Hammerstein integral equation

u(t) = γ(t)H
(
ϕ(u)

)
+ λ

∫ 1

0

(
A

(∫ 1

0

∣
∣u(ξ)

∣
∣q dξ

))−1

G(t, s)f
(
s, u(s)

)
ds

(1.1)

where q ≥ 1 is a constant, each of A : [0,+∞) → R, f : [0, 1] × [0,+∞) →
[0,+∞), G : [0, 1] × [0, 1] → [0,+∞), H : [0,+∞) → [0,+∞), and
γ : [0, 1] → [0, 1] is continuous, and where

ϕ(u) :=
∫ 1

0

u(s) dα(s); (1.2)
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the integrator α in (1.2) is of bounded variation on [0, 1] and monotone in-
creasing, the latter assumption so that ϕ(u) ≤ ϕ(w) whenever u ≤ w, which
will be important in what follows. Solutions of (1.1) can then be associated
to solutions of a boundary value problem, whose boundary conditions will
depend on the choice of γ and G. For example, if γ(t) = 1 − t and

G(t, s) :=

{
t(1 − s), 0 ≤ t ≤ s ≤ 1
s(1 − t), 0 ≤ s ≤ t ≤ 1

,

then a solution of (1.1) is a solution of the following nonlocal boundary value
problem.

−A

(∫ 1

0

∣
∣u(s)

∣
∣q ds

)
u′′(t) = λf

(
t, u(t)

)
, 0 < t < 1

u(0) = H
(
ϕ(u)

)

u(1) = 0

(1.3)

Problem (1.3) is an example of a “doubly nonlocal” differential equation in
the sense that (1.3) contains two different nonlocal elements.

1. The first nonlocal element is A

(∫ 1

0

∣
∣u(s)

∣
∣q ds

)
, and it occurs in the

differential equation itself. Note that this nonlocal element can be writ-
ten as A

(‖u‖q
q

)
with ‖u‖q the Lq norm of u on [0, 1].

2. The second nonlocal element is ϕ(u), and it occurs in the boundary
condition at t = 0. This nonlocal element is a Stieltjes integral, which,
therefore, can accommodate many different types of nonlocal boundary
conditions by suitably choosing the integrator α. For example, we can
accommodate both multipoint-type and integral-type boundary condi-
tions.

Note that the boundary condition at t = 0 is not only nonlocal (due to ϕ(u))
but is also (possibly) nonlinear (due to H).

On the one hand perturbed Hammerstein equations with nonlocal ele-
ments of the type ϕ(u) in (1.2) have been studied extensively in recent years
since, as noted, their solutions can be associated to solutions of boundary
value problem with nonlocal boundary conditions. For example, one may con-
sult the papers by Anderson [3], Cabada et al. [15], Goodrich [23–25], Graef
and Webb [37], Infante and Pietramala [41,42,44–46], Infante et al. [47],
Jankowski [48], Karakostas and Tsamatos [49,50], Karakostas [51], Webb
and Infante [55,56], and Yang [59–63]. Boundary nonlocal elements can arise
naturally in mathematical modeling (e.g., beam deflection, chemical reactor
theory, and thermodynamics)—see, for example, Cabada et al. [15], Infante
and Pietramala [43], and Infante, Pietramala, and Tenuta [47].

On the other hand differential equations with a nonlocal element in
the differential equation itself also have been studied extensively. These arise
naturally in fractional differential equations since fractional operators are
finite convolution operators and thus nonlocal—see, for example, [34, §2],
[35, Examples 3, 4, and 5], and [36, Example 5.12]. Nonetheless, more often
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than not these have fallen into one of two types. The first type has as a model
case the equation

− M

(∫ 1

0

(
u(s)

)q ds

)
u′′(t) = λf

(
t, u(t)

)
, t ∈ (0, 1), (1.4)

where M is some continuous function. This type of equation encompasses as
a special case the mean field equation (see Infante [39, (1.2)]), which in its
elliptic PDE form is

−
(∫

Ω

eu dx
)

Δu = λeu.

The second type has as a model case the equation

− M

(∫ 1

0

(
u′(s)

)q ds

)
u′′(t) = λf

(
t, u(t)

)
, t ∈ (0, 1). (1.5)

This equation is a particular example of a one-dimensional Kirchhoff equa-
tion; higher dimensional Kirchhoff-type equations, which lead to elliptic- and
parabolic-type PDEs, have been extensively studied, too. Examples of papers
studying equation (1.4) are those by Alves and Covei [4], Aly [2], Bavaud [6],
Biler et al. [7], Biler and Nadzieja [8,9], Caglioti et al. [16], Corrêa [19], Corrêa
et al. [20], do Ó et al. [21], Esposito et al. [22], Goodrich [32], Stańczy [52],
Wang et al. [53], Yan and Ma [57], and Yan and Wang [58]. And some ex-
amples in the case of equation (1.5) are papers by Afrouzi et al. [1], Azzouz
and Bensedik [5], Bouizem et al. [10], Boulaaras [11], Boulaaras et al. [12,14],
Boulaaras and Guefaifia [13], Chung [17], Goodrich [33], and Infante [39,40].

Recently the author has introduced separately a methodology for these
types of nonlocal DEs—i.e., one methodology for nonlocal boundary condi-
tions and another for nonlocal equations such as (1.4). The idea in each case
was to consider functions that make the nonlocal element coercive—namely,

∫ 1

0

u(s) dα(s) ≥ C0‖u‖ or
∫ 1

0

u(s) ds ≥ C0‖u‖,

for some suitably chosen constant C0 ∈ (0, 1]; for example, see [28, (1.9)] and
[32, (1.7)]. In addition and respectively, sets of the form

{
u ∈ K0 :

∫ 1

0

u(s) dα(s) < ρ

}
or

{
u ∈ K0 :

∫ 1

0

(
u(s)

)q ds < ρ

}
,

where K0 is some suitable order cone and ρ > 0 is some given number, were
used in order to provide direct control over the nonlocal elements. These two
ideas used in tandem then allowed for weaker hypotheses on the nonlocal
elements in the problem. One of the key ideas is that the boundaries of the
above sets are, respectively,

{
u ∈ K0 :

∫ 1

0

u(s) dα(s) = ρ

}
or

{
u ∈ K0 :

∫ 1

0

(
u(s)

)q ds = ρ

}
.

Thus, for elements of the boundary we have exact control over the nonlocal
elements. This fact turns out to be very important in the application of the
topological fixed point theory—cf., Lemma 2.12.
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Our goal in this paper is to provide a methodology to combine these
two types of nonlocal problems. This might seem at first glance to be trivial;
after all, it literally simply appears to be combining two already established
methodologies. However, it is not so simple. The problem is one of elemen-
tary topology. Given two sets A and B, in general, it cannot be expected
that ∂(A ∩ B) = ∂A ∩ ∂B. This leads to a fundamental problem since the
natural (and, indeed, trivial) way to study jointly these two types of nonlocal
problems would be simply to consider

{
u ∈ K0 :

∫ 1

0

u(s) dα(s) < ρ

}
∩
{

u ∈ K0 :
∫ 1

0

(
u(s)

)q ds < ρ

}
.

But then, generally speaking,

∂

({
u ∈ K0 :

∫ 1

0

u(s) dα(s) < ρ

}
∩
{

u ∈ K0 :
∫ 1

0

(
u(s)

)q ds < ρ

})

	=
{

u ∈ K0 :
∫ 1

0

u(s) dα(s),
∫ 1

0

(
u(s)

)q ds = ρ

}
.

Due to this problem we must instead study problem (1.1) more carefully.
Our methodology consists of using the cone

K :=

{

u ∈ C
(
[0, 1]

)
:

∫ 1

0

u(s) dα(s) ≥ C0‖u‖,
∫ 1

0

u(s) ds ≥ C0‖u‖, min
t∈[a,b]

u(t) ≥ η0‖u‖, u ≥ 0

}

,

(1.6)

where C0, η0 ∈ (0, 1] are constants introduced in Sect. 2. The cone is an
amalgamation of the cones used separately to study each type of nonlocal
problem. Then using topological fixed point theory we make a dual use of
the sets identified above—though individually rather than in intersection.
This requires studying carefully the connections, albeit indirect, between the

quantities
∫ 1

0

u(s) dα(s) and
∫ 1

0

(
u(s)

)q ds. Coordinating this is somewhat

of a delicate balancing act as the proofs in the next section will reveal.
In the end, as our main results, Theorems 2.13 and 2.16 together with

Corollary 2.14, demonstrate, we are able to achieve the same sorts of good
features obtainable when studying the two types of problems separately—
namely,

1. A need be neither monotone nor strictly positive nor satisfy any global
growth condition; and

2. H, likewise, need be neither monotone nor satisfy any either asymptotic
or global growth condition.

In particular, Example 2.17, which concludes this paper, demonstrates each
of these points. Since condition (1), in particular, is nearly universal among
the existing literature, e.g., [4, Condition (2), p. 1], [17, Conditions (M0), (3),
(4)], [21, Condition (H1), p. 299], [39, Theorem 2.3], [52, Theorem 2.2], [53,
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Condition (H1), p. 2], [57, p. 1], and [58, Theorem 4.1, p. 84], it is impor-
tant to note that we still recover this improvement in spite of the additional
complexity created by mixing the two types of nonlocal elements.

2. Main results and an example

As mentioned in Sect. 1 our approach is to use a coordinated pair of open
sets in order to apply topological fixed point theory to problem (1.1). In
particular, we will consider the open sets V̂ q

ρ , Ŵρ ⊆ K defined as follows;
here and throughout K is as in (1.6).

V̂ q
ρ :=

{
u ∈ K :

∫ 1

0

(
u(s)

)q ds < ρ

}

Ŵρ :=
{

u ∈ K :
∫ 1

0

u(s) dα(s) < ρ

}

We note that the open set V̂ q
ρ has been previously introduced in [32], whereas

the open set Ŵρ has been previously used in [26–31], for example. However,
the dual use of these sets has not been used. In fact, their dual use is nontrivial
because as mentioned in Sect. 1 we must carefully analyze the interaction
between these two sets.

Going forward it will be useful to make use of some notation. First of
all, by 1 we denote the function that is identically the constant polynomial
1 on all of R—that is,

1 := 1(x) ≡ 1, x ∈ R.

Second of all, for a continuous function f : [0, 1] × [0,+∞) → R and for
numbers 0 ≤ a < b ≤ 1 and 0 ≤ c < d < +∞ we denote by fm

[a,b]×[c,d] and
fM
[a,b]×[c,d], respectively, the numbers

fm
[a,b]×[c,d] := min

(t,y)∈[a,b]×[c,d]
f(t, y)

and

fM
[a,b]×[c,d] := max

(t,y)∈[a,b]×[c,d]
f(t, y).

For a continuous function H : R → R we will write similarly

Hm
[a,b] := min

y∈[a,b]
H(y) and HM

[a,b] := max
y∈[a,b]

H(y),

for any numbers −∞ < a < b < +∞.
We assume throughout that C

(
[0, 1]

)
is equipped with the usual maxi-

mum norm denoted by ‖ · ‖. The coercivity constant, C0, in the definition of
K is defined by

C0 := min
{

ϕ(1), ϕ(γ),
∫ 1

0

γ(t) dt, inf
s∈S0

1
G (s)

∫ 1

0

G(t, s) dt,

inf
s∈S0

1
G (s)

∫ 1

0

G(t, s) dα(t)
}

,
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where

G (s) := max
t∈[0,1]

G(t, s) (2.1)

for s ∈ [0, 1], and S0 ⊆ [0, 1] is a set of full measure on which G (s) 	= 0. We
also will make the following general assumptions on the functions appearing
in integral equation (1.1).

H1: The functions γ : [0, 1] → [0,∞), A : [0,∞) → R, f : [0, 1]×[0,∞) →
[0,∞), and H : [0,∞) → [0,∞) are continuous. In addition, the
function α : [0, 1] → R is of bounded variation on [0, 1] and is monotone
increasing.

H2: The function G : [0, 1] × [0, 1] → [0,∞) is continuous, and there exist
numbers 0 ≤ a < b ≤ 1 and number η0 ∈ (0, 1] such that min

t∈[a,b]
G(t, s) ≥

η0G (s), for each s ∈ [0, 1], where G is defined as in (2.1). Moreover, the
set S0 as described above satisfies

∣
∣S0

∣
∣ = 1, where by | · | we mean the

usual Lebesgue measure.
H3: The function γ satisfies the following three conditions:

1. min
t∈[a,b]

γ(t) ≥ η0‖γ‖, where a, b, and η0 are the same numbers as in

condition (H2);
2. 0 < ‖γ‖ ≤ 1; and

3. ϕ(γ) ≥ C0‖γ‖ and
∫ 1

0

γ(s) ds ≥ C0‖γ‖.

Finally, we will define the operator T : C
(
[0, 1]

) → C
(
[0, 1]

)
by

(Tu)(t) :=γ(t)H
(
ϕ(u)

)
+λ

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q dξ

))−1

G(t, s)f
(
s, u(s)

)
ds.

A fixed point of the operator T will correspond to a solution of integral
equation (1.1).

Remark 2.1. Note that conditions (H1) and (H3) ensure that γ ∈ K since

γ(t) ≥ 0, ϕ(γ) ≥ C0‖γ‖, min
t∈[a,b]

γ(t) ≥ η0‖γ‖, and
∫ 1

0

γ(s) ds ≥ C0‖γ‖.

Therefore, K 	= ∅.

Remark 2.2. The function γ(t) := 1 − t satisfies conditions (H3.1), (H3.2),
and (H3.3). For this choice of γ solutions of (1.1) correspond to solutions of
boundary value problem (1.3).

Remark 2.3. Because we will work within the cone K we will henceforth
write

(
u(ξ)

)q instead of
∣
∣u(ξ)

∣
∣q when studying problem (1.1)—just as we did

in the definition of T above.

We next present a collection of preliminary lemmata. These will be im-
portant in the existence theorems for integral equation (1.1). Our first lemma
demonstrates that T is a reflexive map on a particular annular subregion of
K .
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Lemma 2.4. Suppose that conditions (H1)–(H3) are satisfied. In addition,

assume that A(t) > 0 whenever t ∈ [ρ1, ρ2]. Then T
(
V̂ q

ρ2 \ V̂ q
ρ1

)
⊆ K .

Proof. The proof is similar to a combination of part of the proofs of [28,
Theorem 3.1] and [32, Lemma 2.3]. We include the details for completeness.

First note that

A

(∫ 1

0

(
u(ξ)

)q dξ

)
> 0

for each u ∈ V̂ q
ρ2 \ V̂ q

ρ1
by virtue of the fact that for any such u it follows that

ρ1 ≤
∫ 1

0

(
u(ξ)

)q dξ ≤ ρ2.

Then the assumption in the statement of the lemma establishes the desired
claim. So, in particular, the operator T and thus integral equation (1.1) are

well defined on the annular region V̂ q
ρ2 \ V̂ q

ρ1
.

We next show that T satisfies the coercivity condition for the functional

u �→
∫ 1

0

u(s) ds, namely that

∫ 1

0

(Tu)(s) ds ≥ C0‖Tu‖.

To see that this is true we calculate

∫ 1

0
(Tu)(t) dt = H

(
ϕ(u)

) ∫ 1

0
γ(t) dt

+ λ

∫ 1

0

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G(t, s)f
(
s, u(s)

)
ds dt

≥ H
(
ϕ(u)

) ∫ 1

0
γ(t) dt

+ λ

∫ 1

0

[
inf

s∈S0

1

G (s)

∫ 1

0
G(t, s) dt

] (
A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G (s)f
(
s, u(s)

)
ds

≥ H
(
ϕ(u)

) ∫ 1

0
γ(t) dt + C0λ

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G (s)f
(
s, u(s)

)
ds

≥ C0

[

H
(
ϕ(u)

)‖γ‖ + λ

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G (s)f
(
s, u(s)

)
ds

]

≥ C0‖Tu‖,

using that

C0 := min

{∫ 1

0
γ(t) dt, inf

s∈S0

1

G (s)

∫ 1

0
G(t, s) dt,

∫ 1

0
γ(t) dα(t), inf

s∈S0

1

G (s)

∫ 1

0
G(t, s) dα(t)

}
.
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In a similar manner we can show that T satisfies the coercivity condition

for the functional u �→
∫ 1

0

u(s) dα(s). In particular,
∫ 1

0
(Tu)(s) dα(s) = H

(
ϕ(u)

)
ϕ(γ)

+ λ

∫ 1

0

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G(t, s)f
(
s, u(s)

)
ds dα(t)

≥ H
(
ϕ(u)

)
ϕ(γ) + λ

∫ 1

0

[
inf

s∈S0

1

G (s)

∫ 1

0
G(t, s) dα(t)

]

×
(

A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G (s)f
(
s, u(s)

)
ds

≥ C0

[

H
(
ϕ(u)

)‖γ‖ + λ

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G (s)f
(
s, u(s)

)
ds

]

≥ C0‖Tu‖,

once again using the definition of C0.
On the other hand, since both G and γ satisfy, via conditions (H2)–

(H3), Harnack-like inequalities, it is straightforward to demonstrate that
mint∈[a,b](Tu)(t) ≥ η0‖Tu‖. Finally, that (Tu)(t) ≥ 0 for each t ∈ [0, 1]
follows directly from the definition of T and the nonnegativity of f , G, A,
and γ. And this completes the proof. �

Remark 2.5. If we put γ(t) := 1 − t and

G(t, s) :=

{
t(1 − s), 0 ≤ t ≤ s ≤ 1
s(1 − t), 0 ≤ s ≤ t ≤ 1

,

then we recover problem (1.3)—i.e., inhomogeneous Dirichlet boundary con-
ditions. In this case we see that

min
{∫ 1

0

1 − t dt, inf
s∈(0,1)

1
G (s)

∫ 1

0

G(t, s) dt

}
=

1
2
,

which matches what was obtained in [32]. Moreover, in this case it is well
known that η0 := min{a, 1 − b}.

We next demonstrate a relationship between the V̂ q
ρ and Ŵρ sets. This

is crucial for the correct application of the fixed point theorem, Lemma 2.12,
later.

Lemma 2.6. For any numbers q ≥ 1 and 0 < ρ1 < C0ρ
1
q

2 it holds that Ŵρ1 ⊂
V̂ q(

ρ1
C0

)q ⊂ V̂ q
ρ2
.

Proof. Let u ∈ Ŵρ1 . Then

C0‖u‖ ≤
∫ 1

0

u(s) dα(s) < ρ1

so that

‖u‖ <
ρ1

C0
.
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At the same time
∫ 1

0

(
y(s)

)q ds ≤ ‖u‖q <

(
ρ1

C0

)q

.

Since, by assumption, we have that ρ1 < C0ρ
1
q

2 , it follows that Ŵρ1 ⊂
V̂ q(

ρ1
C0

)q ⊂ V̂ q
ρ2

, as was claimed. �

Remark 2.7. Notice that the condition ρ1 < C0ρ
1
q

2 depends on initial data
only—namely, ρ1, ρ2, q, and C0.

Another relationship between the sets Ŵρ1 and V̂ q
ρ2

is stated in the next
corollary. As with Lemma 2.6 that Corollary 2.8 holds is essential for the
correct application of the fixed point theory in the sequel.

Corollary 2.8. For any numbers q ≥ 1 and 0 < ρ1 < C0ρ
1
q

2 it holds that

V̂ q
ρ2

\ Ŵρ1 	= ∅.

Proof. For any ρ > 0 define the set Ωρ by

Ωρ :=
{
u ∈ K : ‖u‖ < ρ

}
,

and consider the collection

K ⊇ Ω
ρ

1
q
2

\ Ω ρ1
C0

.

Then given any u ∈ Ω
ρ

1
q
2

\ Ω ρ1
C0

we have that

ρ1

C0
< ‖u‖ < ρ

1
q

2 .

Consequently,
∫ 1

0

u(s) dα(s) ≥ C0‖u‖ > ρ1,

where we have used the coercivity of the functional u �→
∫ 1

0

u(s) dα(s).

Similarly,
∫ 1

0

(
u(s)

)q ds ≤ ‖u‖q < ρ2.

Thus, we conclude that

u ∈ Ω
ρ

1
q
2

\ Ω ρ1
C0

=⇒ u ∈ V̂ q
ρ2

\ Ŵρ1 .

But since
ρ1

C0
< ρ

1
q

2 ,

by assumption, it follows that

Ω
ρ

1
q
2

\ Ω ρ1
C0

	= ∅
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so that

V̂ q
ρ2

\ Ŵρ1 	= ∅.

And this completes the proof of the corollary. �

Our next preliminary lemma demonstrates an important topological
condition of the sets V̂ q

ρ and Ŵρ. This lemma is essential for the correct
application of the fixed point result Lemma 2.12.

Lemma 2.9. For each ρ > 0 each of the sets V̂ q
ρ and Ŵρ is bounded. Moreover,

each set is relatively open in K .

Proof. Suppose that u ∈ V̂ q
ρ . Then by Jensen’s inequality

Cq
0‖u‖q ≤

∫ 1

0

(
u(s)

)q ds < ρ

so that

‖u‖ <
ρ

1
q

C0
. (2.2)

So, inequality (2.2) implies that V̂ q
ρ is bounded. In a similar way, we see that

if u ∈ Ŵρ, then

C0‖u‖ ≤
∫ 1

0

u(s) dα(s) < ρ. (2.3)

So, inequality (2.3) implies that Ŵρ is bounded. Finally, that each of these
sets is relatively open in K is a simple consequence of the definition of the
functionals as well as the fact that u ∈ C

(
[0, 1]

)
. �

The next lemma will be used in the existence theorems. It establishes
that a certain interval of interest is nonempty.

Lemma 2.10. For each ρ2 > 0, η0 ∈ (0, 1), 0 ≤ a < b ≤ 1, C0 ∈ (0, 1], and
q ≥ 1, it holds that

[(
η0ρ2

ϕ(1)

)q

(b − a),
(

ρ2

C0

)q]
	= ∅.

Proof. Note that the interval is nonempty if and only if

ηq
0

(ϕ(1))q (b − a) < C−q
0

or, equivalently,
η0

ϕ(1)
(b − a)

1
q < C−1

0 . (2.4)

Since ϕ(1) ≥ C0, note that
η0

ϕ(1)
(b − a)

1
q <

η0

C0
(b − a)

1
q .
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Therefore, if

C−1
0 >

η0

C0
(b − a)

1
q , (2.5)

then inequality (2.4) will be satisfied. But inequality (2.5) reduces to

1 > η0(b − a)
1
q ,

which is always satisfied since 0 < b−a ≤ 1. Therefore, inequality (2.4) holds,
and so, we conclude that the interval is nonempty, as claimed. �

As a consequence of Lemma 2.10 we can prove the following lemma,
which concerns a certain inequality involving the coefficient function A.

Lemma 2.11. Suppose that u ∈ ∂Ŵρ2 for some number ρ2 > 0. If the function
A is monotone increasing on the set

[(
η0ρ2

ϕ(1)

)q

(b − a),
(

ρ2

C0

)q]
,

then
(

A

((
ρ2

C0

)q))−1

≤
(

A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

≤
(

A

((
η0ρ2

ϕ(1)

)q

(b − a)

))−1

.

Proof. Due to Lemma 2.10 we already know that
[(

η0ρ2
ϕ(1)

)q

(b − a),
(

ρ2
C0

)q]
	=

∅. Now, since u ∈ ∂Ŵρ2 we can write (using that α is a monotone increasing
integrator)

ρ2 =
∫ 1

0

u(s) dα(s) ≤ ϕ(1)‖u‖. (2.6)

Similarly, it holds that

C0‖u‖ ≤
∫ 1

0

u(s) dα(s) = ρ2. (2.7)

Therefore, inequalities (2.6)–(2.7) imply that
ρ2

ϕ(1)
≤ ‖u‖ ≤ ρ2

C0
. (2.8)

At the same time, using the fact that u satisfies the Harnack inequality from
K together with inequality (2.8) we calculate

(
ρ2

C0

)q

≥ ‖u‖q ≥
∫ 1

0

(
u(ξ)

)q dξ ≥
∫ b

a

(
u(ξ)

)q dξ ≥ ηq
0‖u‖q(b − a)

≥
(

η0ρ2

ϕ(1)

)q

(b − a). (2.9)

Thus, inequality (2.9) demonstrates that
∫ 1

0

(
u(ξ)

)q dξ ∈
[(

η0ρ2

ϕ(1)

)q

(b − a),
(

ρ2

C0

)q]
,
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which is precisely the interval on which A is monotone increasing. Therefore,
we conclude that

A

((
ρ2

C0

)q)
≥ A

(∫ 1

0

(
u(ξ)

)q dξ

)
≥ A

((
η0ρ2

ϕ(1)

)q

(b − a)
)

so that
(

A

((
ρ2

C0

)q))−1

≤
(

A

(∫ 1

0

(
u(ξ)

)q dξ

))−1

≤
(

A

((
η0ρ2

ϕ(1)

)q

(b − a)
))−1

,

as desired. �

We conclude our preliminary lemmata with a lemma regarding a fixed
point result. For further details on this and related results one may consult,
for example, Cianciaruso, Infante, and Pietramala [18, Lemma 2.3], Guo and
Lakshmikantham [38], Infante, Pietramala, and Tenuta [47], or Zeidler [64].

Lemma 2.12. Let U be a bounded open set and, with K a cone in a real Banach
space X , suppose both that UK := U ∩K ⊇ {0} and that UK 	= K . Assume
that T : UK → K is a compact map such that x 	= Tx for each x ∈ ∂UK .
Then the fixed point index iK (T,UK ) has the following properties.

1. If there exists e ∈ K \ {0} such that x 	= Tx + λe for each x ∈ ∂UK

and each λ > 0, then iK (T,UK ) = 0.
2. If μx 	= Tx for each x ∈ ∂UK and for each μ ≥ 1, then iK (T,UK ) = 1.
3. If iK (T,UK ) 	= 0, then T has a fixed point in UK .
4. Let U1 be open in X with U1

K ⊆ UK . If iK (T,UK ) = 1 and iK
(
T,U1

K

)

= 0, then T has a fixed point in UK \ U1
K . The same result holds if

iK (T,UK ) = 0 and iK
(
T,U1

K

)
= 1.

We now present three representative existence results for problem (1.1).
The first of these, Theorem 2.13, uses a Ŵρ-type set on the “inner” boundary
and a V̂ q

ρ -type set on the “outer” boundary.

Theorem 2.13. Suppose that conditions (H1)–(H3) are satisfied. In addition,

suppose that there exists numbers ρ1 and ρ2, where 0 < ρ1 < C0ρ
1
q

2 , such that

1. A is monotone increasing on
[(

η0ρ1

ϕ(1)

)q

(b − a),
(

ρ1

C0

)q]
;

2. A(t) > 0 for t ∈
[(

ρ1C0

ϕ(1)

)q

, ρ2

]
;

3. H (ρ1) ϕ(γ)+λ

(
A

((
ρ1

C0

)q))−1

fm

[a,b]×
[

η0ρ1
ϕ(1) ,

ρ1
C0

]

∫ 1

0

∫ b

a

G(t, s) ds dα(t) >

ρ1; and

4.
∫ 1

0

⎡

⎢
⎢
⎣γ(t)HM⎡

⎣C0ρ
1
q
2 ,

ρ

1
q
2 ϕ(1)

C0

⎤

⎦

+
λ

A
(
ρ2

)fM

[0,1]×
⎡

⎣0,
ρ

1
q
2

C0

⎤

⎦

∫ 1

0

G(t, s) ds

⎤

⎥
⎥
⎦

q

dt < ρ2.
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Then problem (1.1) has at least one positive solution, u0, satisfying the local-
ization

u0 ∈ V̂ q
ρ2

\ Ŵρ1 .

Proof. As a preliminary observation let us first notice that
(

A

(∫ 1

0

(
u(ξ)

)q dξ

))−1

> 0

whenever u ∈ V̂ q
ρ2

\ Ŵρ1 . Indeed, we see that

‖u‖ϕ(1) >

∫ 1

0

u(s) dα(s) > ρ1 (2.10)

since u ∈ K \ Ŵρ1 , and that

ρ2 >

∫ 1

0

(
u(s)

)q ds ≥ Cq
0‖u‖q (2.11)

since u ∈ V̂ q
ρ2

. Putting (2.10) and (2.11) together we see that
(

ρ1C0

ϕ(1)

)q

≤
∫ 1

0

(
u(s)

)q ds < ρ2,

which establishes the desired claim due to assumption (2).
We first assume for contradiction the existence of u ∈ ∂Ŵρ1 and μ > 0

such that u(t) = (Tu)(t) + μe(t), for t ∈ [0, 1], with e(t) ≡ 1, thereby trying
to invoke part (1) of Lemma 2.12. Note that 1 ∈ K by the definition of C0

and the fact that ‖1‖ = 1. Then applying ϕ to both sides of u = Tu + μe
yields

ρ1 = ϕ(u) ≥ ϕ(γ)H
(
ϕ(u)

)

+ λ

∫ 1

0

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q dξ

))−1

G(t, s)f
(
s, u(s)

)
ds dα(t)

≥ H (ρ1) ϕ(γ)

+ λ

(
A

((
ρ1

C0

)q))−1 ∫ 1

0

∫ 1

0

G(t, s)f
(
s, u(s)

)
ds dα(t)

≥ H (ρ1) ϕ(γ)

+ λ

(
A

((
ρ1

C0

)q))−1

fm

[a,b]×
[

η0ρ1
ϕ(1) ,

ρ1
C0

]

∫ 1

0

∫ b

a

G(t, s) ds dα(t)

> ρ1, (2.12)

where we have used Lemma 2.11 to obtain the lower bound on
(
A(·))−1. We

have also used in inequality (2.12) the fact that by (2.8) it follows that
ρ1

C0
≥ ‖u‖ ≥ min

t∈[a,b]
u(t) ≥ η0‖u‖ ≥ η0ρ1

ϕ(1)
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so that

f
(
s, u(s)

) ≥ fm

[a,b]×
[

η0ρ1
ϕ(1) ,

ρ1
C0

].

Since inequality (2.12) is a contradiction, from Lemma 2.12 we conclude that

iK
(
T, Ŵρ1

)
= 0. (2.13)

On the other hand, suppose for contradiction the existence of u ∈ ∂V̂ q
ρ2

and μ ≥ 1 such that μu(t) = (Tu)(t) for each t ∈ [0, 1], thereby trying to
invoke part (2) of Lemma 2.12. As a preliminary observation note that since
u ∈ ∂V̂ q

ρ2
we obtain from Jensen’s inequality that

Cq
0‖u‖q ≤

∫ 1

0

(
u(s)

)q ds = ρ2 =⇒
∫ 1

0

u(s) dα(s) ≤ ‖u‖ϕ(1) ≤ ρ
1
q

2 ϕ(1)
C0

.

In a similar manner we also deduce that

‖u‖q ≥
∫ 1

0

(
u(s)

)q ds = ρ2 =⇒
∫ 1

0

u(s) dα(s) ≥ C0‖u‖ ≥ C0ρ
1
q

2 .

Consequently,

H
(
ϕ(u)

)
= H

(∫ 1

0

u(s) dα(s)
)

≤ HM⎡

⎣C0ρ
1
q
2 ,

ρ

1
q
2 ϕ(1)

C0

⎤

⎦

. (2.14)

Then integrating from t = 0 to t = 1 both sides of
(
μu(t)

)q =
(
(Tu)(t)

)q

yields

ρ2 ≤ μ

∫ 1

0

(
u(t)

)q
dt

=

∫ 1

0

[

γ(t)H
(
ϕ(u)

)
+ λ

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G(t, s)f
(
s, u(s)

)
ds

]q

︸ ︷︷ ︸
=
(
(Tu)(t)

)q

dt

≤
∫ 1

0

⎡

⎢
⎢
⎣γ(t)HM⎡

⎣C0ρ
1
q
2 ,

ρ

1
q
2 ϕ(1)

C0

⎤

⎦
+ λ

∫ 1

0

(
A (ρ2)

)−1
G(t, s)f

(
s, u(s)

)
ds

⎤

⎥
⎥
⎦

q

dt

≤
∫ 1

0

⎡

⎢
⎢
⎣γ(t)HM⎡

⎣C0ρ
1
q
2 ,

ρ

1
q
2 ϕ(1)

C0

⎤

⎦
+

λ

A
(
ρ2

)fM

[0,1]×
⎡

⎣0,
ρ

1
q
2

C0

⎤

⎦

∫ 1

0

G(t, s) ds

⎤

⎥
⎥
⎦

q

dt

< ρ2, (2.15)

where we have used inequality (2.14). And since inequality (2.15) is a con-
tradiction, we conclude from Lemma 2.12 that

iK
(
T, V̂ q

ρ2

)
= 1. (2.16)
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Putting the index calculations (2.13) and (2.16) together we conclude
from yet another application of Lemma 2.12 that T has a fixed point, say u0,
satisfying the localization u0 ∈ V̂ q

ρ2
\ Ŵρ1 . Finally, we observe that

V̂ q
ρ2

\ Ŵρ1 	= ∅

due to Corollary 2.8, which may be applied since we assumed in the statement

of the theorem that C
1
q

0 ρ2 > ρ1 > 0. Therefore, u0 is a positive solution of
integral equation (1.1). �

An immediate corollary of Theorem 2.13 is the following. The difference
between the two results is twofold. First of all, Corollary 2.14 eliminates
the local monotonicity assumption on A. Second of all, the corollary uses
a simpler version of condition (3) in Theorem 2.13. Therefore, in practice
Corollary 2.14 is likely to be much simpler to apply—a fact illustrated by
Example 2.17.

Corollary 2.14. Suppose that conditions (H1)–(H3) are satisfied. In addition,

suppose that there exists numbers ρ1 and ρ2, where 0 < ρ1 < C0ρ
1
q

2 , such that

1. A(t) > 0 for t ∈
[(

ρ1C0

ϕ(1)

)q

, ρ2

]
;

2.
H (ρ1)

ρ1
>

1
ϕ(γ)

; and

3.
∫ 1

0

⎡

⎢
⎢
⎣γ(t)HM⎡

⎣C0ρ
1
q
2 ,

ρ

1
q
2 ϕ(1)

C0

⎤

⎦

+
λ

A
(
ρ2

)fM

[0,1]×
⎡

⎣0,
ρ

1
q
2

C0

⎤

⎦

∫ 1

0

G(t, s) ds

⎤

⎥
⎥
⎦

q

dt < ρ2.

Then problem (1.1) has at least one positive solution, u0, satisfying the local-
ization

u0 ∈ V̂ q
ρ2

\ Ŵρ1 .

Remark 2.15. It is certainly possible in Theorem 2.13 and, thus, in Corol-
lary 2.14 to “reverse” the roles of ρ1 and ρ2 in the sense that the conditions
(1)–(4) can be rewritten for the case ρ1 > ρ2 > 0. We omit the precise
statement of this result.

Our third result is an alternative existence result, which complements
both Theorem 2.13 and Corollary 2.14. The distinction here is that we use a
Ŵρ-type set on both boundaries. This results in a slight alteration of condi-
tions (1), (2), and (4) from Theorem 2.13.

Theorem 2.16. Suppose that conditions (H1)–(H3) are satisfied. In addition,
suppose that there exists numbers ρ1 and ρ2, where 0 < ρ1 < ρ2, such that

1. A is monotone increasing on
[(

η0ρ1

ϕ(1)

)q

(b − a),
(

ρ1

C0

)q]
∪
[(

η0ρ2

ϕ(1)

)q

(b − a),
(

ρ2

C0

)q]
;
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2. A(t) > 0 for t ∈
[(

ρ1C0

ϕ(1)

)q

,

(
ρ2

C0

)q]
;

3. H (ρ1) ϕ(γ) + λ

(
A

((
ρ1

C0

)q))−1

fm

[a,b]×
[

η0ρ1
ϕ(1) ,

ρ1
C0

]

∫ 1

0

∫ b

a

G(t, s) ds d

α(t) > ρ1; and

4. H (ρ2) ϕ(γ) + λ

(
A

((
η0ρ2

ϕ(1)

)q

(b − a)
))−1

fM

[0,1]×
[
0,

ρ2
C0

]

∫ 1

0

∫ 1

0

G(t, s)

ds dα(t) < ρ2.
Then problem (1.1) has at least one positive solution, u0, satisfying the local-
ization

u0 ∈ Ŵρ2 \ Ŵρ1 .

Proof. Since the proof of this theorem is very similar to the proof of Theo-
rem 2.13, we will only sketch the relevant details. Indeed, really only the first
part of the proof changes.

As a preliminary observation let us first notice that
(

A

(∫ 1

0

(
u(ξ)

)q dξ

))−1

> 0

whenever u ∈ Ŵρ2 \ Ŵρ1 . To argue that this is true we first notice that

‖u‖ϕ(1) >

∫ 1

0

u(s) dα(s) > ρ1 (2.17)

since u ∈ K \ Ŵρ1 . At the same time since u ∈ Ŵρ2 it follows that

ρ2 >

∫ 1

0

u(s) dα(s) ≥ C0‖u‖

so that
ρ1

ϕ(1)
≤ ‖u‖ ≤ ρ2

C0
. (2.18)

Putting (2.17)–(2.18) together with Jensen’s inequality we see that
(

ρ1C0

ϕ(1)

)q

≤ Cq
0‖u‖q ≤

∫ 1

0

(
u(s)

)q ds ≤ ‖u‖q <

(
ρ2

C0

)q

,

which establishes the desired claim due to assumption (2). Note that this
assumption is only meaningful if

ρ1C0

ϕ(1)
<

ρ2

C0
.

In other words, it is meaningful only if

ρ1 <
ϕ(1)
C2

0

ρ2.

But now recalling that 0 < C0 ≤ 1 and ϕ(1) ≥ C0, we deduce that

ρ2 ≤ 1
C0

ρ2 ≤ ϕ(1)
C2

0

ρ2.
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Since the condition ρ1 < ρ2 was assumed in the statement of the theorem,
we conclude that condition (2) is meaningful.

The first part of the proof is identical to the first part of the proof of
Theorem 2.13. On the other hand, we next claim that for each u ∈ ∂Ŵρ2 it
follows that μu 	= Tu for each μ ≥ 1. So, for contradiction suppose not. Then
there is u ∈ ∂Ŵρ2 and μ ≥ 1 such that μu(t) = (Tu)(t) for each t ∈ [0, 1].
Recall that since u ∈ ∂Ŵρ2 it follows that

ϕ(u) = ρ2.

Therefore, integrating from t = 0 to t = 1 both sides of μu(t) = (Tu)(t)
against dα(t) we deduce the following estimate:

ρ2 = ϕ(u)

≤ μ

∫ 1

0
u(t) dα(t)

=

∫ 1

0

[

γ(t)H
(
ϕ(u)

)
+ λ

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G(t, s)f
(
s, u(s)

)
ds

]

︸ ︷︷ ︸
=(T u)(t)

dα(t)

= H (ρ2)ϕ(γ)

+ λ

∫ 1

0

∫ 1

0

(
A

(∫ 1

0

(
u(ξ)

)q
dξ

))−1

G(t, s)f
(
s, u(s)

)
ds dα(t)

≤ H (ρ2)ϕ(γ)

+ λ

∫ 1

0

∫ 1

0

(
A

((
η0ρ2

ϕ(1)

)q

(b − a)

))−1

G(t, s)f
(
s, u(s)

)
ds dα(t)

≤ H (ρ2)ϕ(γ)

+ λ

(
A

((
η0ρ2

ϕ(1)

)q

(b − a)

))−1

fM

[0,1]×
[
0,

ρ2
C0

]

∫ 1

0

∫ 1

0
G(t, s) ds dα(t)

< ρ2, (2.19)

using that

u ∈ ∂Ŵρ2 =⇒ ‖u‖ ≤ ρ2

C0
=⇒ f

(
s, u(s)

) ≤ fM

[0,1]×
[
0,

ρ2
C0

], s ∈ [0, 1].

Note that to obtain the estimate
(
A

(∫ 1

0

(
u(ξ)

)q dξ
))−1

≤
(
A

((
η0ρ2
ϕ(1)

)q

(b − a)))−1, which is used in inequality (2.19), we have used Lemma 2.11.
Since inequality (2.19) is a contradiction, we conclude from Lemma 2.12 that
iK

(
T, Ŵρ2

)
= 1. Then just as in the proof of Theorem 2.13 we deduce from

Lemma 2.12 the existence of at least one positive solution u0 ∈ Ŵρ2\Ŵρ1 	= ∅

to integral equation (1.1). �

We conclude with an example and a remark.

Example 2.17. We will demonstrate the application of Corollary 2.14 to a
problem of the form (1.3). In particular, suppose that we choose A(t) := sin t,

ϕ(u) :=
1
2
u

(
1
3

)
+

1
50

u

(
1
10

)
, γ(t) := 1 − t, H(t) := 9

10

√
t, and q := 2 so
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that (1.3) becomes

− sin
(∫ 1

0

(
u(s)

)2 ds

)
u′′(t) = λf

(
t, u(t)

)
, 0 < t < 1

u(0) =
9
10

√
1
2
u

(
1
3

)
+

1
50

u

(
1
10

)

u(1) = 0. (2.20)

Note that since ϕ is a multipoint-type nonlocal element with positive co-
efficients, it follows that the Stieltjes integrator, α, associated to it will be
monotone increasing.

For the Green’s function associated to the Dirichlet problem it is know

that η0 = min{a, 1 − b}. If we choose here a :=
1
4

and b :=
3
4
, then η0 =

1
4
.

In addition, we calculate the following.
∫ 1

0

γ(t) dt =
1
2

ϕ(1) =
1
2

+
1
50

=
13
25

ϕ(γ) =
1
2

[
1 − 1

2

]
+

1
50

[
1 − 1

10

]
=

67
250

.

At the same time since G (s) = s(1 − s) we also calculate

inf
s∈(0,1)

1

s(1 − s)

∫ 1

0

G(t, s) dt = inf
s∈(0,1)

1

s(1 − s)

[∫ s

0

t(1 − s) dt +

∫ 1

s

s(1 − t) dt

]

︸ ︷︷ ︸
1
2 s(1−s)

=
1

2

and

inf
s∈(0,1)

1
s(1 − s)

∫ 1

0

G(t, s) dα(t)

= inf
s∈(0,1)

1
s(1 − s)

[
1
2
G

(
1
3
, s

)
+

1
50

G

(
1
10

, s

)]

= inf
s∈(0,1)

1
s(1 − s)

⎧
⎪⎨

⎪⎩

1
3s + 9

500s, 0 < s < 1
10

1
3s + 1

500 (1 − s), 1
10 ≤ s < 1

3
1
6 (1 − s) + 1

500 (1 − s), 1
3 ≤ s < 1

= inf
s∈(0,1)

⎧
⎪⎨

⎪⎩

527
1500(1−s) , 0 < s < 1

10
497s+3

1500s(1−s) ,
1
10 ≤ s < 1

3
253

1500s , 1
3 ≤ s < 1

=
253
1500

.
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Therefore, we conclude that

C0 := min
{

1
2
,
13
25

,
67
250

,
1
2
,

253
1500

}
=

253
1500

.

With these preliminary calculations completed we now examine condi-
tions (1)–(3) in the statement of Corollary 2.14. Note that

[(
ρ1C0

ϕ(1)

)q

, ρ2

]
=

[(
253
780

)2

ρ2
1, ρ2

]

≈ [
0.105ρ2

1, ρ2

]
.

Now choose

ρ1 :=
1
20

and ρ2 :=
π

2
.

Then A(t) = sin t > 0 on

[(
253
780

)2

ρ2
1, ρ2

]

. So, condition (1) of Corollary 2.14

is satisfied. Moreover, since

ρ1 =
1
20

<
253
1500

√
π

2
= C0ρ

1
2
2 ,

it follows that the condition ρ1 < C0ρ
1
q

2 is also satisfied. In addition, condition
(2) of the corollary is satisfied since

H (ρ1)
ρ1

=
H

(
1
20

)

1
20

= 18

√
1
20

>
250
67

=
1

ϕ(γ)
.

Now suppose that both f and λ satisfies the inequality

∫ 1

0

⎡

⎣ 9
10

√
780
253

√
π

2
(1 − t) + λfM

[0,1]×[0, 1500253

√
π
2 ]

∫ 1

0

G(t, s) ds

⎤

⎦

2

dt <

√
π

2
.

(2.21)

Then condition (3) of the corollary will be satisfied. Therefore, provided that
f and λ are such that inequality (2.21) holds, then by Corollary 2.14 problem
(2.20) has at least one positive solution, u0, satisfying the localization u0 ∈
V̂ 2

π
2

\ Ŵ 1
20

.

Remark 2.18. Note in Example 2.17 that the coefficient function A is not
nonnegative on R—nor is it strictly positive on R. It is also not monotone on
R. As explained in Sect. 1 these are all typical conditions on nonlocal func-
tions in the existing literature. By using the nonstandard cone K together
with the nonstandard open sets V̂ q

ρ and Ŵρ we are able to avoid those more
restrictive conditions on the coefficient function A. Yet at the same time we
are able to recover the pointwise-type conditions on the coefficient A as well
as the function H in the nonlocal boundary condition. And in this way, as
explained in Sect. 1, we are able to merge the good features of the different
methodologies in [27–29,32,36].
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