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Abstract. We give a constructive proof of the classical Cauchy–Kovalevskaya
theorem for ordinary differential equations which provides a sufficient
condition for an initial value problem to have a unique, analytic solution.
Our proof is inspired by a modern numerical technique for rigorously
solving nonlinear problems known as the radii polynomial approach. The
main idea is to recast the existence and uniqueness of analytic solutions
as a fixed point problem on an appropriately chosen Banach space, and
then prove a fixed point exists via a constructive version of the Banach
fixed point theorem. A key aspect of this method is the use of an ap-
proximate solution which plays a crucial role in the theoretical proof.
Our proof is constructive in the sense that we provide an explicit recipe
for constructing the fixed point problem, an approximate solution, and
the bounds necessary to prove the existence of the fixed point.
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1. Introduction

In this paper, we present a novel proof of the Cauchy–Kovalevskaya theorem
in the ordinary differential equation (ODE) setting. The general theorem,
first proved by Sonya Kovalevskaya in 1874, gives sufficient conditions for a
Cauchy problem to have a unique analytic solution. Unfortunately, spaces of
analytic functions are typically not the right regularity for studying solutions
of partial differential equations (PDE) so the Cauchy–Kovalevskaya theorem
is rarely practically applicable in this setting. On the other hand, the Cauchy–
Kovalevskaya theorem is often applicable to initial value problems (IVP)
arising from ODEs which is the focus of the present work. We begin by
stating the theorem in this setting. A statement of the general theorem and
its classical proof can be found in most introductory PDE texts, e.g. [1].
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Theorem 1 (Cauchy–Kovalevskaya). Suppose V ⊂ R
n is an open subset and

f : V → R
n is an analytic vector field. Then the initial value problem

ẋ = f(x) x(0) = x0 ∈ V (1)

has a unique solution which is analytic on some open interval, J(x0), con-
taining zero.

There are several proofs of this theorem in the literature. The classi-
cal proof provides a prototypical example of the method of majorants. To
illustrate the constructive aspect of our approach, we sketch a version of the
classical proof for the case n = 1.

The main idea in the classical proof is to use the Taylor coefficients of
f to dominate the Taylor coefficients of x. Roughly speaking, f is analytic if
its Taylor coefficients decay rapidly enough. The classical proof follows from
showing that this condition forces the Taylor coefficients of any solution to
decay rapidly as well. Note that the existence and uniqueness of a solution on
some open interval, J(x0), containing zero follows from the Picard–Lindelöf
theorem. In fact, by the usual bootstrap argument, this theorem shows that
this solution is as smooth as f . Hence, we may take for granted the existence
of x ∈ C∞(J(x0)) satisfying Eq. (1).

The Cauchy–Kovalevskaya theorem asserts that, in fact, x ∈ Cω(J(x0)).
Equivalently, there exists τ > 0, such that the series

x(t) =
∞∑

j=0

x(j)(0)
j!

tj |t| < τ (2)

converges. The crux of the classical argument arises from applying the Faà di
Bruno formula for the iterated chain rule with the assumption that x satisfies
Eq. (1), to obtain the formula

x(j)(0) = pj

(
f(0), f ′(0), . . . , f (j−1)(0)

)
j ∈ N, (3)

where each pj is a polynomial in j variables with non-negative coefficients.
Then one defines the non-negative sequence, {uj} =

{∣∣f (j)(0)
∣∣ : j ∈ N

}
, so

that we have the bound∣∣∣x(j)(0)
∣∣∣ ≤ pj(u0, . . . , uj−1) for all j ∈ N. (4)

This bound implies that the function

x̃(t) :=
∞∑

j=0

pj (u0, . . . , uj−1)
j!

tj (5)

is a majorant for x. The classical proof is concluded by showing that x̃ is an-
alytic which ultimately follows as a consequence of the fact that f is analytic.

The classical proof is quite beautiful, however, we note that it is not con-
structive. In contrast with this approach, our proof of the
Cauchy–Kovalevskaya theorem is based on analyzing the coefficients of the
solution and proving directly that they decay sufficiently fast. Our proof
is inspired by the so-called “radii polynomial approach”, which provides a
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constructive framework for proving theorems in nonlinear analysis with as-
sistance of a digital computer. While our proof does not have a numerical
aspect, it is carried out in the same style so we briefly review the method.

1.1. The radii polynomial approach

The radii polynomial approach is a modern methodology combining func-
tional analytic tools with rigorous numerical computations to study non-
linear problems. The method first appeared in [2] as a modification of the
technique presented in [3] for rigorously proving the existence of solutions
of zero-finding problems using Newton’s method. Since then, the radii poly-
nomial approach has played an important role in a number of results in
dynamical systems such as existence of spontaneous periodic solutions in the
Navier–Stokes equations [4], chaos in the circular restricted four body prob-
lem [5], coexistence of hexagonal patterns and rolls in the Swift–Hohenberg
equations [6], and the proof of Wright’s conjecture [7], to name just a few.
This is a small subset of the growing collection of results which utilize the
radii polynomial approach as the basis for rigorous numerical algorithms for
computation and continuation of equilibria, periodic orbits, connecting orbits,
solutions of initial/boundary value problems, and invariant manifolds (see,
e.g. [8–16]). A more detailed exposition on rigorous numerical techniques and
various applications of radii polynomial approach can be found in [17,18].

The main idea is to first recast problems as a zero-finding problem
on a Banach space. Then a Newton-like operator is introduced which has
fixed points in one-to-one correspondence with solutions of the zero-finding
problem. By combining careful “pencil and paper” estimates with rigorous
computations, one tries to prove that this Newton-like operator has a fixed
point by an application of the Banach fixed point theorem. If successful, the
existence of a zero for the original problem is concluded.

In [19], the radii polynomial approach was generalized to a rigorous
numerical IVP solver for polynomial vector fields in which the fixed-point
problem does not arise from a Newton-like operator. This approach was based
on modifying the methodology in [20] in which one looks for a fixed point
of a “Picard-like” operator. In this work, we follow a similar approach. The
main idea is to associate any instance of Eq. (1), with a mapping, T : X →
X, where X is an appropriate space of rapidly decaying real sequences. We
provide an explicit construction for X and T depending only on f and x0, and
we prove that if T has a fixed point, then the solution of Eq. (1) is analytic.
The Cauchy–Kovalevskaya theorem follows after proving that if f is analytic,
then our construction always produces a map with a fixed point.

We begin by describing the main theorem utilized in our approach which
is a constructive version of the Banach fixed point theorem.

Theorem 2. Suppose that X is a Banach space with norm ‖ · ‖X , U ⊂ X is
an open subset, and T : U → X is a Fréchet differentiable map. Fix x̄ ∈ U
and let r∗ > 0 be given such that Br∗(x̄) ⊂ U . Let Y be a positive constant
satisfying

‖T (x̄) − x̄‖X ≤ Y, (6)
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and Z : (0, r∗) → [0,∞) is a non-negative function satisfying

sup
x∈Br(x̄)

‖DT (x)‖X ≤ Z(r) for all r ∈ (0, r∗), (7)

where DT (x) denotes the Fréchet derivative of T at x ∈ U and ‖DT (x)‖X

denotes the operator norm induced by ‖ · ‖X . We define the radii polynomial,
p : (0, r∗) → R, by the formula

p(r) := Z(r)r − r + Y. (8)

If there exists r0 ∈ (0, r∗) such that p(r0) < 0, then there exists a unique
x ∈ Br0(x̄) so that T (x) = x.

The version presented in Theorem 2 first appeared in [19] where its proof can
also be found. Our proof of the Cauchy–Kovalevskaya theorem will follow
from applying Theorem 2 in two steps. First, we construct a fixed point
problem which amounts to defining X,U, r∗, and T appropriately, and proving
that if our construction has a solution then Eq. (1) has an analytic solution.
Then we construct x, and bounds, Y,Z, and prove that we can always find a
positive value which makes the corresponding radii polynomial negative.

The remainder of the paper is organized as follows. In Sect. 2, we in-
troduce notation and describe the construction of the fixed point problem
in case f is a scalar, i.e. n = 1. Then we prove that our construction has a
fixed point if f is analytic by applying Theorem 2. In Sect. 3, we generalize
the construction to the vector field case. As in the scalar case, we prove that
our fixed point problem always has a solution when f is analytic. Finally,
we prove that any fixed point of our construction implies the existence of an
analytic solution for Eq. (1) which proves the Cauchy–Kovalevskaya theorem
for ODEs.

2. The fixed point problem for scalar equations

In this section, we consider Eq. (1) for the case that f is an arbitrary analytic
scalar function. Specifically, we assume that n = 1 and for some b > 0,
f : (x0 − b, x0 + b) → R is analytic. Therefore, f(x) may be written as a
convergent Taylor series of the form

f(x) =
∞∑

k=0

ck(x − x0)k where ck =
f (k)(x0)

k!
for k ∈ N.

We begin by defining some notation and reviewing necessary prerequisites
from complex and functional analysis.

2.1. Preliminaries

We will work with the collection of real-valued sequences denoted by

S :=
{

{uj}∞
j=0 : uj ∈ R, 0 ≤ j < ∞

}
. (9)

Let Sω
ν ⊂ S denote the collection of sequences which define analytic functions

on Cω(Dν), where Dν = {z ∈ C : |z| < ν} is the complex disc of radius ν > 0.
Though we are interested specifically in real analytic functions, we are only
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concerned with the property that a function converges to a power series. Thus,
we do not make a distinction between a real analytic function converging say
on an interval of radius r > 0, and its continuation to a complex analytic
function converging on a complex disc of radius r.

To apply Theorem 2, we require a Banach space in which to work. With
this goal in mind, we start by equipping S with an appropriate norm.

Definition 1. Fix a weight, ν > 0 and define the space of weighted, absolutely
summable sequences

�1ν :=

⎧
⎨

⎩u ∈ S :
∞∑

j=0

νj |uj | < ∞

⎫
⎬

⎭ .

This is a normed vector space and we denote the norm of u ∈ �1ν by

‖u‖1,ν :=
∞∑

j=0

νj |uj | .

We note the obvious inclusions �1ν ⊂ Sω
ν ⊂ S and each is strict. The

following theorem provides a connection between Sω
ν and �1ν .

Proposition 3. Fix ν > 1 and suppose g ∈ Cω(Dν) with Taylor coefficients
given by u ∈ Sω

ν . Then u ∈ �1ν′ for any ν′ < ν. In fact, since g(k) ∈ Cω(Dν)
for any k ∈ N, it follows that the Taylor coefficients of g(k) ∈ �1ν′ as well.

The proof can be found in [21]. Roughly speaking, Proposition 3 says
we can pass from analytic functions to �1ν sequences provided we “give up
some domain”. This trick is commonly used in rigorous numerical algorithms
to obtain bounds on rounding and truncation errors for Taylor series. In our
setting, the theorem gives us license to work with sequences in �1ν as opposed
to Sω

ν . The next proposition shows that it suffices to consider the case ν = 1.

Proposition 4. Suppose V ⊂ R is an open subset and f : V → R. For any
τ, ν > 0, the initial value problem

dx

dt
= f(x) x(0) = x0 (10)

has a solution with Taylor coefficients in �1τ if and only if the initial value
problem

dy

ds
=

τ

ν
f(y) y(0) = x0 (11)

has a solution with Taylor coefficients in �1ν .

Proposition 4 says that choosing ν is equivalent to rescaling time in
Eq. (1). We exploit this equivalence by making an a priori choice for our
function space. Specifically, we will work exclusively in the space �11 and thus,
we will omit ν from the notation for the remainder of the paper and simply
write �1 in place of �11. Similarly, we let D :=D1 denote the complex unit disc
and our discussion of analytic functions of a scalar variable will always refer
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to the set Cω(D). The trade-off for fixing ν = 1 is that we must work with a
modified form of Eq. (1) given by

ẋ = τf(x) x(0) = x0, (12)

where τ is a time rescaling parameter.
Finally, we note that Cω(D) is closed under point-wise multiplication.

This gives rise to a multiplication operation on �1 called the Cauchy product.
Specifically, the Cauchy product of u, v ∈ �1 is denoted as u ∗ v and given
explicitly by the formula

(u ∗ v)n :=
n∑

k=0

un−kvk. (13)

In fact, Merten’s theorem implies that the Cauchy product makes �1 into a
Banach algebra. In particular, suppose f, g ∈ Cω(D) are analytic functions
with Taylor coefficients given by u, v ∈ �1, and let w = u ∗ v. Then w ∈ �1

also and the function

h(t) =
∞∑

j=0

wjt
j t ∈ D

is well defined and satisfies h(t) = f(t)g(t) as expected. Since �1 is closed
under products we define finite powers for Cauchy products in the obvious
way by

uk := u ∗ u · · · ∗ u︸ ︷︷ ︸
k copies

.

Evidently, it follows that if u ∈ �1 then uk ∈ �1 for any k ∈ N. To simplify
some formulas involving powers of Cauchy products, we define

u0 = (1, 0, 0, . . . )

for any u ∈ �1.

2.2. Taylor expansion of IVP solutions

To motivate the construction of a fixed point problem, we consider the
method of solving Eq. (12) by power series expansion. We begin by con-
sidering an ansatz for the solution to Eq. (12) of the form

x(t) =
∞∑

j=0

ajt
j aj ∈ R. (14)

We want to prove that Eq. (14) defines an analytic function on some open in-
terval containing zero by analyzing the coefficient sequence, a(τ) := {aj}j∈N

∈
S. Combining Proposition 3 and Proposition 4, this is equivalent to proving
that for some choice of τ , a(τ) ∈ �1.

For the moment, we suppose τ > 0 is fixed and we suppress the depen-
dence of a on τ . We formally plug Eq. (14) into Eq. (12) to obtain

∞∑

j=1

jajt
j−1 = τf(x(t)) = τ

∞∑

k=0

ck

⎛

⎝
∞∑

j=0

ajt
j − x0

⎞

⎠
k

. (15)
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Now, we impose a0 = x0 to satisfy the initial condition, and define the
sequence

ã := (0, a1, a2, . . . )

so the right-hand side of Eq. (15) has the form

τf(x(t)) = τ

∞∑

k=0

ck

⎛

⎝
∞∑

j=1

ajt
j

⎞

⎠
k

= τ

∞∑

k=0

ck

∞∑

j=0

ãk
j tj , (16)

where the expressions of the form ãk
j appearing in Eq. (16), and throughout

this work, represent the jth term of the k-fold convolution. Specifically,

ãk
j := (ã ∗ ã · · · ∗ ã︸ ︷︷ ︸

k copies

)j

as opposed to the kth power of the real number, ãj . This should not lead to
confusion as the latter will not appear in this paper.

Now, after matching like powers of Eq. (16) with the left-hand side of
Eq. (15), we obtain a recursive formula for the terms in a given by

aj :=

{
x0 j = 0
τ
j

∑j−1
k=0 ckãk

j−1 j ≥ 1.
(17)

2.3. Constructing the fixed point problem

Now, we want to construct appropriate choices for X,U , and T as in Theorem
2. We start with a definition.

Definition 2. For any N ∈ N we define the tail subspace of S to be

Stail = {u ∈ S : uj = 0 for 0 ≤ j ≤ N}. (18)

Similarly, we define the tail subspace of �1 by X = Stail ∩ �1 and we note that
X is a closed subspace of �1. Hence, X is a Banach space under the norm
inherited from �1. We will denote this norm by ‖ · ‖X to emphasize when we
are working in this subspace.

Now, we define a Banach space to work in by supposing that N ∈ N

is fixed and Stail,X denote the tail subspaces as defined in Definition 2. Let
a(τ) denote the sequence satisfying Eq. (17) where now we emphasize the
dependence of this sequence on the choice of τ explicitly. Let â(τ) denote the
truncation of a(τ) embedded into �1 defined explicitly by

â(τ)j :=

{
0 j = 0, or j > N

aj(τ) 1 ≤ j ≤ N.
(19)

Equation (17) leads us to define the τ -parameterized family of maps, Tτ :
X → Stail, by the formula

Tτ (u)j :=

{
0 0 ≤ j ≤ N
τ
j

∑j−1
k=1 ck (â(τ) + u)k

j−1 j > N.
(20)

We will show in the next section that a(τ) is the unique fixed point of Tτ .
However, we ultimately want to show that â(τ) ∈ X and we note that the
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map defined in Eq. (20) does not necessarily map back into X as required
for Theorem 2. As a consequence, we must first define an appropriate open
subset, U ⊂ X, on which to restrict T .

With this in mind, we note that since f is analytic on the interval
(x0−b, x0+b), for any constant b∗ ∈ (0, b), there exists positive real constants
C, C∗ and C∗∗, which satisfy the bounds

∞∑

k=0

|ck| bk
∗ < C (21)

∞∑

k=1

k |ck| bk−1
∗ < C∗ (22)

∞∑

k=2

k(k − 1) |ck| bk−2
∗ < C∗∗. (23)

This is a simple consequence of Cauchy’s integral formula combined with
Proposition 3. A proof can be found in [21]. Next, we note that ‖â(τ)‖1 is
monotonically increasing as a function of τ and by a simple computation we
have the limits

lim
τ→0

‖â(τ)‖1 = â0 = 0 lim
τ→∞ ‖â(τ)‖1 = ∞.

Hence, there exists a unique τ0 such that

‖â(2τ0)‖1 = b∗,

and therefore, ‖â(τ)‖1 < b∗ for all 0 < τ ≤ τ0. Define positive constants

r∗ := b∗ − ‖â(τ0)‖1 > 0 (24)

τ∗ := min
(

τ0,
Nr∗

C + r∗C∗

)
(25)

and define the open subset

U :=
{

u ∈ X : ‖u‖X <
1
2
r∗
}

. (26)

Note that the choice of b∗ is not unique. However, for any b∗ ∈ (0, b), this
construction produces an appropriate subset U ⊂ X.

Next, we will prove that the restriction of Tτ to U satisfies the require-
ments of Theorem 2. We start by defining some notation.

Definition 3. Let u ∈ S be any real sequence. The pointwise positive sequence
associated to u, denoted by |u| ∈ S, is the sequence with terms defined by

|u|j = |uj | .

With this notation defined, we have the following lemma.

Lemma 5. Fix N ∈ N, b∗ ∈ (0, b) with corresponding constant τ∗ as defined
by Eq. (25), and U ⊂ X as defined by Eq. (26). Suppose τ ∈ (0, τ∗] is fixed,
and let â denote the corresponding sequence defined in Eq. (19) where the
dependence on τ is suppressed. Let T denote the corresponding map defined
by Eq. (20). Then
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(i) T (U) ⊂ X
(ii) T : U → X is Fréchet differentiable.

Proof. To prove (i), note that T maps into Stail by definition, so it suffices
to show that for any u ∈ U , T (u) ∈ �1. By a direct computation, we have

∞∑

j=0

|T (u)j | =
∞∑

j=N+1

∣∣∣∣∣
τ

j

j−1∑

k=1

ck (â + u)k
j−1

∣∣∣∣∣

≤ τ

N + 1

∞∑

j=N+1

j−1∑

k=1

|ck|
∣∣∣(â + u)k

j−1

∣∣∣

≤ τ

N + 1

∞∑

k=1

|ck| ‖â + u‖k
1

<
τ

N + 1

∞∑

k=1

|ck| bk
∗

≤ τC

N + 1
,

where the second to last line follows from Eq. (24) combined with the bound
‖u‖X < 1

2r∗, and the last line from Eq. (21). Hence, T (u) ∈ �1 as required.
Now, we show that T is Fréchet differentiable. Fix u ∈ U and define a

linear operator, A(u) : U → X, by its action on h ∈ U given by the formula

(A(u)h)j =

⎧
⎨

⎩

0 0 ≤ j ≤ N

τ
j

j−1∑
k=1

kck

(
h ∗ (â + u)k−1

)

j−1
j > N.

(27)

The claim that A(u) maps U into X follows from a computation similar to
the proof of (i) by applying Eq. (22). We want to show that A(u) is the
Fréchet derivative of T at u ∈ U . Let h ∈ U be arbitrary such that u+h ∈ U
as well. By directly applying the formulas for T (u) and A(u), we have

|T (u + h) − T (u) − A(u)h|j

=

∣∣∣∣∣
τ

j

j−1∑

k=0

ck

((
(â + u + h)k

)

j−1
−
(
(â + u)k

)

j−1
− k

(
h ∗ (â + u)k−1

)

j−1

)∣∣∣∣∣

=

∣∣∣∣∣
τ

j

j−1∑

k=2

ck

k∑

i=2

k(k − 1)

i(i − 1)

( i − 2

k − 2

) (
hi ∗ (â + u)k−i

)
j−1

∣∣∣∣∣ .

Now, passing to the pointwise positive sequences for â+u and h and summing
over j ∈ N we obtain the estimate

‖T (u + h) − T (u) − A(u)h‖X

≤
∞∑

j=N+1

τ

j

j−1∑

k=2

k(k − 1) |ck|
k−2∑

i=0

(
i

k − 2

) ∣∣∣∣
(
|h|i+2 ∗ (|â + u|)k−2−i

)

j−1

∣∣∣∣
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=
∞∑

j=N+1

τ

j

j−1∑

k=2

k(k − 1) |ck|
(
(|h|2 ∗ (|â + u| + |h|)k−2

)

j−1

≤ τ‖h‖2X
N + 1

∞∑

k=2

k(k − 1) |ck| (‖â‖1 + ‖u‖X + ‖h‖X)k−2

<
τ‖h‖2X
N + 1

∞∑

k=2

k(k − 1) |ck| bk−2
∗

≤ τC∗∗

N + 1
‖h‖2X .

where the second to last line follows from Eq. (24) combined with the bounds
‖h‖X < 1

2r∗ and ‖u‖X < 1
2r∗, and the last line follows from Eq. (23). It

follows that

lim
‖h‖X→0

‖T (u + h) − T (u) − A(u)h‖X

‖h‖X
= 0 (28)

which proves that T is Fréchet differentiable. Moreover, since 0 < τ ≤ τ∗

was arbitrary, we have shown that Tτ is Fréchet differentiable for the entire
family of τ -parameterized maps defined by Eq. (20).

Lemma 5 proves that DTτ is Fréchet differentiable, and moreover, its
derivative is given by the formula in Eq. (27). For the remainder of this work,
we let DTτ (u) denote the Fréchet derivative of Tτ at u ∈ U .

2.4. Constructing the bounds

To construct the bounds required for Theorem 2, we begin by defining x̄ := 0�1 ∈
X which is the sequence of infinitely many zeroes. This choice is made inde-
pendent of N or τ . We are left with constructing r0, Yτ and Zτ : (0, r∗) →
[0,∞), such that the corresponding radii polynomial, pτ (r0) < 0. Here the
τ subscript emphasizes that these bounds depend on τ . The next lemma
establishes the required bounds for Yτ and Zτ .

Lemma 6. Fix N ∈ N and let Stail be the tail subspace of order N . Fix b∗ ∈
(0, b) with corresponding constants C,C∗, r∗ and τ∗ as defined in Eqs. (21),
(22), (24), (25), and U ⊂ X = Stail∩�1 as defined in Eq. (26). For τ ∈ (0, τ∗],
let â(τ) denote the truncation defined in Eq. (19), and Tτ : U → X denotes
the parameterized family of maps defined in Eq. (20). Define the constant

Yτ :=
τC

N + 1
(29)

and the constant function, Zτ : (0, r∗) → [0,∞), by the formula

Zτ (r) :=
τC∗

N + 1
for all r ∈ (0, r∗). (30)

Then the following bounds hold

‖Tτ (0)‖X ≤ Yτ (31)
sup

u∈Br(0)

‖DTτ (u)‖X ≤ Zτ (r) for all r ∈ (0, r∗). (32)
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Proof. To establish the bound for Yτ , we compute

‖T (0)‖X =
∞∑

j=N+1

∣∣∣∣∣
τ

j

j−1∑

k=0

ckâk
j−1

∣∣∣∣∣

≤ τ

N + 1

∞∑

k=1

∞∑

j=N+1

|ck|
∣∣âk

j−1

∣∣

≤ τ

N + 1

∞∑

k=1

|ck| ‖âk‖1

≤ τC

N + 1
which proves the bound in Eq. (31).

Next, we fix 0 < r < r∗ and u ∈ Br(0), and suppose h ∈ U is arbitrary.
Then we have the bound

‖DTτ (u)h‖X =
∞∑

j=N+1

τ

j

∣∣∣∣∣

∞∑

k=1

kck

(
h ∗ (â + u)k−1

)

j−1

∣∣∣∣∣

≤ τ

N + 1

∞∑

k=1

k |ck| ‖h ∗ (â + u)k−1 ‖1

≤ τ‖h‖X

N + 1

∞∑

k=1

k |ck| (‖â‖1 + ‖u‖X)k−1
.

Dividing through by ‖h‖X , we obtain the operator norm bound

‖DTτ (u)‖X ≤ τ

N + 1

∞∑

k=1

k |ck| (‖â‖1 + ‖u‖X)k−1
.

Upon taking the supremum over all u ∈ Br(0), we obtain the bound

sup
u∈Br(0)

‖DTτ (u)‖X ≤ τ

N + 1

∞∑

k=1

k |ck| (‖â‖1 + r)k−1
,

and finally, we obtain a bound which holds for any r ∈ (0, r∗) given by

sup
u∈Br(0)

‖DTτ (u)‖X ≤ τ

N + 1

∞∑

k=1

k |ck| (‖â‖1 + r∗)k−1 (33)

≤ τC∗

N + 1
, (34)

where the last line follows from Eqs. (22) and (24).

We note that our definition of Zτ is Lemma 6 is, in fact, a constant
function with no dependence on r. However, the statement of Theorem 7
allows for Z to depend on r. In practical applications of the radii polynomial
approach, bounding higher order derivatives of DTτ yields more accurate
approximations and in this case, Z does indeed depend on r. In order to
highlight the similarity between these practical applications and our proof in



7 Page 12 of 23 S. Kepley, T. Zhang JFPTA

the present work, we will continue to consider Zτ as a function defined on
the interval (0, r∗), and write Zτ (r) despite the fact that it is constant.

We have now constructed all of the necessary ingredients for applying
Theorem 2 which we apply to prove a precursor to the Cauchy–Kovalevskaya
theorem for the scalar case.

Theorem 7 (Cauchy–Kovalevskaya precursor). Suppose V ⊂ R is an open
subset and f : V → R is analytic with a Taylor expansion centered at x0 ∈ V
given by the formula

f(x) =
∞∑

k=0

ck(x − x0)k

which converges for x ∈ (x0 − b, x0 + b) ⊆ V . For any N ∈ N, there exists
τ > 0 such that the map defined by Eq. (20) has a fixed point.

Proof. Let Stail be the tail subspace of order N and let X = Stail ∩ �1. Fix
b∗ ∈ (0, b) with corresponding constants r∗ and τ∗ as defined by Eqs. (24),
(25), and U ⊂ X as defined by Eq. (26). Let â(τ∗) denote the truncation
defined in Eq. (19), and Tτ∗ : U → X denotes the map defined in Eq. (20).
Define the radii polynomial

p(r) := Zτ∗(r)r − r + Yτ∗ for r ∈ (0, r∗),

where Yτ∗ and Zτ∗ are the norm bounds for Tτ∗ and DTτ∗ proved in Lemma
6. Applying the formulas for Yτ∗ , Zτ∗ , we obtain the bound

p(r) =
τ∗C∗

N + 1
r − r +

τ∗C
N + 1

≤ Nr∗

(N + 1)(C + r∗C∗)
(rC∗ + C) − r

for all r ∈ (0, r∗).
Define r0 := N

N+1r∗ ∈ (0, r∗), and we obtain the bound

p(r0) <
Nr∗

(N + 1)(C + r∗C∗)
(r∗C∗ + C) − N

N + 1
r∗

= 0.

By Theorem 2, we conclude that Tτ∗ has a fixed point in U .

Note that Theorem 7 implies the Cauchy–Kovalevskaya theorem under
the additional assumption that fixed points of our construction correspond
to analytic solutions of Eq. (1) which we prove in the next section.

3. The Cauchy–Kovalevskaya theorem for analytic vector fields

We begin by extending the construction in Sect. 2 to the case for which f is a
vector field. The main technical results are already handled in the scalar case
and much of the work here amounts to setting up appropriate notation so that
the previous fixed point problem is meaningful. Once this is accomplished,
our proof of the Cauchy–Kovalevskaya theorem follows by first proving that
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fixed points of our construction imply analytic solutions of (1), and then
proving a general version of Theorem 7 for analytic vector fields. We begin
by recalling the definition of analyticity for vector fields.

Definition 4. Let V ⊂ R
n be an open subset and suppose g : V → R is

a scalar function of the n variables, {x1, . . . , xn}, which we write as com-
ponents of a vector, x ∈ R

n. To avoid confusion over the meaning of in-
dices we will index the components of a vector with superscripts by writing
x =

(
x(1), . . . , x(n)

)
. Then g is analytic if for every x =

(
x(1), . . . , x(n)

)
∈ V ,

and for each 1 ≤ i ≤ n, there exists an open neighborhood, Vx,j ⊂ R, con-
taining x(j) such that the formula

gx,j(t) := g
(
x(1), . . . , x(j−1), t, x(j+1), . . . , x(n)

)
t ∈ Vx,j ,

defines an analytic function.
This definition generalizes to vector fields as follows. Suppose g : V →

R
n is a vector field which we write as a vector of component functions, g(x) =(
g(1)(x), . . . , g(n)(x)

)
∈ R

n. Then we define g to be analytic if for each 1 ≤
i ≤ n, the component function, g(i) : V → R, is analytic.

In this setting, the analog of Eq. (12) is the initial value problem

ẋ = τf(x) x(0) = x0 ∈ V, (35)

where V ⊂ R
n is an open subset, f : V → R

n is an analytic vector field, and
τ > 0 is a time rescaling parameter. The solution of Eq. (35) is a function,
x : R → R

n, which parameterizes a trajectory of the ODE initially passing
through the point x0 at time t = 0. Our goal is to prove that if f is analytic,
then for each x0 ∈ V , there exists an open interval, J(x0) ⊂ R containing 0,
such that x : J(x0) → R

n defines an analytic curve.
We will construct a fixed point problem similar to the scalar case. In this

version, we describe this operator at a higher level for which the construction
in Sect. 2 is a special case. Next, we introduce a Banach space to work in and
define some additional notation.

3.1. Products of sequence spaces

We start by generalizing the sequence spaces introduced for scalar functions
in Sect. 2.1 to the vector field setting. We consider coefficient sequences in
the product

Sn := S × S × · · · × S︸ ︷︷ ︸
n copies

. (36)

For arbitrary u ∈ Sn, we write u =
(
u(1), . . . , u(n)

)
with u(i) ∈ S for 1 ≤

i ≤ n. If g : D → R
n is an analytic curve, then g is defined by a convergent

Taylor series of the form

g(z) =

⎛

⎜⎝
g(1)(z)

...
g(n)(z)

⎞

⎟⎠ =

⎛

⎜⎜⎝

∑∞
j=0 u

(1)
j zj

...∑∞
j=0 u

(n)
j zj

⎞

⎟⎟⎠ u
(i)
j ∈ R for all j ∈ N, 1 ≤ i ≤ n.

(37)
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Hence, g is naturally identified with an element, u ∈ Sn, where u(i) ∈ S is the
sequence of Taylor coefficients for the analytic scalar function, g(i) : D → R.

Often, it is advantageous to consider an alternative description of Sn in
which we define elements of Sn as sequences of vectors in R

n. Specifically, we
have the following equivalent characterization:

Sn =
{

{uj}∞
j=0 : uj ∈ R

n, j ∈ N

}
. (38)

In this case, the equivalent expression for Eq. (37) can be written as

g(z) =
∞∑

j=0

ujz
j uj ∈ R

n for all j ∈ N. (39)

For arbitrary u ∈ Sn we write u(i) ∈ S to express the ith component sequence,
and we write uj ∈ R

n to denote the jth term when we consider u to be an
infinite sequence of real vectors.

Following the radii polynomial approach and the constructions in Sect. 2,
we want to work in a Banach space of absolutely summable sequences. The
appropriate space for representing analytic curves would be a product of the
form �1ν1

× �1ν2
× . . . �1νn

. By an easy generalization of Proposition 4, we can
take νi = 1 for 1 ≤ i ≤ n. With this in mind, we define the product

(�1)n := �1 × �1 × · · · × �1︸ ︷︷ ︸
n copies

,

where we note the inclusion, (�1)n ⊂ Sn. We equip (�1)n with the norm
defined by

‖u‖∞ := max
{

‖u(1)‖1, ‖u(2)‖1, . . . , ‖u(n)‖1
}

which makes (�1)n into a Banach space. Before continuing to the construc-
tion of the fixed point operator, we introduce notation to connect analytic
functions and their Taylor coefficient sequences.

Definition 5. Let Cω(D,Rn) denote the space of parameterized curves which
are analytic on D. The Taylor coefficient map, T : Cω(D,Rn) → Sn, is the
linear operator which maps an analytic function to its sequence of Taylor
coefficients. Specifically, u = T g ∈ Sn is the sequence defined by the formula

uj =

⎧
⎨

⎩
g(0) j = 0

g(j)(0)
j! j ≥ 1.

We define the “inverse” Taylor coefficient map by the formula

T −1u =
∞∑

j=0

ujz
j ,

where we note that strictly speaking, T −1 is not a true inverse since T −1u
does not generally define an analytic function. Nevertheless, T −1u is well
defined as a formal power series and as we make no assumption about its
convergence this notation should not present any ambiguity.
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Now, we have all of the necessary ingredients to describe the construc-
tion of the fixed point operator.

3.2. Constructing the fixed point problem

Our first goal is to construct a fixed point problem to which we will apply
Theorem 2. We start by noting that Eq. (35) has a unique smooth solution,
x : J(x0) → R

n, which follows from the same bootstrap argument as in the
scalar case. Therefore, the sequence T (x) ∈ Sn is well defined.

Following the radii polynomial approach, we want to identify a fixed
point problem which has a solution if and only if there exists some τ such
that a(τ) ∈ (�1)n. Next, we extend Definition 2 to Sn.

Definition 6. For a fixed N ∈ N, we define the tail subspace of order N to be

Sn
tail :=

{
u ∈ Sn : u

(i)
j = 0 for 0 ≤ j ≤ N, 1 ≤ i ≤ n

}
. (40)

We let X := Sn
tail ∩ (�1)n denote the space of absolutely summable tails. Note

that X is a closed subspace of (�1)n which makes X into a Banach space
under the norm inherited from (�1)n and we denote this norm by ‖ · ‖X .

Our fixed point problem will be formulated on the Banach space, X,
given in Definition 6. Specifically, we describe a parameterized family of maps,
Tτ : X → Sn

tail, whose fixed points characterize the solutions of Eq. (35).
Our construction for Tτ in the general case is decomposed as a composition
of maps defined on Sn which simplifies its analysis. We begin by defining
a functional analytic extension of a smooth function defined on R

n, to a
corresponding induced map on Sn.

Definition 7. Let g be a formal power series in the variables
{
x(1), . . . , x(n)

}

defined with multi-indices by the formula

g(x) =
∑

α∈Nn

uαxα where uα ∈ R, xα =
n∏

i=1

(
x(i)
)α(i)

.

Formally, g : Rn → R, defines a scalar valued function on R
n and we note

that evaluation of g only requires evaluating sums and products. Hence, g
induces a map, φg : Sn → S, defined by the formula

φg(u) := T ◦ g(T −1u).

We refer to this induced map as the S-extension of g. This generalizes to
vector fields in the obvious way. If g(x) =

(
g(1)(x), . . . , g(n)(x)

)
is a vector

field where for 1 ≤ i ≤ n, g(i)(x) is given by a power series, then the Sn-
extension of g denoted by φg : Sn → Sn, is defined by the formula

φ(i)
g (u) = T ◦ g(i)(T −1u) for 1 ≤ i ≤ n.

Next, we define two operators on Sn which are important for our fixed
point construction.
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Definition 8. The integration map, denoted by I : Sn → Sn, is the function
whose action on u ∈ Sn is defined by

I(u)j =
{

0 j = 0
1
j uj−1 j ≥ 1.

(41)

Definition 9. For any N ∈ N, let Sn
tail denote corresponding tail subspace of

order N . We define the tail projection map, πN : Sn → Sn
tail, by its action on

u ∈ Sn given by the formula

πN (u)j =

⎧
⎨

⎩
0Rn 0 ≤ j ≤ N

uj j > N.

Note that the restriction of πN on (�1)n is the induced map, πN : (�1)n → X.

Now, we describe the fixed point problem construction for vector fields.
Let x̃0 denote the embedding of x0 into (�1)n defined by

x̃0 := (x0, 0Rn , 0Rn , . . . ) .

Suppose τ > 0 and define the parameterized sequence a(τ) ∈ Sn by the
formula

a(τ)(i)j :=

{
x0 j = 0
τ
j

(
φf(i)(a(τ) − x̃0)

)
j−1

j ≥ 1
for 1 ≤ i ≤ n. (42)

Fix N ∈ N, and define the truncation

â := a − x̃0 − πN (a) ∈ (�1)n, (43)

and the parameterized family of maps, Tτ : X → Sn
tail, by the formula

Tτ (u) = τπN ◦ I ◦ φf (â(τ) + u) . (44)

Note that the construction in Sect. 2 is a special case of this map when
n = 1. Expressing Tτ as a composition of operators makes it easy to provide
an explicit formula for Tτ . However, it is no longer obvious that the Taylor
coefficients of our IVP solution must be a fixed point of Tτ . The next lemma
proves this is the case.

Lemma 8. Fix N ∈ N, let Tτ : X → Sn be the map defined by Eq. (44) and
suppose that for some τ > 0, Tτ has a fixed point. Then Eq. (35) has a unique
solution which is analytic on the open interval (−1, 1).

Proof. Let a(τ) denote the sequence defined by Eq. (42). By construction, if
u is any fixed point of Tτ , then u+ â(τ)+ x̃0 satisfies the recursive formula in
Eq. (42). It follows that u = a(τ)tail since Eq. (42) is completely determined
by a choice of τ, x0. Therefore, a(τ)tail ∈ X is the unique fixed point of Tτ .
Observe that T −1(a(τ)) defines an analytic function on (−1, 1) given by the
formula

x(t) := T −1(a(τ)) =
∞∑

j=0

a(τ)jt
j .
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Since f is analytic, it has a convergent power series expansion centered at x0

of the form

f(x) =
∑

α∈Nn

cα(x − x0)α.

By composing x with τf , we obtain the formula

τf(x(t)) =
∑

α∈Nn

cα

⎛

⎝
∞∑

j=1

a(τ)jt
j

⎞

⎠
α

, (45)

where we have used the fact that a(τ)0 = x0 by definition. By applying T to
the right-hand side of (45) and expressing it in terms of the φ operator, we
obtain the formula

T (τf(x(t)))j = τ(φf (a(τ) − x̃0))j−1 for all j ≥ 1.

On the other hand, we can differentiate Eq. (45) term by term to obtain the
formula

(T ẋ)j = ja(τ)j for all j ≥ 1.

It follows from Eq. (42) that

T (τf(x(t))) = (T ẋ)

proving that x satisfies Eq. (35).

The last ingredient in our fixed point problem is to define an appropriate
open subset, U ⊂ X, on which we will apply Theorem 2. If f : V → R

n is
analytic and x0 ∈ V , then each component of f can be defined by power
series converging (at least) for all

x ∈
(
x
(1)
0 − b1, x

(1)
0 + b1

)
× · · · ×

(
x
(n)
0 − bn, x

(n)
0 + bn

)
,

where bi > 0 for 1 ≤ i ≤ n. We define b0 := min {bi : 1 ≤ i ≤ n}, and note
that for 1 ≤ i ≤ n, the component, f (i) : V → R

n, defines an analytic
function. Hence, f (i) has a power series centered at x0 of the form

f (i)(x) =
∑

α∈N

c(i)α (x − x0)α,

converging at least for x ∈ (−b0, b0)n. We also note the following multi-
variable analog of Eqs. (21), (22), and (23). For any b∗ < b0, there exist
positive constants Ci, C

∗
i and C∗∗

i , possibly depending on b∗, satisfying the
bounds

∑

α∈Nn

∣∣∣c(i)α

∣∣∣ b|α|
∗ < Ci

∑

α∈Nn

n∑

m=1

αm

∣∣∣c(i)α

∣∣∣ b|α|−1
∗ < C∗

i

∑

α∈Nn

n∑

m1=1

n∑

m2=1

αm1αm2

∣∣∣c(i)α

∣∣∣ b|α|−2
∗ < C∗∗

i .
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The proof follows immediately from Proposition 3 and the multivariate inte-
gral Cauchy integral formula which can be found in [21]. We let C,C∗, and
C∗∗ denote the maximum values for these constants taken over 1 ≤ i ≤ n.
Then we have the bounds

∑

α∈Nn

∣∣∣c(i)α

∣∣∣ b|α|
∗ < C∗ (46)

∑

α∈Nn

n∑

m=1

αm

∣∣∣c(i)α

∣∣∣ b|α|−1
∗ < C∗ (47)

∑

α∈Nn

n∑

m1=1

n∑

m2=1

αm1αm2

∣∣∣c(i)α

∣∣∣ b|α|−2
∗ < C∗∗ (48)

which hold for all 1 ≤ i ≤ n. We apply these bounds to define an appropriate
subset, U ⊂ X, on which to restrict Tτ which is similar to the scalar case.
Note that ‖â(τ)‖∞ is monotonically increasing as a function of τ since each
component has this property. Moreover, we have the limits

lim
τ→0

‖â(τ)‖∞ = 0 lim
τ→∞ ‖â(τ)‖∞ = ∞

and we define τ0 > 0 to be the unique real number satisfying ‖â(2τ0)‖∞ = b∗.
As in the scalar case, we define the following:

r∗ := b∗ − ‖â(τ0)‖∞ (49)

τ∗ = min
(

τ0,
Nr∗

C + r∗C∗

)
(50)

and the open subset

U :=
{

u ∈ X : ‖u‖∞ <
1
2
r∗
}

. (51)

This completes the construction of the fixed point problem for the vector
field case. Next, we have a generalization of Lemma 5 to vector fields.

Lemma 9. Fix N ∈ N and b∗ ∈ (0, b), with corresponding constants r∗ and
τ∗ as defined by Eqs. (49), (50), and U ⊂ X as defined by Eq. (51). Let â(τ)
denote the sequence defined in Eq. (43), and Tτ denotes the map defined by
Eq. (44). Then for all τ ∈ (0, τ∗], the following statements hold
(i) Tτ (U) ⊂ X.
(ii) Tτ : U → X is Fréchet differentiable. In particular, the action of DTτ (u)

on h =
(
h(1), . . . , h(n)

)
∈ U is given by the formula

(DTτ (u)h)(i) =
n∑

m=1

(
τπN ◦ I ◦ φ∇f(i)(â(τ) + u)

)(m) ∗ h(m),

where ∇f (i)(x) =
(

∂f(i)

∂x1
, ∂f(i)

∂x2
, · · · , ∂f(i)

∂xn

)
denotes the gradient vector of

f (i).

The proof is an easy generalization of the proof in Lemma 5 where the
bound in Eq. (48) is now applied to control all of the 2nd order (and higher)
partial derivatives of f . We note that the formula for DTτ (u) is nothing
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more than the operator obtained by applying the Sn-extension map to each
component of the Jacobian matrix for f .

3.3. Constructing the bounds

Now, we construct the bounds required for applying Theorem 2. Similar to
the scalar case, we choose x̄ = (0Rn , 0Rn , 0Rn , . . . ) ∈ (�1)n. The necessary
bounds are provided by the following generalization of Lemma 6.

Lemma 10. Fix N ∈ N and b∗ ∈ (0, b) with corresponding constants r∗, τ∗

as defined by Eqs. (49) and (50), and U ⊂ X as defined by Eq. (51). Let
â(τ) denote the truncation defined in Eq. (43), and Tτ : U → X denotes the
parameterized family of maps defined in Eq. (44). For τ ∈ (0, τ∗], define the
constant

Yτ :=
τC

N + 1
(52)

and the constant function, Zτ : (0, r∗) → [0,∞), by the formula

Zτ (r) :=
τC∗

N + 1
. (53)

Then the following bounds hold:

‖Tτ (0)‖∞ ≤ Yτ . (54)
sup

u∈Br(0)

‖DTτ (u)‖∞ ≤ Zτ (r) for all r ∈ (0, r∗). (55)

The proof is similar to the proof of Lemma 6 with Eqs. (46), (47) pro-
viding the necessary bounds in this case.

3.4. The constructive proof of the Cauchy–Kovalevskaya theorem

At last, we have all ingredients necessary to give a constructive proof of the
Cauchy–Kovalevskaya theorem.

Theorem 11 (Cauchy–Kovalevskaya Theorem). Suppose V ⊂ R
n is an open

subset, f : V → R
n is analytic, and x0 ∈ V . Then the initial value problem

ẋ = f(x), x(0) = x0 (56)

has a unique analytic solution.

Proof. Suppose N ∈ N, let Sn
tail be the tail subspace of order N , and X =

Sn
tail ∩ (�1)n. Fix b∗ ∈ (0, b) with corresponding constants r∗, τ∗ as defined by

Eqs. (49) and (50), and U ⊂ X as defined by Eq. (51).
We will consider the radii polynomial obtained from the bounds in

Lemma 10 for the parameter value τ = τ∗. In particular, let â := â(τ∗) denote
the truncation defined in Eq. (43), Tτ∗ : U → X denotes the map defined in
Eq. (44), and define the radii polynomial

p(r) := Zτ∗(r)r − r + Yτ∗ for r ∈ (0, r∗),

where Yτ∗ and Zτ∗(r) are the norm bounds for Tτ∗ and DTτ∗ proved in
Lemma 10. We define r0 := Nr∗

N+1 ∈ (0, r∗) and by a direct computation similar
to the proof of Theorem 7, we have p(r0) < 0. It follows from Theorem 2 that
Tτ∗ has a unique fixed point. By Proposition 8, this fixed point is the tail
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of an analytic solution to Eq. (35). By Proposition 4, this sequence is, in
fact, a rescaled coefficient sequence for an analytic solution of Eq. (56) which
completes the proof.

3.5. An example

The goal of this work is not to present a practical algorithm for verifying that
any particular initial value problem has an analytic solution. Nevertheless,
it may be instructive to demonstrate a constructive proof for an example,
especially considering that the approach is inspired by rigorous numerical
algorithms which do have this exact goal in mind.

Therefore, we conclude this paper by presenting an example of the con-
structive proof for a toy problem. We have intentionally chosen a rather sim-
ple example in an effort to focus on the proof itself. Additionally, the bounds
chosen to demonstrate the proof in this example are intended to make the
computations easy to follow rather than minimizing the approximation error
as one would probably do in practice.

Example 1. Define the function f : R → R by the formula f(x) = x(1 − x)
and consider the scalar initial value problem

ẋ = τf(x) = τx(1 − x), x0 =
1
2
. (57)

In this example, f is polynomial and therefore analytic. Hence, the Cauchy–
Kovalevskaya theorem implies that Eq. (57) has a unique analytic solution
(in fact, the exact solution is well known to be x(t) = (1+ exp(−τt))−1). We
will prove this following the constructive approach described in this paper.

We begin by rewriting f centered at x0 as f(x) = 1
4 − (x − 1

2 )2. So the
coefficients for f are c0 = 1

4 , c2 = −1, and cj = 0 for all j �= 0, 2. Since f is
polynomial we have b = ∞ and, therefore, we can choose b∗ arbitrarily.

For this example, we let b∗ = 1
2 and we take N = 5. Applying the

formula in Eq. (17), we obtain the first N coefficients which are

a0(τ) =
1
2
, a1(τ) =

τ

4
, a2(τ) = 0, a3(τ) =

−τ3

48
, a4(τ) = 0.

Therefore, â(τ) is the sequence

â(τ) =
(

0,
τ

4
, 0,

−τ3

48
, 0, 0, . . .

)
,

which is in �1 for all finite τ . Next, we define τ0 as the solution to the equation
‖â(2τ0)‖1 = b∗. For this example, this amounts to solving τ0 + 1

3τ3
0 − 1 = 0.

As expected, this equation has a unique real solution which has the exact
value

τ0 =

(
3 +

√
13

2

) 1
3

−
(

2
3 +

√
13

) 1
3

≈ 0.8177.

Following the definition in Eq. (24), we find, after a bit of algebra, that
r∗ = b∗ − ‖â(τ0)‖1 is the unique real root of the cubic polynomial 4096z3 −
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6912z2 + 5088z − 1029. The exact value is given by

r∗ =
9
16

+
5
16

(√
13 − 3

2

) 1
3

− 5
16

(
2√

13 − 3

) 1
3

≈ 0.3070.

Next, we define C = 1, C∗ = 2 and observe that

C >
1
2

= |c0| + |c2| b2∗
C∗ > 1 = 2 |c2| b∗,

implying C and C∗ satisfy the bounds required by Eqs. (21) and (22) respec-
tively. Consequently, for this choice of b∗, N,C and C∗, we have that

τ0 <
Nr∗

C + r∗C∗ ≈ 0.9510,

and, therefore, we set τ∗ = τ0 as defined in Eq. (25).
Continuing with the construction, we compute Yτ∗ and Zτ∗ according

to the formulas defined in Lemma 6. For this example, we obtain the bounds

Yτ∗ =
τ∗

6
=

1
6

⎛

⎝
(

3 +
√

13
2

) 1
3

−
(

2
3 +

√
13

) 1
3

⎞

⎠ ≈ 0.1353.

Zτ∗(r) =
τ∗

3
=

1
3

⎛

⎝
(

3 +
√

13
2

) 1
3

−
(

2
3 +

√
13

) 1
3

⎞

⎠

≈ 0.2726 for all r ∈ (0, r∗).

As expected, the radii polynomial, p : (0, r∗) → R is given by the formula

p(r) = Zτ∗(r)r − r + Yτ∗ ,

which is linear in r. The conclusion of Theorem 7 is that if p(r) is negative for
some r ∈ (0, r∗), then Tτ∗ must have a fixed point and consequently, Eq. (57)
has an analytic solution. As in the proof of Theorem 7, we choose

r0 =
N

N + 1
r∗ =

45
96

+
25
96

(√
13 − 3

2

) 1
3

− 25
96

(
2√

13 − 3

) 1
3

≈ 0.2558,

and indeed we find that p(r0) ≈ −0.0499 which completes the proof for this
example.
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