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1. Introduction

Recently, Ugwunnadi et al. [1] introduced a hybrid proximal point algorithm
and established some strong convergence theorems to a common solution of
proximal point for a proper convex and lower semi-continuous function and
a fixed point of a k-demicontractive mapping in the framework of a CAT(0)
space. Particular, the following main result is given:

TheoremUKA [1, Theorem 3.1]. Let (X, d) be a complete CAT(0) space,
f : X → (−∞,+∞] be a proper convex and lower semi-continuous function
and T : X → X be an L-Lipschitzian k-demicontractive mapping such that
T is Δ-demiclosed. If {αn} and {βn} are sequences in (0,1) satisfying the
following conditions:

(c1) limn→∞αn = 0;
(c2)

∑∞
n=1 αn = ∞;

(c3) 0 < ε ≤ βn < 1 − 2k, ∀n ≥ 1, where ε and k ∈ [0, 1) are some
positive constants,
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and Ω := Fix(T )
⋂

argminy∈Xf(y) �= ∅, then the sequence {xn} generated
by given x1 ∈ X,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zn = argminy∈X

[

f(y) +
1

2λn
d2(y, xn)

]

,

yn = (1 − αn)zn,

xn+1 = (1 − βn)zn ⊕ βnTyn

(1.1)

converges strongly to some point p ∈ Ω.

During carefully reading Theorem UKA and its proof, we found that
there exist some basic and conceptual errors in it. Since (X, d) is a CAT(0)
space, it is not linear. Therefore it does not have a scalar multiplication and
element 0. These show that the sequences {yn} and {xn} defined by (1.1) are
ill-posed. And the proof of Theorem UKA is also lack of rationality.

The main purpose of this paper is to establish a proximal point algo-
rithm for finding minimizers of a proper convex and lower semi-continuous
function and fixed points of quasi-pseudo-contractive mappings in CAT(0)
spaces and to point out and correct a basic and conceptual error in Ugwun-
nadi et al. [1, Theorem 3.1].

2. Preliminaries

Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y is
an isometry c : [0, d(x; y)] → X such that c(0) = x and c(d(x; y)) = y. The
image of a geodesic path joining x to y is called a geodesic segment between
x and y. A metric space X is said to be a geodesic space if every two points
of X are joined by a geodesic, and X is said to be uniquely geodesic if there
is exactly one geodesic segment joining x and y for each x, y ∈ X.

Let X be a uniquely geodesic space. We write (1−t)x⊕ty for the unique
point z in the geodesic segment joining x to y such that d(x, z) = td(x, y)
and d(y, z) = (1 − t)d(x, y). We also denote by [x, y] the geodesic segment
joining x to y, that is, [x, y] = {(1 − t)x ⊕ ty : 0 ≤ t ≤ 1}. A subset C of X
is convex if [x, y] ⊂ C for all x, y ∈ C.

A uniquely geodesic space (X; d) is a CAT(0) space, if and only if

d2((1 − t)x ⊕ ty, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x, y), (2.1)

for all x, y, z ∈ X and all t ∈ [0, 1].
It is well-known that any complete and simply connected Riemannian

manifold having non-positive sectional curvature is a CAT(0) space. Other
examples of CAT(0) spaces include pre-Hilbert spaces [2], R-trees, Euclidean
buildings [3].

Let X be a metric space, {xn} be a bounded sequence in X, and
r(., {xn}) : X → [0,∞) be a continuous functional defined by r(x, {xn}) =
lim supn→∞ d(x, xn). The asymptotic radius of {xn} is given by r({xn}) :=
inf{r(x, xn) : x ∈ X} while the asymptotic center of {xn} is the set
A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. It is generally known that
in a CAT(0) space, A({xn}) consists of exactly one point. A sequence {xn}
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in X is said to be Δ-convergent to a point x ∈ X if A({xnk
}) = {x} for every

subsequence {xnk
} of {xn}. In this case, we write Δ − limn→∞ xn = x.

In 2008 Berg and Nikolaev [4] (see also, Reich and Salinas [5]) introduced
the concept of quasilinearization in CAT(0) space X as follows:

Denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector. Quasi-

linearization in CAT(0) space X is defined as a mapping 〈·, ·〉 : (X × X) ×
(X × X) → R such that

〈−→ab,
−→
cd〉 =

1
2
(d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)) (2.2)

for all a, b, c, d ∈ X. It can be easily verified that

〈−→ab,
−→
ab〉 = d2(a, b), 〈−→ba,

−→
cd〉 = −〈−→ab,

−→
cd〉, and

〈−→ab,
−→
cd〉 = 〈−→ae,

−→
cd〉 + 〈−→eb,−→cd〉 ∀a, b, c, d, e ∈ X.

Remark 2.1. [6] It is well known that if X is a complete CAT(0) space, then
{xn} Δ-converges to x∗ ∈ X if and only if

lim supn→∞〈−−−→
x∗xn,

−−→
x∗y〉 ≤ 0, ∀y ∈ X.

Let X be a CAT(0) space. We say that X satisfies the Cauchy-Schwarz
inequality if

〈−→ab,
−→
cd〉 ≤ d(a, b)d(c, d), ∀a, b, c, d ∈ X. (2.3)

It is known ( [4], Corollary 3) that a geodesically connected metric space is
a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Ahmadi Kakavandi and Amini [7] have introduced the concept of dual
space of a complete CAT(0) space X, based on a work of Berg and Nikolaev
[4], as follows.

Consider the map Θ : R × X × X → C(X,R) defined by

Θ(t, a, b)(x) = t〈−→ab, −→ax〉, (t ∈ R, a, b, x ∈ X),

where C(X,R) is the space of all continuous real-valued functions on X. Then
the Cauchy-Schwartz inequality implies that Θ(t, a, b) is a Lipschitz function
with Lipschitz semi-norm L(Θ(t, a, b)) = |t|d(a, b), (t ∈ R, a, b ∈ X), where

L(φ) = sup
{

φ(x) − φ(y)
d(x; y)

: x, y ∈ X, x �= y

}

is the Lipschitz semi-norm for any function φ : X → R. A pseudometric D
on R × X × X is defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b) − Θ(s, c, d)), (t, s ∈ R, a, b, c, d ∈ X).

For a complete CAT(0) space (X, d), the pseudometric space (R×X ×X,D)
can be considered as a subspace of the pseudometric space of all real-valued
Lipschitz functions (Lip(X,R), L). And D((t, a, b), (s, c, d)) = 0 if and only
if t〈−→ab, −→xy〉 = s〈−→cd, −→xy〉, for all x, y ∈ X. Hence D imposes an equivalent
relation on R × X × X, where the equivalence class of (t, a, b) is

[t
−→
ab] = {s

−→
cd : D((t, a, b), (s, c, d)) = 0}.
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The set

X∗ = {[t
−→
ab] : (t, a, b) ∈ R × X × X}

is a metric space which is called the dual space of (X; d) with metric

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)),

The following inequalities can be proved easily.

Lemma 2.1. Let X be a CAT(0) space. For all x, y, z, u, w ∈ X and t ∈ [0, 1],
the following inequalities hold:

(i) d(tx ⊕ (1 − t)y, z) ≤ td(x, z) + (1 − t)d(y, z);
(ii) d2((1 − t)x ⊕ ty, z) ≤ (1 − t)2d2(x, z) + t2d2(y, z) + 2t(1 − t)〈−→xz,−→yz〉;
(iii) d(tx ⊕ (1 − t)y, tu ⊕ (1 − t)w) ≤ td(x, u) + (1 − t)d(y, w).

In the sequel, we always assume that X is a complete CAT(0) space, C is a
nonempty and closed convex subset of X and Fix(T ) is the fixed point set of
a mapping T .

Definition 2.2. A mapping T : C → C is said to be

(1) contractive if there exists a constant k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y), ∀x, y ∈ C;

if k = 1, then T is said to be nonexpansive;
(2) quasinonexpansive if Fix(T ) �= ∅ and

d(Tx, p) ≤ d(x, p),∀p ∈ Fix(T ), x ∈ C;

(3) firmly nonexpansive if

d2(Tx, Ty) ≤ 〈−−−→
TxTy,−→xy〉, ∀x, y ∈ C; (2.4)

(4) k-demicontractive [8] if Fix(T ) �= ∅ and there exists a constant k ∈
[0; 1) such that

d2(Tx, p) ≤ d2(x, p) + kd2(x, Tx), ∀x ∈ C, p ∈ Fix(T );

(5) quasi-pseudo-contractive if Fix(T ) �= ∅ and

d2(Tx, p) ≤ d2(x, p) + d2(x, Tx), ∀x ∈ C, p ∈ Fix(T ); (2.5)

Remark 2.3. From the definitions above, it is easy to see that if Fix(T ) �= ∅,
then the following implications hold:

(3) =⇒ (2) =⇒ (4) =⇒ (5).

But the converse is not true. These show that the class of quasi-pseudo-
contractive mappings is more general than the classes of k-demicontractive
mappings, quasinonexpansive mappings.

Definition 2.4. Let (X, d) be a complete CAT(0) space. A mapping T : X →
X is said to be Δ-demiclosed, if for any bounded sequence {xn} in X such
that Δ − limn→∞ xn = p and limn→∞ d(xn, Txn) = 0, then Tp = p.
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Example of quasi-pseudo-contractive mappings Let H be the closed interval
[0, 1] with the absolute value as norm. Let T : H → H be the mapping defined
by:

Tx =

{
k, x ∈ [0, k], k ∈ (0, 1)

0, x ∈ (k, 1].
(2.6)

It is clear that Fix(T ) = {k}. Hence for x ∈ [0, k] we have

|Tx − k|2 = 0 ≤ |x − k|2 + |x − Tx|2.
Also for x ∈ (k, 1] we have

|Tx − k|2 = k2 ≤ |x − k|2 + |Tx − x|2.
These show that for x ∈ [0, 1] we have

|Tx − k|2 ≤ |x − k|2 + |x − Tx|2,
i.e., T is a quasi-pseudo-contractive mapping. Also it is easy to see that T is
demiclosed.

Definition 2.5. A function f : C → (−∞,∞] is said to be convex if for all
x, y ∈ C and all λ ∈ [0, 1] the following inequality holds

f(λx ⊕ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y).

Lemma 2.6 [9,10]. Let f : X → (−∞,∞] be a proper convex and lower semi-
continuous function. For any λ > 0, define the Moreau-Yosida resolvent of f
in CAT(0) space X as

Jf
λ (x) = argminy∈X

[

f(y) +
1
2λ

d2(y, x)
]

, ∀x ∈ X. (2.7)

Then
(i) the set Fix(Jf

λ ) of fixed points of the resolvent of f coincides with
the set argminy∈Xf(y) of minimizers of f , and for any λ > 0, the
resolvent Jf

λ of f is a firmly nonexpansive mapping. Hence it is non-
expansive;

(ii) Since Jf
λ is a firmly nonexpansive mapping, if Fix(Jf

λ ) �= ∅, then
from (2.4) we have

d2(Jf
λx, p) ≤ d2(x, p) − d2(Jf

λx, x), ∀x ∈ X, p ∈ Fix(Jf
λ ). (2.8)

(iii) For any x ∈ X, and λ > μ > 0, the following identity holds:

Jf
λ (x) = Jf

μ

(
λ − μ

λ
Jf

λ (x) ⊕ μ

λ
x

)

.

Lemma 2.7 (see also [11]). Let X be a complete CAT(0) space and T : X →
X be a L-Lipschitzian mapping with L ≥ 1. Let G : X → X and K : X → X
be two mappings defined by

K(x) := (1 − ξ)x ⊕ ξT (Gx); G(x) := (1 − η)x ⊕ ηTx, x ∈ X. (2.9)

If 0 < ξ < η < 1
1+

√
1+L2 , then the following conclusions hold:

(1) Fix(T ) = Fix(T (G)) = Fix(K);
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(2) If T is Δ-demiclosed, then K is also Δ-demiclosed;
(3) K : X → X is L2-Lipschitzian;
(4) In addition, if T : X → X is quasi-pseudo-contractive, then K :

X → X is a quasi-nonexpansive mapping, i.e., for any x ∈ X and
p ∈ Fix(K)(= Fix(T ))

d2(Kx, p) ≤ d2(x, p) − ξη(1 − 2η − L2η2)d2(x, Tx) ≤ d2(x, p). (2.10)

Proof. Now we prove the conclusion (1).
If x∗ ∈ Fix(T ), then

d(x∗, TGx∗) = d(x∗, T ((1 − η)x∗ ⊕ ηTx∗)
= d(x∗, Tx∗) = 0, i.e., x∗ ∈ Fix(TG).

If x∗ ∈ Fix(TG), then

d(x∗,Kx∗) = d(TG(x∗), (1 − ξ)x∗ ⊕ ξTG(x∗))

= (1 − ξ)d(TG(x∗), x∗) = 0, i.e., x∗ ∈ Fix(K).

If x∗ ∈ Fix(K), then

d(x∗, Tx∗) = d((1 − ξ)x∗ ⊕ ξTG(x∗), Tx∗)

≤ (1 − ξ)d(x∗, Tx∗) + ξd(TG(x∗), Tx∗)

≤ (1 − ξ)d(x∗, Tx∗) + ξLd(G(x∗), x∗).

Simplifying we have

d(x∗, Tx∗) ≤ Ld(x∗, Gx∗) = Ld(x∗, (1 − η)x∗ ⊕ ηTx∗) ≤ Lηd(x∗, Tx∗).

Since Lη < 1, this implies that x∗ ∈ Fix(T ). The conclusion (1) is proved.

Now we prove the conclusion (2).
For any sequence {xn} ⊂ X with Δ−limn→∞ xn = x, and limn→∞ d(xn,

Kxn) = 0, we show that x ∈ Fix(K). By conclusion (1), it is sufficient to
prove that x ∈ Fix(T ). In fact, since T is L-Lipschizian, we have

d(xn, Txn) ≤ d(xn,Kxn) + d(Kxn, Txn) = d(xn,Kxn)

+ d((1 − ξ)xn ⊕ ξT (Gxn), Txn)

≤ d(xn,Kxn) + (1 − ξ)d(xn, Txn) + ξd(T (Gxn), Txn).

Simplifying we have

d(xn, Txn) ≤ 1
ξ
d(xn,Kxn) + d(T (Gxn), Txn)

≤ 1
ξ
d(xn,Kxn) + Ld((1 − η)xn ⊕ ηTxn, xn)

≤ 1
ξ
d(xn,Kxn) + Lηd(Txn, xn).

This implies that

(1 − Lη)d(xn, Txn) ≤ 1
ξ
d(xn,Kxn).
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Since (1 − Lη) > 0 and d(xn,Kxn) → 0, this implies that d(xn, Txn) → 0.
Since T is Δ-demiclosed, x ∈ Fix(T ). Hence x ∈ Fix(K), i.e., K is Δ-
demiclosed.

The conclusion (2) is proved.
The conclusion (3) is obvious, the proof is omitted.
Now we prove the conclusion (4).
For any p ∈ Fix(T ) and x ∈ X, it follows from (2.1) that

d2(Kx, p) = d2((1 − ξ)x ⊕ ξT ((1 − η)x ⊕ ηTx), p)

≤ (1 − ξ)d2(x, p) + ξd2(T ((1 − η)x ⊕ ηTx), p)

− ξ(1 − ξ)d2(x, T ((1 − η)x ⊕ ηTx)).

(2.11)

Since T is quasi-pseudo-contractive, we have

d2(T ((1 − η)x ⊕ ηTx), p) ≤ d2((1 − η)x ⊕ ηTx), p)

+ d2((1 − η)x ⊕ ηTx), T ((1 − η)x ⊕ ηTx)).
(2.12)

From (2.1), we have

d2((1 − η)x ⊕ ηTx), p) ≤ (1 − η)d2(x, p) + ηd2(Tx, p) − η(1 − η)d2(x, Tx)

≤ (1 − η)d2(x, p)

+ η{d2(x, p) + d2(x, Tx)} − η(1 − η)d2(x, Tx)

= d2(x, p) + η2d2(x, Tx),

(2.13)

and

d2((1 − η)x ⊕ ηTx, T ((1 − η)x ⊕ ηTx)) ≤ (1 − η)d2(x, T ((1 − η)x ⊕ ηTx))

+ ηd2(Tx, T ((1 − η)x ⊕ ηTx))

− η(1 − η)d2(x, Tx)

≤ (1 − η)d2(x, T ((1 − η)x ⊕ ηTx)) + ηL2d2(x, (1 − η)x

⊕ ηTx) − η(1 − η)d2(x, Tx)

≤ (1 − η)d2(x, T ((1 − η)x ⊕ ηTx))

+ η3L2d2(x, Tx) − η(1 − η)d2(x, Tx)

≤ (1 − ξ)d2(x, T ((1 − η)x ⊕ ηTx))

− η((1 − η − L2η2)d2(x, Tx) (since ξ < η).

(2.14)

Substituting (2.13) and (2.14) into (2.12), after simplifying we have

d2(T ((1 − η)x ⊕ ηTx), p) ≤ d2(x, p) + (1 − ξ)d2(x, T ((1 − η)x ⊕ ηTx))

− η(1 − 2η − L2η2)d2(x, Tx).
(2.15)

Substituting (2.15) into (2.11), and after simplifying we have

d2(Kx, p) ≤ d2(x, p) − ξη(1 − 2η − L2η2)d2(x, Tx) ≤ d2(x, p).

This completes the proof of Lemma 2.7. �
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Lemma 2.8 [12]. If {an} is a sequence of real numbers and there exists a
subsequence {ni} of {n} such that ani

< ani+1 for all i ∈ N , then there exists
a nondecreasing sequence {mk} ⊂ N such that mk → ∞ and the following
properties are satisfied:

amk
≤ amk+1 and ak ≤ amk+1.

for all sufficiently large numbers k ∈ N . In fact, mk = max{j ≤ k : aj <
aj+1}.
Lemma 2.9 ([13]). If {an} is a sequence of nonnegative real numbers satis-
fying the following conditions:

an+1 ≤ (1 − δn)an + δnσn + γn, n ≥ 0.

where {δn} ⊂ [0, 1],
∑∞

n=0 δn = ∞; lim supn→∞ σn ≤ 0; γn ≥ 0, and∑∞
n=0 γn < ∞. Then an → 0, as n → ∞.

3. Main results

Throughout this section we assume that
(1) (X, d) is a complete CAT(0) space;
(2) f : X → (−∞,+∞] is a proper convex and lower semi-continuous

function, and Jf
λn

: X → X is the Moreau-Yosida resolvent of f ;
(3) T : X → X is an L-Lipschitzian quasi-pseudo contractive mapping

with L ≥ 1 and T is Δ-demiclosed;
(4) Define the mappings G : X → X and K : X → X by

K(x) := (1 − ξ)x ⊕ ξT (Gx); G(x) := (1 − η)x ⊕ ηTx, x ∈ X, (3.1)

where 0 < ξ < η < 1
1+

√
1+L2 .

Theorem 3.1. Let (X, d), f, Jf
λn

, T, K, G satisfy the conditions (1)-(4) as
above. Let u ∈ X be a given point. For any given point x1 ∈ X, let {xn} be
the sequence generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zn = Jf
λn

(xn) := argminy∈X

[

f(y) +
1

2λn
d2(y, xn)

]

,

yn = αnu ⊕ (1 − αn)zn,

xn+1 = (1 − βn)zn ⊕ βnKyn,

n ≥ 1. (3.2)

If Ω := Fix(T )
⋂

argminy∈Xf(y) �= ∅ and the sequences {αn}, {βn} and
{λn} satisfy the following conditions:

(c1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(c2) 0 < ε ≤ βn ≤ b < 1, λn > λ > 0, ∀n ≥ 1, where ε, b and λ are

some positive constants,

then the sequence {xn} converges strongly to some point in Ω.

Proof. First we observe that by the assumptions of Theorem 3.1, Lemma 2.7
and Lemma 2.5 we know that
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(a) the mapping K : X → X is quasi-nonexpansive, Δ-demiclosed, L2-
Lipschitzian and Fix(T ) = Fix(K);

(b) Jf
λn

is nonexpansive, so it is Δ-demiclosed, and Fix(Jf
λn

)
= argminy∈Xf(y).

(I) Now we prove that the sequence {xn} is bounded.

In fact, if p ∈ Ω, then p = Jf
λn

(p),∀n ≥ 1, and p ∈ Fix(T ) = Fix(K).
Since Jf

λn
is a nonexpansive mapping, we have

d(zn, p) = d(Jf
λn

(xn), Jf
λn

(p)) ≤ d(xn, p). (3.3)

It follows from (3.2), (2.1) and Lemma 2.1(ii) that

d2(yn, p) = d2(αnu ⊕ (1 − αn)zn, p)

≤ αnd2(u, p) + (1 − αn)d2(zn, p) − αn(1 − αn)d2(u, zn)

= α2
nd2(u, p) + (1 − αn)2d2(zn, p) + 2αn(1 − αn)〈−→up,−→znp〉.

(3.4)

Also from (3.2), (3.3) and (3.4), we have

d2(xn+1, p) = d2((1 − βn)zn ⊕ βnKyn, p)

≤ (1 − βn)d2(zn, p) + βnd2(Kyn, p) − βn(1 − βn)d2(zn,Kyn)

≤ (1 − βn)d2(zn, p) + βnd2(yn, p) − βn(1 − βn)d2(zn,Kyn)

≤ (1 − βn)d2(zn, p) + βn{αnd2(u, p) + (1 − αn)d2(zn, p)

− αn(1 − αn)d2(u, zn)} − βn(1 − βn)d2(zn,Kyn).

(3.5)

This implies that

d2(xn+1, p) ≤ (1 − αnβn)d2(xn, p) + αnβnd2(u, p)

≤ max{d2(xn, p), d2(u, p)}.

By induction, we can prove that

d2(xn, p) ≤ max{d2(x1, p), d2(u, p)}, ∀n ≥ 1.

This implies that {xn} is a bounded sequence. So are {zn}, {yn} and {Kyn}.
The conclusion (I) is proved. �

(II) Next we prove that {xn} converges strongly to some point in Ω.
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In fact, from (3.2) and (3.4) we have

d2(xn+1, p) = d2((1 − βn)zn ⊕ βnKyn, p)

≤ (1 − βn)d2(zn, p) + βnd2(Kyn, p) − βn(1 − βn)d2(zn,Kyn)

≤ (1 − βn)d2(zn, p) + βnd2(yn, p) − βn(1 − βn)d2(zn,Kyn)

≤ (1 − βn)d2(zn, p) − βn(1 − βn)d2(zn,Kyn)

+ βn{α2
nd2(u, p) + (1 − αn)2d2(zn, p) + 2αn(1 − αn)〈−→up,−→znp〉}

≤ (1 − αnβn)d2(zn, p) + αnβn{αnd2(u, p) + 2(1 − αn)〈−→up,−→znp〉}
− βn(1 − βn)d2(zn,Kyn)

≤ (1 − αnβn)d2(xn, p) + αnβn{αnd2(u, p) + 2(1 − αn)〈−→up,−→znp〉}
− βn(1 − βn)d2(zn,Kyn).

= d2(xn, p) + αnβnξn − βn(1 − βn)d2(zn,Kyn),

(3.6)

where

ξn = −d2(xn, p) + αnd2(u, p) + 2(1 − αn)〈−→up,−→znp〉.
After simplifying and putting M = supn≥1 |ξn|, then we have

βn(1 − βn)d2(zn,Kyn) ≤ d2(xn, p) − d2(xn+1, p) + αnβnM, (3.7)

Now we consider the following two cases:
Case 1: Assume that {d(xn, p)} is eventually nonincreasing. Hence

there exists a sufficiently large positive integer n0 such that d(xn+1, p) ≤
d(xn, p), ∀n ≥ n0. Since {xn} is bounded, the limit limn→∞ d(xn, p) exists.
Since αn → 0 and 0 < ε ≤ βn ≤ b < 1 (by conditions (c1) and (c2)), from
(3.7) we have that

d(zn,Kyn) → 0, as n → ∞. (3.8)

Also from (3.2) and Lemma 2.1(i), we obtain

d(yn, zn) = (αnu ⊕ (1 − αn)zn, zn)

≤ αnd(u, zn) → 0, as n → ∞.
(3.9)

From (3.8) and (3.9) we have

d(yn,Kyn) → 0, as n → ∞. (3.10)

On the other hand, from (2.8) we have

d2(xn, zn) ≤ d2(xn, p) − d2(zn, p). (3.11)

Also, it follows from (3.5) that

d2(xn+1, p) ≤ (1 − βn)d2(xn, p) + βn{αnd2(u, p) + (1 − αn)d2(zn, p)}.

This implies that

d2(xn, p) ≤ 1
βn

{d2(xn, p) − d2(xn+1, p)} + αnd2(u, p) + (1 − αn)d2(zn, p).
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(3.12)

Substituting (3.12) into (3.11), after simplifying we have

d2(xn, zn) ≤ 1
βn

(d2(xn, p) − d2(xn+1, p)) + αn(d2(u, p) − d2(zn, p)).

Since {zn} is bounded, {d(xn, p)} is convergent and αn → 0, these show that

lim
n→∞ d(xn, zn) = 0. (3.13)

Hence from (3.9)–(3.13) and Lemma 2.7 (3) we have

d(xn,Kxn) ≤ d(xn, zn) + d(zn, yn) + d(yn,Kyn) + d(Kyn,Kxn)

≤ d(xn, zn) + d(zn, yn)

+ d(yn,Kyn) + L2d(yn, xn) → 0, as n → ∞.

(3.14)

As λn ≥ λ > 0, so by Lemma 2.5 (iii) and (3.13), we have

d(Jf
λ (xn), zn) = d(Jf

λ (xn), Jf
λn

(xn))

= d(Jf
λ (xn), Jf

λ

(
λn − λ

λn
Jf

λn
(xn) ⊕ λ

λn
xn

)

≤ d

(

xn,
λn − λ

λn
Jf

λn
(xn) ⊕ λ

λn
xn

)

≤
(

1 − λ

λn

)

d(xn, Jf
λn

(xn))

=
(

1 − λ

λn

)

d(xn, zn) → 0, as n → ∞.

This together with (3.13) shows that

d(xn, Jf
λ (xn)) ≤ d(xn, zn) + d(zn, Jf

λ (xn)) → 0, as n → ∞. (3.15)

Since {xn} is bounded, there exists a subsequence {xni
} ⊂ {xn} such that

Δ − limi→∞ xni
= x∗ ∈ X and

lim sup
n→∞

〈−−→ux∗,
−−−→
xnx∗〉 = lim sup

i→∞
〈−−→ux∗,

−−−→
xni

x∗〉. (3.16)

Since lim supi→∞〈−−→ux∗,
−−−→
xni

x∗〉 ≤ 0 by Remark 2.1, which shows

lim sup
n→∞

〈−−→ux∗,
−−−→
xnx∗〉 ≤ 0. (3.17)

By virtue of (3.13), (3.16) and Cauchy-Schwarz inequality we obtain

lim sup
n→∞

〈−−→ux∗,
−−→
znx∗〉 ≤ lim sup

n→∞
〈−−→ux∗,−−−→znxn〉 + lim sup

n→∞
〈−−→ux∗,

−−−→
xnx∗〉

≤ lim sup
n→∞

d(u, x∗)d(zn, xn)〉 + lim sup
n→∞

〈−−→ux∗,
−−−→
xnx∗〉 ≤ 0.

(3.18)

On the other hand, since K is Δ-demiclosed, from (3.14), x∗ ∈ Fix(K). Also
since Jf

λ is nonexpansive, it is also Δ-demiclosed. From (3.15) x∗ ∈ Fix(Jf
λ ).

Hence x∗ ∈ Ω.
Taking p = x∗ in (3.6), we obtain

d2(xn+1, x
∗) ≤ (1 − αnβn)d2(xn, x∗) + αnβn{αnd2(u, x∗)
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+2(1 − αn)〈−−→ux∗,
−−→
znx∗〉}. (3.19)

Putting an = d2(xn, x∗), δn = αnβn, σn = αnd2(u, x∗)+2(1−αn)〈−−→ux∗,
−−→
znx∗〉

and γn = 0 in Lemma 2.9, we obtain that d(xn, x∗) → 0, i.e., xn → x∗ ∈ Ω.
Case 2: Assume that {d(xn, p)} is not eventually nonincreasing. Hence

there exists a subsequence {ni} ⊂ {n} such that

d(xni
, p) < d(xni+1, p), ∀i ∈ N.

Hence by Lemma 2.8, there exists an increasing sequence {mj}, j ≥ 1 mj →
∞, such that

d(xmj
, p) ≤ d(xmj+1, p), and d(xj , p) ≤ d(xmj+1, p), ∀j ≥ 1. (3.20)

Also from (3.7) and the fact that αmj
→ 0, as mj → ∞ we obtain

d(zmj
,Kymj

) → 0, as j → ∞. Following arguments similar to those in
the proof of Case 1, we can get

lim sup
j→∞

〈−−→ux∗,
−−−−→
xmj

x∗〉 ≤ 0. (3.21)

Also from the inequality (3.6) we obtain that

d2(xmj+1, x
∗) ≤ (1 − αmj

βmj
)d2(xmj

, x∗)

+ αmj
βmj

{αmj
d2(u, x∗) + 2(1 − αmj

)〈−−→ux∗,
−−−→
zmj

x∗〉}.
(3.22)

After simplifying we have

αmj
βmj

d2(xmj
, x∗) ≤ d2(xmj

, x∗) − d2(xmj+1, x
∗) + αmj

βmj
{αmj

d2(u, x∗)

+ 2(1 − αmj
)〈−−→ux∗,

−−−→
zmj

x∗〉}
≤ αmj

βmj
{αmj

d2(u, x∗) + 2(1 − αmj
)〈−−→ux∗,

−−−→
zmj

x∗〉}.

This implies that d2(xmj
, x∗) → 0, as j → ∞. From (3.22) it follows that

d2(xmj+1, x
∗) → 0, as j → ∞. Hence from (3.20) we have that

lim
j→∞

d(xj , x
∗) ≤ lim

j→∞
d(xmj+1, x

∗) = 0, i.e., lim
j→∞

xj = x∗ ∈ Ω.

This completes the proof of Theorem 3.1. �
In Theorem 3.1, if the mapping T : X → X is replaced by a k-

demicontractive mapping, then the following result can be obtained from
Theorem 3.1 immediately.

Corollary 3.2. Let (X, d), f, Jf
λn

be the same as in Theorem 3.1. Let T :
X → X be a L-Lipschitzian, k-demicontractive and Δ-demiclosed mapping
with L ≥ 1 and k ∈ (0, 1). Denote the mapping S : X → X by

Sx := δx ⊕ (1 − δ)Tx, x ∈ X, 0 < k ≤ δ < 1. (3.23)

Let u ∈ X be a given point. For any given point x1 ∈ X, let {xn} be the
sequence generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zn = Jf
λn

(xn) := argminy∈X

[

f(y) +
1

2λn
d2(y, xn)

]

,

yn = αnu ⊕ (1 − αn)zn,

xn+1 = (1 − βn)zn ⊕ βnSyn,

∀ n ≥ 1. (3.24)



Vol. 23 (2021) A proximal point algorithm for finding minimizers Page 13 of 18 5

If Ω := Fix(T )
⋂

argminy∈Xf(y) �= ∅ and the sequences {αn}, {βn} and
{λn} satisfying the following conditions:

(c1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(c2) 0 < ε ≤ βn ≤ b < 1, λn > λ > 0, ∀n ≥ 1, where λ, b and ε are

some positive constants,
then the sequence {xn} converges strongly to some point in Ω.

Proof. In order to prove Corollary 3.2, it is sufficient to prove that the map-
ping S : X → X defined by (3.23) has the following properties:

(1) Fix(T)=Fix(S); (2) S is demiclosed; (3) S is L-lipschitzian; (4)
S is a quasi-nonexpensive mappings.

It is easy to prove that S has the properties (1)-(3). Next we prove
that S has the property (4). In fact, since Fix(T ) = Fix(S), hence for any
p ∈ Fix(T ) = Fix(S) and x ∈ X it follows from (3.23) that

d2(Sx, p) = d2(δx ⊕ (1 − δ)Tx, p)

≤ δd2(x, p) + (1 − δ)d2(Tx, p) − δ(1 − δ)d2(x, Tx)

≤ δd2(x, p) + (1 − δ){d2(x, p) + kd2(x, Tx)} − δ(1 − δ)d2(x, Tx)

= d2(x, p) + (1 − δ)(k − δ)d2(x, Tx) ≤ d2(x, p) (since k ≤ δ).

(4) is proved. This completes the proof of Corollary 3.2. �

Remark 3.3. Theorem 3.1 not only corrects some basic errors in Ugwunnadi
et al. [1], but also extends the main results in [1] from k-demi-contractive
mappings to quasi-pseudo-contractive mappings in CAT(0) space. Theorem
3.1 extends the result of Bac̆ák [14] from weak convergence to strong conver-
gence and the result of Cholamjiak et al. [15] from nonexpanvive mapping to
Lipschitzian quasi-pseudo mapping. Also Theorem 3.1 extended the result in
[16] from strict pseudo-contractive mapping in a real Hilbert space to Lips-
chitzian quasi-pseudo mapping in a more general space than Hilbert space.
We studied a new hybrid proximal point algorithm for solving convex mini-
mization problem as well as fixed point problem of Lipschitzian quasi-pseudo
mapping in CAT(0) spaces. Our method of proof is different from that of
Cholamjiak et al. [15] and Chang et al. [17].

4. Applications

Throughout this section we assume that (X, d) is a complete CAT(0) space
and C is a non-empty closed and convex subset of X.

4.1. Application to convex minimization problem and equilibrium problem
in CAT(0) space

The “so called” equilibrium problem for a bifunction F : C × C → R is to
find a x∗ ∈ C such that

F (x∗, y) ≥ 0, ∀y ∈ C, (4.1)

where F : C → R satisfies the following conditions:
(A1) F (x, x) = 0, ∀x ∈ C;
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(A2) F is monotone, i.e. , F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;
(A3) The function y �→ F (x, y) is convex for all x ∈ C;

By using F we define a mapping Tr : X → C, r > 0 as follows:

Tr(x) := {z ∈ C : F (z, y) − 1
r
〈yz, xz〉} ≥ 0, ∀y ∈ C}. (4.2)

We have the following result

Lemma 4.1. [18] Let C be a nonempty closed convex subset of a complete
CAT(0) space X. Let F : C ×C → R be a bifunction satisfying the conditions
(A1)–(A3). If the following condition is satisfied

(A4) For each x̄ ∈ X and r > 0 , there exists a compact subset Dx̄ ⊂ C
containing a point yx̄ ∈ Dx̄ ⊂ C such that

F (x, yx̄) − 1
r
〈xyx̄, xx̄〉 < 0,∀x ∈ C \ Dx̄,

then, the following conclusions hold:

(a) Tr is well defined in X and Tr is a single-valued mapping;
(b) Tr is firmly nonexpansive restricted to C, i.e., ∀x, y ∈ C

d2(Trx, Try) ≤ 〈−−−−→
TrxTry, xy〉;

Therefore Tr is a a nonexpansive (i.e., 1-Lipschitzian) and demiclosed
mapping restricted to C. In addition, if Fix(Tr) �= ∅, then Tr is quasi-
nonexpansive.

(c) Fix(Tr) = Ω1, where Ω1 is the solution set of problem (4.1);
(d) If Fix(Tr) �= ∅, we have

d2(Trx, x) ≤ d2(x, p) − d2(Trx, p), ∀x ∈ C, and ∀p ∈ Fix(Tr).

Taking T = K = Tr in Theorem 3.1, then the following theorem can be
obtained from Theorem 3.1 and Lemma 4.1 immediately.

Theorem 4.2. Let X be a complete CAT(0) space, C be a nonempty closed
and convex subset of X. Let f : C → R be a proper convex and lower semi-
continuous function, and Jf

λn
: C → C be the Moreau-Yosida resolvent of f .

Let F : C × C → R be a bifunction satisfying the conditions (A1)- (A4) and
Tr, r > 0 be the mapping defined by (4.2). Let u ∈ X be a given point. For
any given point x1 ∈ X, let {xn} be the sequence generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

zn = Jf
λn

(xn) := argminy∈X

[

f(y) +
1

2λn
d2(y, xn)

]

,

yn = αnu ⊕ (1 − αn)zn,

xn+1 = (1 − βn)zn ⊕ βnTryn,

n ≥ 1. (4.3)

If Ω2 := Fix(Tr)
⋂

argminy∈Xf(y) �= ∅ and the sequences {αn}, {βn} and
{λn} satisfy the following conditions:

(c1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
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(c2) 0 < ε ≤ βn ≤ b < 1, λn > λ > 0, ∀n ≥ 1, where ε, b and λ are
some positive constants,
then (1) the sequence {xn} converges strongly to some point in Ω2.

(2) Especially, if f ≡ 0, then Jf
λn

= I (identity mapping) for all
n ≥ 1. Hence the sequence {xn} defined by

{
yn = αnu ⊕ (1 − αn)xn,

xn+1 = (1 − βn)xn ⊕ βnTryn,
n ≥ 1. (4.4)

converges strongly to a solution of equilibrium problem (4.1).

4.2. Application to saddle point problem in CAT(0) spaces

Let X1 and X2 be complete CAT(0) spaces. Then the product space X =
X1 × X2 is also a complete CAT(0) space (see [19, Page 239]. A function
H : X1 × X2 → R is called a saddle function if

(i) y �→ H(x, y) is convex on X2 for each x ∈ X1 and
(ii) x �→ H(x, y) is concave, i.e., x �→ −H(x, y) is convex on X1 for each

y ∈ X2.
A point z∗ = (x∗, y∗) ∈ X1 × X2 is said to be a saddle point of H if

H(x, y∗) ≤ H(x∗, y∗) ≤ H(x∗, y), ∀z = (x, y) ∈ X1 × X2. (4.5)

We denote by Ω3 the set of saddle points of problem (4.5).
Let VH : X = X1 × X2 → 2X∗

1 × 2X∗
2 be a multivalued map-

ping associated with saddle function H (where X∗
i is the dual space of

Xi, i = 1, 2, (see, (2.4)) defined by

VH(x, y) = ∂(−H(., y))(x) × ∂(H(x, .))(y), ∀(x, y) ∈ X1 × X2, (4.6)

Let us define the resolvent JVH

λ : X = X1 × X2 → 2X1×X2 of VH of
order λ > 0 by

JVH

λ (x) := {z ∈ X : [
1
λ

−→zx] ∈ VH(z)}, x ∈ X = X1 × X2. (4.7)

The following results hold.

Lemma 4.3. [20] Let X1 and X2 be complete CAT(0) spaces, H be a saddle
function on X = X1 × X2 and VH be the multivalued mapping defined by
(4.6). Then

(1) JVH

λ : X → X, λ > 0 is a single-valued and firmly nonexpansive
mapping;

(2) A point z∗ = (x∗, y∗) ∈ X is a saddle point of H if and only if
z∗ ∈ Fix(JVH

λ ).

In Theorem 3.1, taking f ≡ 0, T = K = JVH

λ , then the following result
can be obtained from Theorem 3.1 immediately.

Theorem 4.4. Let X1, X2, X, H, VH and JVH

λ be the same as in Lemma
4.3. Let u ∈ X be a given point. For any given point x1 ∈ X, let {xn} be the
sequence generated by

{
yn = αnu ⊕ (1 − αn)xn,

xn+1 = (1 − βn)xn ⊕ βnJVH

λ (yn),
n ≥ 1. (4.8)
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If Fix(JVH

λ ) �= ∅ and the sequences {αn}, and {βn} satisfy the following
conditions:

(c1) {αn} ⊂ (0, 1), limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(c2) 0 < ε ≤ βn ≤ b < 1, ∀n ≥ 1, where ε, b are some positive constants,

then the sequence {xn} converges strongly to a saddle point of problem
(4.5).
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