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Abstract. We are concerned with the study of a first-order nonlinear
periodic boundary value problem{

u′
g(t) + b(t)u(t) = f(t, u(t)), t ∈ [0, T ]

u(0) = u(T )
(1)

involving the Stieltjes derivative with respect to a left-continuous nonde-
creasing function. Based on Schaeffer’s fixed point theorem and making
use of a notion of partial Stieltjes derivative (along with its natural
properties), we prove the existence of regulated solutions and provide
a useful characterization in terms of Stieltjes integrals. The general-
ity of our result is coming from the impressive number of particular
cases of the described problem. Thus, first-order periodic differential
equations, impulsive differential problems (including also the possibility
to have Zeno points, i.e. accumulations of impulse moments), dynamic
equations on time scales or generalized differential equations can all be
studied through the theory of Stieltjes differential equations.
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effer’s fixed point theorem, regulated function, Kurzweil–Stieltjes inte-
gral.

1. Introduction

The theory of differential equations driven by measures has been contin-
uously growing over the last decade (e.g. [2,4,7–9,21,27]) since it offers a
tool to study in a unified way several classical problems: first-order differen-
tial equations (in the case when the driving measure is absolutely continu-
ous with respect to the Lebesgue measure), impulsive differential problems
(when we take into consideration a measure which can be written as a sum
of Lebesgue measure with a discrete measure) with no limitations on the
impulse moments, dynamic equations on time scales (see [4,8,9]) and gener-
alized differential equations (e.g. [16,21,28,29]).
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On the other hand, an equivalent formulation in terms of a notion of (Stielt-
jes) derivative with respect to a nondecreasing function is available (c.f. [22],
see also [19]). This derivative, considered in [22] (even if the idea is not really
new in literature, c.f. [31]) has found recent interesting applications in biology,
population dynamics or chemistry (see [12,13] or [23]).
At the same time, it is well known that differential problems with periodic
boundary conditions have wide applicability in various areas of science.
Relying on these considerations, we focus on first order nonlinear periodic
boundary value problems of the form (1):{

u′
g(t) + b(t)u(t) = f(t, u(t)), t ∈ [0, T ]

u(0) = u(T )

involving the Stieltjes derivative with respect to a function g : [0, T ] → R

left-continuous and nondecreasing.
The maps b : [0, T ] → R and f : [0, T ] × R → R are supposed to be

continuous at the continuity points of g.
In two steps (first, for the linear and then, applying Schaeffer’s fixed

point theorem, for the general case), we prove that the specified problem
possesses solutions and provide a useful integral characterization via a Green
function.
We essentially use an idea borrowed from [12] which consists in modifying in
an appropriate manner the involved functions at the discontinuity points of
g to adjust the g-derivative at these points.

This is, as far as the authors know, the first existence result for periodic
boundary value problems in such a general framework (involving Stieltjes
derivatives).

In the same spirit as described above for measure differential problems,
in particular when g is the sum of an absolutely continuous function with
a sum of Heaviside functions, we cover the framework of periodic impulsive
differential problems, therefore we can deduce new results for impulsive equa-
tions (studied, under different assumptions, e.g. in [3,17,33]). Moreover, the
number of impulses can be not only finite, but countable and it can contain
accumulation points (known as Zeno points in the theory of hybrid systems,
e.g. [18]). Our outcome is also related to some existence results for periodic
dynamic equations on time scales (see [5,14] or [32]). We finally note that the
same problem has also been studied in the framework of fractional differential
equations (e.g. [1]) or in that of functional impulsive differential equations
(as in [15]).

2. Notations and auxiliary results

A function u : [0, T ] → R is said to be regulated ([10]) if there exist the right
and left limits u(t+) and u(s−) at every points t ∈ [0, T ) and s ∈ (0, T ]. The
set of discontinuity points of a regulated function is at most countable ([25])
and any function of bounded variation (and also any continuous function) is
regulated. Regulated functions are bounded and the space of these functions
is a Banach space when endowed with the norm ‖u‖C = supt∈[0,T ] |u(t)|.
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A family A of regulated real-valued functions on [0, T ] is called equireg-
ulated if for every t ∈ [0, T ] and every ε > 0 one can find δ > 0 such that for
any u ∈ A

|u(t) − u(t−)| < ε, for every t ∈ (t − δ, t)

and

|u(t) − u(t+)| < ε, for every t ∈ (t, t + δ).

The notion of equiregulatedness is related to compactness in the space of
regulated functions.

Lemma 1. ([10, Corollary 2.4]) A set of regulated functions is relatively com-
pact if and only if it is equiregulated and pointwise bounded.

This is a consequence of another interesting result.

Lemma 2. [10] Let (fn)n be an equiregulated sequence of functions which con-
verges pointwise to a function f . Then (fn)n converges uniformly to f .

The following remark will be useful later:

Remark 3. Let A be a set of regulated functions. If there exists a regulated
function χ : [0, T ] → R such that for every u ∈ A,

|u(t) − u(t′)| ≤ |χ(t) − χ(t′)|, ∀ 0 ≤ t < t′ ≤ T,

then A is equiregulated.

Let g : [0, T ] → R be a nondecreasing left-continuous function. In the
whole paper, we deal with the Kurzweil–Stieltjes integral; to be allowed to use
its properties, we recall below the basic facts concerning this type of integral.

Definition 4. [16,20,25,26,28] or [30] A function f : [0, T ] → R is said to
be Kurzweil–Stieltjes integrable with respect to g : [0, T ] → R on [0, T ] (or
KS-integrable) if there exists

∫ T

0
f(s)dg(s) ∈ R such that, for every ε > 0,

there is a positive function δε on [0, T ] with∣∣∣∣∣
p∑

i=1

f(ξi)(g(ti) − g(ti−1)) −
∫ T

0

f(s)dg(s)

∣∣∣∣∣ < ε

for every δε-fine partition {([ti−1, ti], ξi) : i = 1, . . . , p} of [0, T ].

A partition {([ti−1, ti], ξi) : i = 1, . . . , p} is δε-fine if for all i = 1, . . . , p,
[ti−1, ti] ⊂ ]ξi − δε(ξi), ξi + δε(ξi)[. The KS-integrability is preserved on all
sub-intervals of [0, T ].

In the particular case, where g(t) = t for every t ∈ [0, T ], one finds the
Henstock–Kurzweil integral (see [11]).
It is known that regulated functions are KS-integrable with respect to
bounded variation functions and vice versa (see [30]). The properties of the
primitive contained in the proposition below are important in what follows.
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Proposition 5. ([30, Proposition 2.3.16]) Let f : [0, T ] → R be KS-integrable
w.r.t. g : [0, T ] → R. If g is regulated, then so is the primitive F : [0, T ] → R,
F (t) =

∫ t

0
f(s)dg(s) and for every t ∈ [0, T ) and s ∈ (0, T ],

F (t+) − F (t)=f(t) [g(t+) − g(t)] and F (s) − F (s−)=f(s) [g(s) − g(s−)] .

It follows that F is left-continuous, respectively, right-continuous at the points
where g has the same property.
Moreover, when g is of bounded variation and f is bounded, F is of bounded
variation as well.

Note that the Lebesgue–Stieltjes integrability of a function f (i.e., the
abstract Lebesgue integrability w.r.t. the Stieltjes measure μg generated by
g, see [24, Example 6.14]) implies the Kurzweil–Stieltjes integrability. In the
framework of a left-continuous nondecreasing function g, as a consequence of
[20, Theorem 6.11.3] (see also [25, Theorem 8.1]), for t ∈ [0, T ],∫ t

0

f(s)dg(s) =
∫
[0,t]

f(s)dμg(s) − f(t)(g(t+) − g(t)) =
∫
[0,t)

f(s)dμg(s).

In [22], a notion of differentiability related to Stieltjes type integrals was
introduced (following an idea in [31]).

Definition 6. Let g : [0, T ] → R be a nondecreasing left-continuous function.
The derivative with respect to g (or the g-derivative) of a function f : [0, T ] →
R at a point t ∈ [0, T ] is given by

f ′
g(t) = lim

t→t

f(t) − f(t)
g(t) − g(t)

if g is continuous at t,

f ′
g(t) = lim

t→t+

f(t) − f(t)
g(t) − g(t)

if g is discontinuous at t,

provided the limit exists.

Define the following sets:

Cg = {t ∈ [0, T ] : g is constant on (t − ε, t + ε) for some ε > 0}
Dg = {t ∈ [0, T ] : g(t+) − g(t) > 0}.

It is worth mentioning that Dg is the set of atoms of the measure μg

and if t ∈ Dg, the g-derivative f ′
g(t) exists if and only if the sided limit f(t+)

exists, and in this case

f ′
g(t) =

f(t+) − f(t)
g(t+) − g(t)

.

Note that Definition 6 has no meaning in Cg. Anyway (see [22]), this set is
not significant, in the sense that μg(Cg) = 0.

What’s more, if Cg =
⋃

n∈N
(un, vn) is a disjoint decomposition of Cg

and

Ng = {un, vn : n ∈ N}\Dg,

then Definition 6 has no meaning in Ng neither, but again μg(Ng) = 0.
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This type of derivative has already been used in solving various problems
where abrupt changes (corresponding to discontinuity points of g) and dead
times (corresponding to intervals where g is constant) are present, such as
[12,13,23] or [27].

Fundamental Theorems of Calculus are essential when taking into
account the connection between integrals and derivatives. Such a result for
Kurzweil–Stieltjes integrals can be found in [22, Theorem 6.5]:

Theorem 7. Let g : [0, T ] → R be a nondecreasing left-continuous function.
If f : [0, T ] → R is KS-integrable with respect to g and

F (t) =
∫ t

0

f(s) dg(s), t ∈ [0, T ],

then F is g-differentiable μg-a.e. on [0, T ] and F ′
g = f .

It would be useful to know more precisely at which points the differen-
tiability w.r.t. g is achieved.

Proposition 8. Let f : [0, T ] → R be KS-integrable w.r.t. g and let F (t) =∫ t

0
f(s) dg(s) be its primitive. Then F is g-differentiable (with the g-derivative

equal to f(t)) at any point t ∈ [0, T ]\ (Cg ∪ Ng) where f is continuous.

Proof. Let t ∈ [0, T ]\ (Cg ∪ Ng) where f is continuous.
If t /∈ Dg, then

F ′
g(t) = lim

t→t

F (t) − F (t)
g(t) − g(t)

.

We can write

lim
t→t,t>t

min
τ∈[t,t)

f(τ) = lim
t→t,t>t

minτ∈[t,t) f(τ)(g(t) − g(t))
g(t) − g(t)

≤ lim
t→t,t>t

F (t) − F (t)
g(t) − g(t)

and

lim
t→t,t>t

F (t) − F (t)
g(t) − g(t)

≤ lim
t→t,t>t

maxτ∈[t,t) f(τ)(g(t) − g(t))
g(t) − g(t)

= lim
t→t,t>t

max
τ∈[t,t)

f(τ),

whence, by the continuity of f at t,

lim
t→t,t>t

F (t) − F (t)
g(t) − g(t)

= f(t).

Similarly, it can be proved that

lim
t→t,t<t

F (t) − F (t)
g(t) − g(t)

= f(t),

therefore

F ′
g(t) = f(t).



94 Page 6 of 23 B. Satco and G. Smyrlis JFPTA

On the other hand, if t ∈ Dg, then

F ′
g(t) = lim

t→t,t>t

F (t) − F (t)
g(t) − g(t)

and, as before, it equals f(t). �

In the same line, we could define partial g-derivatives.

Definition 9. The partial g-derivative w.r.t. the variable t of a function f :
[0, T ] × [0, T ] → R at a point (t, s) ∈ [0, T ] × [0, T ] is given by

∂f

∂gt
(t, s) = lim

t→t

f(t, s) − f(t, s)
g(t) − g(t)

if g is continuous at t,

∂f

∂gt
(t, s) = lim

t→t+

f(t, s) − f(t, s)
g(t) − g(t)

if g is discontinuous at t

provided the limit exists.

Let us recall the chain rules for g-derivatives at the continuity points of
g (borrowed from [22]):

Lemma 10. ([22, Theorem 2.3]) Let f be a real function defined on a neigh-
borhood of t ∈ R\Dg and h be another function defined on a neighborhood of
f(t). Then

1. If h′(f(t)) and f ′
g(t) exist, then

(h ◦ f)′
g(t) = h′(f(t)) · f ′

g(t).

2. If h′
g(f(t)), g′(f(t)) and f ′

g(t) exist, then

(h ◦ f)′
g(t) = h′

g(f(t)) · g′(f(t)) · f ′
g(t).

We deduce several auxiliary (technical) results concerning the partial
derivative of a function with respect to another function:

Lemma 11. i) Let h : R → R be differentiable and f : R2 → R be partially
g-differentiable w.r.t. t at some point (t, s) with t ∈ R\Dg. Then h ◦ f is
partially g-differentiable w.r.t. t and

∂(h ◦ f)
∂gt

(t, s) = h′(f(t, s)) · ∂f

∂gt
(t, s).

ii) Let h : R
2 → R be partially g-differentiable w.r.t. both arguments u, v

and f, j : R → R be g-differentiable at some point t ∈ R\Dg such that g is
differentiable at f(t) and j(t). Then H(t) = h(f(t), j(t)) is g-differentiable
at t and

H ′
g(t) =

∂h

∂gu
(f(t), j(t)) · g′(f(t)) · f ′

g(t) +
∂h

∂gv
(f(t), j(t)) · g′(j(t)) · j′

g(t).

Consequently, we can get the following version of Leibniz’s rule for g-
differentiation of Stieltjes integrals depending on a parameter:
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Lemma 12. Let g : [0, T ] → R be nondecreasing and left-continuous and ω :
[0, T ] × [0, T ] → R partially g-differentiable w.r.t. t be such that s → ω(t, s)
is Kurzweil–Stieltjes integrable w.r.t. g. Then

J(t) =
∫ ψ(t)

φ(t)

ω(t, s)dg(s), t ∈ [0, T ]

is g-differentiable at each point t ∈ [0, T ]\Dg, where
• t, φ and ψ are g-differentiable,
• g is differentiable at t, φ(t) and ψ(t),
• s → ω(t, s) is continuous at φ(t) and ψ(t).

Besides, J ′
g(t) =

∫ ψ(t)

φ(t)

∂ω

∂gt
(t, s)dg(s) + ω(t, ψ(t)) · g′(ψ(t)) · ψ′

g(t) − ω(t, φ(t)) · g′(φ(t)) · φ′
g(t).

Proof. Defining

J̃(u, v, t) =
∫ v

u

ω(t, s)dg(s)

one notices that

J(t) = J̃(φ(t), ψ(t), t).

By Lemma 11,

J ′
g(t) =

∂J̃

∂gu
· g′(u) · u′

g +
∂J̃

∂gv
· g′(v) · v′

g +
∂J̃

∂gt
· g′(t) · t′g.

Applying Proposition 8, whenever s → ω(t, s) is continuous at u (resp. at v),
one gets

∂J̃

∂gu
= −ω(t, u),

∂J̃

∂gv
= ω(t, v),

whence

J ′
g(t) = −ω(t, φ(t)) · g′(φ(t)) · φ′

g(t) + ω(t, ψ(t)) · g′(ψ(t)) · ψ′
g(t)

+
∫ ψ(t)

φ(t)

∂ω

∂gt
(t, s)dg(s) · g′(t) · t′g.

At the same time, by definition, at a continuity point of g,

t′g = lim
t′→t

t′ − t

g(t′) − g(t)
,

while

g′(t) = lim
t′→t

g(t′) − g(t)
t′ − t

,

and so,

g′(t) · t′g = 1.

�
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A formula for the g-derivative of a product of two functions will also be
necessary:

Lemma 13. Let f, h : [0, T ] → R be g-differentiable at t ∈ Dg. Then f · h is
also g-differentiable at t and

(f · h)′
g(t) = f ′

g(t)h(t+) + f(t)h′
g(t).

Proof. Since t ∈ Dg,

(f · h)′
g(t) = lim

t→t,t>t

(f · h)(t) − (f · h)(t)
g(t) − g(t)

= lim
t→t,t>t

(f(t) − f(t))h(t) + f(t)(h(t) − h(t))
g(t) − g(t)

= f ′
g(t)h(t+) + f(t)h′

g(t).

�

3. Main results

Our goal is to provide existence of solutions for the boundary value problem
with nonlinear right-hand side:{

u′
g(t) + b(t)u(t) = f(t, u(t)), t ∈ [0, T ]

u(0) = u(T ).

involving the g-derivative.
We impose the nonresonance condition

1 − b(t)μg({t}) 
= 0, for every t ∈ [0, T ].

Definition 14. A left-continuous, regulated function u : [0, T ] → R is a solu-
tion of our problem if it is constant on any interval where g is constant,
g-differentiable μg-a.e. and it verifies the equality

u′
g(t) + b(t)u(t) = f(t, u(t)), μg − a.e. on [0, T ]

and the condition

u(0) = u(T ).

3.1. Existence result for the linear problem

First, we study the linear periodic Stieltjes differential equation{
u′

g(t) + b(t)u(t) = f(t), t ∈ [0, T ]
u(0) = u(T ) (2)

under the assumptions that b : [0, T ] → R and f : [0, T ] → R are continuous
on [0, T ]\Dg.
To solve the problem (2), we must take into account the sign of 1−b(t)μg({t}).
As in [12], if b ∈ L1

g([0, T ], the set

D−
g = {t ∈ Dg : 1 − b(t)μg({t}) < 0}
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is finite since

∞ > ‖b‖L1
g

>
∑

t∈D−
g

b(t)μg({t}) >
∑

t∈D−
g

1.

Denote by t1 < · · · < tk its elements and, for simplicity, let t0 = 0 and
tk+1 = T .
Let

α(t) =
{

1, if 0 ≤ t ≤ t1
(−1)i, if ti < t ≤ ti+1, i = 1, . . . , k.

To simplify the proof of the existence theorem, we will use the following
lemma.

Lemma 15. Let t ∈ Dg and c, h : [0, T ] → R be KS-integrable w.r.t. g. Then

i) The function t → e
∫ t
0 c(r)dg(r) is g-differentiable at t and

(
e
∫ t
0 c(r)dg(r)

)′

g
(t) = e

∫ t
0 c(r)dg(r) · ec(t)μg({t}) − 1

μg({t})
.

ii)
1. The function

F (t) =
1

α(t)

∫ t

0

α(s)e− ∫ t
s

c(r)dg(r)h(s)dg(s)

is g-differentiable at t and

F ′
g(t) =

e−c(t)μg({t}) − 1
μg({t})

· F (t) + e−c(t)μg({t})h(t)

if t ∈ Dg\{t1, . . . , tk} and

F ′
g(t) =

−e−c(t)μg({t}) − 1
μg({t})

· F (t) − e−c(t)μg({t})h(t)

if t = ti, i = 1, . . . , k.
2. The function

G(t) =
1

α(t)

∫ T

t

α(s)e− ∫ t
s

c(r)dg(r)h(s)dg(s)

is g-differentiable at t and

G′
g(t) =

e−c(t)μg({t}) − 1
μg({t})

· G(t) − e−c(t)μg({t})h(t)

if t ∈ Dg\{t1, . . . , tk} and

G′
g(t) =

−e−c(t)μg({t}) − 1
μg({t})

· G(t) + e−c(t)μg({t})h(t)

if t = ti, i = 1, . . . , k.
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Proof. i) By the definition of the g-derivative at a discontinuity point and
using Proposition 5,

(
e
∫ t
0 c(r)dg(r)

)′

g
(t) =

e
∫ t+
0 c(r)dg(r) − e

∫ t
0 c(r)dg(r)

μg({t})

=
e
∫ t
0 c(r)dg(r)

(
e
∫ t+
t

c(r)dg(r) − 1
)

μg({t})

= e
∫ t
0 c(r)dg(r) · ec(t)μg({t}) − 1

μg({t})
.

ii). 1. By definition, at any point t ∈ Dg\{t1, . . . , tk},

F ′
g(t) =

F (t+) − F (t)
μg({t})

=
1

μg({t})

[
1

α(t+)

∫ t+

0

α(s)e− ∫ t+
s

c(r)dg(r)h(s)dg(s)

− 1
α(t)

∫ t

0

α(s)e− ∫ t
s

c(r)dg(r)h(s)dg(s)

]

=
1

μg({t})

[
1

α(t)

∫ t

0

α(s)e− ∫ t
s

c(r)dg(r)e− ∫ t+
t

c(r)dg(r)h(s)dg(s)

+
1

α(t)

∫ t+

t

α(s)e− ∫ t+
s

c(r)dg(r)h(s)dg(s)

− 1
α(t)

∫ t

0

α(s)e− ∫ t
s

c(r)dg(r)h(s)dg(s)

]
.

Using Proposition 5,

F ′
g(t) =

1
α(t)

e−c(t)μg({t}) − 1
μg({t})

·
∫ t

0

α(s)e− ∫ t
s

c(r)dg(r)h(s)dg(s)

+
1

α(t)
α(t)e−c(t)μg({t})h(t)μg({t})

μg({t})

=
e−c(t)μg({t}) − 1

μg({t})
· F (t) + e−c(t)μg({t})h(t).

On the other hand, if t = ti, i ∈ {1, . . . , k}, then α(t+) = −α(t), so

F ′
g(t) =

F (t+) − F (t)
μg({t})

=
−e−c(t)μg({t}) − 1

μg({t})
· F (t) − e−c(t)μg({t})h(t).

The g-derivative of G can be computed in a similar way. �
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Consider, following an idea used in [12] for initial value problems driven
by measures,

b̃(t) =

{
b(t), if t ∈ [0, T ]\Dg
−log|1−b(t)μg({t})|

μg({t}) , if t ∈ Dg

and

f̃(t) =
f(t)

1 − b(t)μg({t})
.

Notice that f̃(t) = f(t) whenever t /∈ Dg.

Suppose that ∑
t∈Dg

|log|1 − b(t)μg({t})|| < ∞. (3)

It implies that there exists a positive constant δ such that

|1 − b(t)μg({t})| > δ, ∀t ∈ Dg.

Indeed, if we consider the countable set Dg written as a sequence (t̃n)n, then∣∣log|1 − b(t̃n)μg({t̃n})|∣∣ → 0 as n → ∞
which means that

|1 − b(t̃n)μg({t̃n})| → 1 as n → ∞
therefore there exists a positive constant δ such that

|1 − b(t)μg({t})| > δ, ∀t ∈ Dg.

What’s more, as D−
g is finite, from one place onwards t̃n ∈ Dg\D−

g , whence

1 − b(t̃n)μg({t̃n}) = |1 − b(t̃n)μg({t̃n})| → 1,

thus b(t̃n)μg({t̃n}) → 0 as n → ∞.

Lemma 16. If b, f : [0, T ] → R are continuous on [0, T ]\Dg, then so are b̃

and f̃ under assumption (3).

Proof. Let t ∈ [0, T ]\Dg and let tn → t, (tn)n ⊂ [0, T ].
If (tn)n ⊂ [0, T ]\Dg, then b̃(tn) = b(tn) → b(t) = b̃(t) by hypothesis.
If (at least on a subsequence) tn ∈ Dg, then

b̃(tn) =
−log|1 − b(tn)μg({tn})|

μg({tn})

=
−log|1 − b(tn)μg({tn})|

b(tn)μg({tn})
· b(tn) → b(t) = b̃(t)

since, by the previous discussion, b(tn)μg({tn}) → 0 as n → ∞.
So, the continuity of b̃ on [0, T ]\Dg is proved. Obviously, the continuity of f̃
on [0, T ]\Dg can be proved similarly. �



94 Page 12 of 23 B. Satco and G. Smyrlis JFPTA

Theorem 17. Let g : [0, T ] → R be a nondecreasing left-continuous function
which, μg-a.e. on the set of continuity points, has the property that g is dif-
ferentiable and the identical function is g-differentiable.
Let b : [0, T ] → R be LS-integrable w.r.t. g, continuous on [0, T ]\Dg and
f : [0, T ] → R be continuous on [0, T ]\Dg, such that f̃ is KS-integrable w.r.t.
g. Suppose condition (3) is fulfilled.

Then the function u : [0, T ] → R given by

u(t) =
1

α(t)

∫ T

0

α(s)g̃(t, s)f̃(s)dg(s),

where

g̃(t, s) =
1

α(T )e
∫ T
0 b̃(r)dg(r) − 1

{
α(T )e

∫ T
0 b̃(r)dg(r)−∫ t

s
b̃(r)dg(r), if 0 ≤ s ≤ t ≤ T

e− ∫ t
s
b̃(r)dg(r), if 0 ≤ t < s ≤ T

is a solution of the periodic Stieltjes differential problem (2).

Proof. Note that hypothesis (3) ensures (together with the LS-integrability
w.r.t. g of b) the LS-integrability of b̃ w.r.t. g.
Let t ∈ [0, T ]\Dg be a point where g is differentiable and the identical function
is g-differentiable.
One can see that

u(t) =
1

α(T )e
∫ T
0 b̃(r)dg(r) − 1

[
α(T )
α(t)

∫ t

0

α(s)e
∫ T
0 b̃(r)dg(r)−∫ t

s
b̃(r)dg(r) · f̃(s)dg(s)

+
1

α(t)

∫ T

t

α(s)e− ∫ t
s

b̃(r)dg(r) · f̃(s)dg(s)

]
.

By making use of Proposition 5, s → ∫ t

s
b̃(r)dg(r) is continuous at t (because

g is continuous at t), therefore s → e− ∫ t
s

b̃(r)dg(r) ·α(s)f̃(s) is continuous at t.
We are able to apply Lemma 12 and use the fact that α is constant on

a neighborhood of t:

u′
g(t) =

1

α(T )e
∫ T
0 b̃(r)dg(r) − 1

·
[
α(T )
α(t)

∫ t

0

α(s)e
∫ T
0 b̃(r)dg(r)−∫ t

s
b̃(r)dg(r) · f̃(s) · (−b̃(t))dg(s)

+
α(T )
α(t)

e
∫ T
0 b̃(r)dg(r)−∫ t

t
b̃(r)dg(r) · α(t)f̃(t) · g′(t) · t′g

+
1

α(t)

∫ T

t

e− ∫ t
s

b̃(r)dg(r) · α(s)f̃(s) · (−b̃(t))dg(s)

− 1
α(t)

e− ∫ t
t

b̃(r)dg(r) · α(t)f̃(t) · g′(t) · t′g

]

= −b(t)u(t) + f(t)

since
∫ t

t
b̃(r)dg(r) = 0 (t being a continuity point of g).

Note that when calculating the partial g-derivative w.r.t. the argument t
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of the function under the integral sign, we used Lemma 11.i) together with
Proposition 8 (due to the continuity of b̃ at the point t), for instance

∂

∂gt
e− ∫ t

s
b̃(r)dg(r) = e− ∫ t

s
b̃(r)dg(r) · ∂(− ∫ t

s
b̃(r)dg(r))
∂gt

= e− ∫ t
s

b̃(r)dg(r) · (−b̃(t)).

Consider next t ∈ Dg\{t1, ..., tk}.
Denoting by

F (t) =
1

α(t)

∫ t

0

α(s)e− ∫ t
s

b̃(r)dg(r)f̃(s)dg(s)

respectively

G(t) =
1

α(t)

∫ T

t

α(s)e− ∫ t
s

b̃(r)dg(r)f̃(s)dg(s)

as in Lemma 15, we are able to write

u(t) =
α(T )e

∫ T
0 b̃(r)dg(r)

α(T )e
∫ T
0 b̃(r)dg(r) − 1

· F (t) +
1

α(T )e
∫ T
0 b̃(r)dg(r) − 1

· G(t)

and so we can compute the g-derivative:

u′
g(t) =

α(T )e
∫ T
0 b̃(r)dg(r)

α(T )e
∫ T
0 b̃(r)dg(r) − 1

· F ′
g(t) +

1

α(T )e
∫ T
0 b̃(r)dg(r) − 1

· G′
g(t)

=
α(T )e

∫ T
0 b̃(r)dg(r)

α(T )e
∫ T
0 b̃(r)dg(r) − 1

·
[

e−b̃(t)·µg({t}) − 1

μg({t}) · F (t) + e−b̃(t)·µg({t}) · f̃(t)

]

+
1

α(T )e
∫ T
0 b̃(r)dg(r) − 1

·
[

e−b̃(t)·µg({t}) − 1

μg({t}) · G(t) − e−b̃(t)·µg({t}) · f̃(t)

]

=
e−b̃(t)µg({t}) − 1

μg({t}) · u(t) + e−b̃(t)µg({t}) · f̃(t).

It follows that

u′
g(t) =

elog(1−b(t)μg({t})) − 1
μg({t})

· u(t) + elog(1−b(t)μg({t})) · f(t)
1 − b(t)μg({t})

= −b(t) · u(t) + f(t).

At each t = ti, i = 1, ..., k,

u′
g(t) =

α(T )e
∫ T
0 b̃(r)dg(r)

α(T )e
∫ T
0 b̃(r)dg(r) − 1

· F ′
g(t) +

1

α(T )e
∫ T
0 b̃(r)dg(r) − 1

· G′
g(t)

=
α(T )e

∫ T
0 b̃(r)dg(r)

α(T )e
∫ T
0 b̃(r)dg(r) − 1

·
[

−e−b̃(t)·µg({t}) − 1

μg({t}) · F (t) − e−b̃(t)·µg({t}) · f̃(t)

]

+
1

α(T )e
∫ T
0 b̃(r)dg(r) − 1

·
[

−e−b̃(t)·µg({t}) − 1

μg({t}) · G(t) + e−b̃(t)·µg({t}) · f̃(t)

]

=
−e−b̃(t)µg({t}) − 1

μg({t}) · u(t) − e−b̃(t)µg({t}) · f̃(t),
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so

u′
g(t) =

−elog(−1+b(t)μg({t})) − 1
μg({t})

· u(t) − elog(−1+b(t)μg({t})) · f(t)
1 − b(t)μg({t})

= −b(t) · u(t) + f(t).

Finally,

u(0) =
1

α(0)

∫ T

0

α(s)g̃(0, s)f̃(s)dg(s)

=
1

α(T )e
∫ T
0 b(r)dg(r) − 1

∫ T

0

α(s)e
∫ s
0 b(r)dg(r) · f̃(s)dg(s)

and

u(T ) =
1

α(T )

∫ T

0

α(s)g̃(T, s)f̃(s)dg(s)

=
1

α(T )e
∫ T
0 b(r)dg(r) − 1

∫ T

0

α(s)e
∫ T
0 b(r)dg(r)−∫ T

s
b(r)dg(r) · f̃(s)dg(s)

=
1

α(T )e
∫ T
0 b(r)dg(r) − 1

∫ T

0

α(s)e
∫ s
0 b(r)dg(r) · f̃(s)dg(s);

therefore,

u(0) = u(T ).

�

Remark 18. If f is LS-integrable w.r.t. g, then the LS-integrability (thus, the
KS-integrability as well) w.r.t. g of f̃ is a simple consequence of condition (3)
since

|f̃(t)| ≤ max
(

1,
1
δ

)
· |f(t)| ∀t ∈ [0, T ].

The reciprocal assertion is also valid:

Theorem 19. If a function u : [0, T ] → R is a solution in the sense of Defi-
nition 14 of the periodic Stieltjes differential problem (2), then

u(t) =
1

α(t)

∫ T

0

α(s)g̃(t, s)f̃(s)dg(s), ∀ t ∈ [0, T ].

Proof. Let u be a solution of problem (2).
Take first t ∈ [0, T ]\Dg a point where the equation is satisfied. Then since α
is constant in a neighborhood of t,(

α(t)e
∫ t
0 b̃(r)dg(r)u(t)

)′

g

= α(t)e
∫ t
0 b̃(r)dg(r)b̃(t) · u(t) + α(t)e

∫ t
0 b̃(r)dg(r) · u′

g(t)

= α(t)e
∫ t
0 b̃(r)dg(r)f(t) = α(t)e

∫ t
0 b̃(r)dg(r) · f̃(t).
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Let now t ∈ Dg\{t1, ..., tk}. Applying Lemma 15, one gets
(
α(t)e

∫ t
0 b̃(r)dg(r)u(t)

)′

g

= α(t)u′
g(t) · e

∫ t+
0 b̃(r)dg(r) + α(t)u(t) · e

∫ t
0 b̃(r)dg(r) · eb̃(t)μg({t}) − 1

μg({t})

= α(t)e
∫ t
0 b̃(r)dg(r) ·

[
u′

g(t) · e
∫ t+
t

b̃(r)dg(r) + u(t) · eb̃(t)μg({t}) − 1
μg({t})

]

= α(t)e
∫ t
0 b̃(r)dg(r) ·

(
u′

g(t) · eb̃(t)μg({t}) + u(t) · eb̃(t)μg({t}) − 1
μg({t})

)

= α(t)e
∫ t
0 b̃(r)dg(r) ·

(
(−b(t)u(t) + f(t)) · 1

1 − b(t)μg({t})

+ u(t) ·
1

1−b(t)μg({t}) − 1

μg({t})

)

= α(t)e
∫ t
0 b̃(r)dg(r) · f̃(t).

Also, at any point t = ti, i ∈ {1, ..., k},
(
α(t)e

∫ t
0 b̃(r)dg(r)u(t)

)′

g

=
α(t+)e

∫ t+
0 b̃(r)dg(r)u(t+) − α(t)e

∫ t
0 b̃(r)dg(r)u(t)

μg({t})

=
−α(t)e

∫ t
0 b̃(r)dg(r)e

∫ t+
t

b̃(r)dg(r)u(t+) − α(t)e
∫ t
0 b̃(r)dg(r)u(t)

μg({t})

=
−α(t)e

∫ t
0 b̃(r)dg(r)eb̃(t)μg({t})u(t+) − α(t)e

∫ t
0 b̃(r)dg(r)u(t)

μg({t})
.

Writing now

u(t+) = u′
g(t)μg({t}) + u(t)

and taking into account that

u′
g(t) = −b(t)u(t) + f(t)

and the definition of b̃, one gets

(
α(t)e

∫ t
0 b̃(r)dg(r)u(t)

)′

g

=
−α(t)e

∫ t
0 b̃(r)dg(r)eb̃(t)μg({t})(u′

g(t)μg({t}) + u(t)) − α(t)e
∫ t
0 b̃(r)dg(r)u(t)

μg({t})

=
−α(t)e

∫ t
0 b̃(r)dg(r)

μg({t})

[
eb̃(t)μg({t})((−b(t)u(t) + f(t))μg({t}) + u(t)) + u(t)

]
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=
−α(t)e

∫ t
0 b̃(r)dg(r)

μg({t})

[
eb̃(t)μg({t})((−b(t)μg({t}) + 1)u(t)

+ eb̃(t)μg({t})f(t)μg({t}) + u(t)
]

=
−α(t)e

∫ t
0 b̃(r)dg(r)

μg({t})

[
e−log(−1+b(t)μg({t})((−b(t)μg({t}) + 1)u(t)

+ e−log(−1+b(t)μg({t})f(t)μg({t}) + u(t)
]

= α(t)e
∫ t
0 b̃(r)dg(r) · f̃(t).

From here, the result is achieved by integrating on [0, t] w.r.t. g the
equality (

α(s)e
∫ s
0 b̃(r)dg(r)u(s)

)′

g
= α(s)e

∫ s
0 b̃(r)dg(r) · f̃(s)

and imposing the boundary conditions as in the classical case of periodic
differential problems (where g(t) = t). While integrating the g-derivative in
the Kurzweil-Stieltjes sense we apply the fundamental theorem for this type
of integral [12, Theorem 6.2] (this is possible since t �→ e

∫ t
0 b̃(r)dg(r) and u and

α are left-continuous and constant on any subinterval where g is constant).
�
Remark 20. If for every t ∈ [0, T ]

1 − b(t)μg(t) > 0

then the set {t ∈ Dg : 1 − b(t)μg(t) < 0} is empty and α(t) = 1 on the
whole interval; therefore, the calculus is much simpler. In this case, b can be
assumed to be only KS-integrable w.r.t. g.

3.2. Existence result for the nonlinear problem

We go further to studying the nonlinear problem (1):{
u′

g(t) + b(t)u(t) = f(t, u(t)), t ∈ [0, T ]
u(0) = u(T ).

We shall apply Schaeffer’s fixed point theorem.

Theorem 21. Let S be a normed linear space and the operator A : S → S be
continuous and compact. If the set

{x ∈ S : x = λAx for some λ ∈ (0, 1)}
is bounded, then the operator has a fixed point.

Theorem 22. Let g : [0, T ] → R be a nondecreasing left-continuous function
which, μg-a.e. on the set of continuity points, has the property that g is dif-
ferentiable and the identical function is g-differentiable.
Let b : [0, T ] → R be LS-integrable w.r.t. g, continuous on [0, T ]\Dg and
suppose condition (3) is fulfilled.
Let f : [0, T ] × R → R satisfy the following hypotheses:

• f is continuous on ([0, T ]\Dg) × R and for every t ∈ Dg, f(t, ·) is
continuous;
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• for every u ∈ R, f(·, u) is μg-measurable;
• there exists a function φ KS-integrable w.r.t. g such that

|f(t, u)| ≤ φ(t)

for every t ∈ [0, T ], u ∈ R.

Then the periodic Stieltjes differential equation (1) possesses solutions.

Proof. Let Sg be the subspace of the space of regulated real-valued maps
defined on [0, T ] consisting of those functions which are continuous on
[0, T ]\Dg.

Consider the operator A : Sg → Sg given by

Au =
1

α(t)

∫ T

0

α(s)g̃(t, s)f̃(s, u(s))dg(s), t ∈ [0, T ]

with g̃ as in Theorem 17 and

f̃(t, u) =
f(t, u)

1 − b(t)μg({t})
.

It is well defined: f̃(·, u(·)) is KS-integrable w.r.t. g for each u ∈ Sg since it
is μg-measurable and∣∣∣f̃(t, u(t))

∣∣∣ ≤ φ(t) = max
(

1,
1
δ

)
· φ(t) ∀t ∈ [0, T ], u ∈ Sg.

Also, whenever u ∈ Sg, i.e. u is regulated and continuous on [0, T ]\Dg, Au
has the same feature by Proposition 5 due to the fact that α is constant in a
neighborhood of t ∈ [0, T ]\Dg, since

Au(t) =
1

α(T )e
∫ T
0 b̃(r)dg(r) − 1

·
[
α(T )
α(t)

∫ t

0

α(s)e
∫ T
0 b̃(r)dg(r)−∫ t

s
b̃(r)dg(r) · f̃(s, u(s))dg(s)

+
1

α(t)

∫ T

t

α(s)e− ∫ t
s

b̃(r)dg(r) · f̃(s, u(s))dg(s)

]
.

We shall see that A satisfies the hypotheses of Schaeffer’s fixed point
theorem.

First, let us prove that it is continuous. Let (un)n ⊂ Sg converge uni-
formly to u. As f is continuous with respect to the second argument,

f̃(s, un(s)) → f̃(s, u(s)), ∀ s ∈ [0, T ].

We are now able to apply a dominated convergence result, e.g. [20, Theorem
6.8.6], since −φ(s) ≤ f̃(s, un(s)) ≤ φ(s) for every n ∈ N; we get, for all
t ∈ [0, T ],∫ T

0

α(s)g̃(t, s)f̃(s, un(s))dg(s) →
∫ T

0

α(s)g̃(t, s)f̃(s, u(s))dg(s),

so Aun(t) → Au(t).
We check, using Lemma 2, that the convergence is uniform.
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Take 0 ≤ t < t′ ≤ T .
We can see that for each n,

|Aun(t) − Aun(t′)| ≤
∣∣∣∣∣

1
α(t)

∫ T

0

α(s)(g̃(t, s) − g̃(t′, s))f̃(s, un(s))dg(s)

∣∣∣∣∣
+

∣∣∣∣∣
(

1
α(t)

− 1
α(t′)

) ∫ T

0

α(s)g̃(t′, s)f̃(s, un(s))dg(s)

∣∣∣∣∣ .

We note that |α(t)| = 1 for each t ∈ [0, T ], so we can see that
∣∣∣∣ 1

α(t)

∫ T

0

α(s)(g̃(t, s) − g̃(t′, s))f̃(s, un(s))dg(s)

∣∣∣∣
≤ 1∣∣∣α(T )e

∫ T
0 b̃(r)dg(r) − 1

∣∣∣[ ∣∣∣α(T )
∫ t

0

α(s)(e
∫ T
0 b̃(r)dg(r)−∫ t

s
b̃(r)dg(r) − e

∫ T
0 b̃(r)dg(r)−∫ t′

s
b̃(r)dg(r))f̃(s, un(s))dg(s)

∣∣∣∣
+

∣∣∣∣
∫ T

t′
α(s)(e− ∫ t

s
b̃(r)dg(r) − e− ∫ t′

s
b̃(r)dg(r))f̃(s, un(s))dg(s)

∣∣∣∣
+

∣∣∣∣∣
∫ t′

t

α(s)(e− ∫ t
s
b̃(r)dg(r) − α(T )e

∫ T
0 b̃(r)dg(r)−∫ t′

s
b̃(r)dg(r)) f̃(s, un(s))dg(s)

∣∣∣∣
]

=
1∣∣∣α(T )e

∫ T
0 b̃(r)dg(r) − 1

∣∣∣[∣∣∣∣
∫ t

0

α(s)e
∫ T
0 b̃(r)dg(r)−∫ t

s
b̃(r)dg(r)(1 − e− ∫ t′

t
b̃(r)dg(r))f̃(s, un(s))dg(s)

∣∣∣∣
+

∣∣∣∣
∫ T

t′
α(s)e− ∫ t′

s
b̃(r)dg(r)(e

∫ t′
t

b̃(r)dg(r) − 1)f̃(s, un(s))dg(s)

∣∣∣∣
+

∣∣∣∣∣
∫ t′

t

α(s)(e− ∫ t
s
b̃(r)dg(r) − α(T )e

∫ T
0 b̃(r)dg(r)−∫ t′

s
b̃(r)dg(r))

f̃(s, un(s))dg(s)

∣∣∣∣
]

.

On the other hand,∣∣∣∣
(

1

α(t)
− 1

α(t′)

) ∫ T

0

α(s)g̃(t′, s)f̃(s, un(s))dg(s)

∣∣∣∣
= |α(t) − α(t′)|

∣∣∣∣
∫ T

0

α(s)g̃(t′, s)f̃(s, un(s))dg(s)

∣∣∣∣
≤ |α(t) − α(t′)|

|α(T )e
∫ T
0 b̃(r)dg(r) − 1|

[∣∣∣∣∣
∫ t′

0

α(s)e
∫ T
0 b̃(r)dg(r)−∫ t′

s
b̃(r)dg(r)f̃(s, un(s))dg(s)

∣∣∣∣∣
+

∣∣∣∣
∫ T

t′
α(s)e− ∫ t′

s
b̃(r)dg(r)f̃(s, un(s))dg(s)

∣∣∣∣
]

≤ |α(t) − α(t′)|
|α(T )e

∫ T
0 b̃(r)dg(r) − 1|

[∫ t′

0

∣∣∣e∫ T
0 b̃(r)dg(r)−∫ t′

s
b̃(r)dg(r)f̃(s, un(s))

∣∣∣dg(s)
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+

∫ T

t′

∣∣∣e− ∫ t′
s

b̃(r)dg(r)f̃(s, un(s))
∣∣∣dg(s)

]
.

But
∫ T

0

b̃(r)dg(r) −
∫ t

s

b̃(r)dg(r) =
∫ s

0

b̃(r)dg(r) +
∫ T

t

b̃(r)dg(r)

and
∫ T

0

b̃(r)dg(r) −
∫ t′

s

b̃(r)dg(r) =
∫ s

0

b̃(r)dg(r) +
∫ T

t′
b̃(r)dg(r).

The map (s′, s′′) ∈ [0, T ] × [0, T ] → e
∫ s′′
s′ b̃(s)dg(s) is regulated in both argu-

ments, therefore bounded. If we note by

M = sup
(s′,s′′)∈[0,T ]×[0,T ]

e
∫ s′′
s′ b̃(s)dg(s),

we get

|Aun(t) − Aun(t′)|

≤ M∣∣∣α(T )e
∫ T
0 b̃(r)dg(r) − 1

∣∣∣
[
M

∫ t

0

∣∣∣1 − e− ∫ t′
t

b̃(r)dg(r)
∣∣∣ · |f̃(s, un(s))|dg(s)

+
∫ T

t′

∣∣∣e∫ t′
t

b̃(r)dg(r) − 1
∣∣∣ · |f̃(s, un(s))|dg(s)

+ (1 + M)
∫ t′

t

∣∣∣f̃(s, un(s))
∣∣∣ dg(s)

]

+
|α(t) − α(t′)|

|α(T )e
∫ T
0 b̃(r)dg(r) − 1|

[
M2

∫ t′

0

|f̃(s, un(s))|dg(s)

+M

∫ T

t′
|f̃(s, un(s))|dg(s)

]
,

so

|Aun(t) − Aun(t′)|

≤ M∣∣∣α(T )e
∫ T
0 b̃(r)dg(r) − 1

∣∣∣
[
M

∣∣∣1 − e− ∫ t′
t

b̃(r)dg(r)
∣∣∣ ·

∫ T

0

φ(s)dg(s)

+
∣∣∣e∫ t′

t
b̃(r)dg(r) − 1

∣∣∣ ·
∫ T

0

φ(s)dg(s) + (1 + M)
∫ t′

t

φ(s)dg(s)

+(M + 1)|α(t) − α(t′)|
∫ T

0

φ(s)dg(s)

]
.
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But ∣∣∣1 − e− ∫ t′
t

b̃(r)dg(r)
∣∣∣ =

∣∣∣e∫ t
0 b̃(r)dg(r)

(
e− ∫ t

0 b̃(r)dg(r) − e− ∫ t′
0 b̃(r)dg(r)

)∣∣∣
≤ M

∣∣∣e− ∫ t
0 b̃(r)dg(r) − e− ∫ t′

0 b̃(r)dg(r)
∣∣∣

and e− ∫ ·
0 b̃(r)dg(r) is regulated.

A similar calculus can be made for
∣∣∣e∫ t′

t
b̃(r)dg(r) − 1

∣∣∣ , while

∫ t′

t

φ(s)dg(s) =
∫ t′

0

φ(s)dg(s) −
∫ t

0

φ(s)dg(s)

and
∫ ·
0
φ(s)dg(s) and α are regulated.

Remark 3 yields now that the sequence is equiregulated whence, by Lemma 2,
(Aun)n converges uniformly to Au, i.e. the operator A is continuous.

Let us next prove that the operator is compact. Take B ⊂ Sg be a
bounded set. Then, in the same manner as before, it can be seen that {Au :
u ∈ B} is equiregulated.

It is pointwise bounded as well. Indeed, fix t ∈ [0, T ]. Then for every
u ∈ B,

|Au(t)| ≤
∫ T

0

|g̃(t, s)| ·
∣∣∣f̃(s, u(s))

∣∣∣ dg(s)

≤ max(M,M2)∣∣∣α(T )e
∫ T
0 b̃(r)dg(r) − 1

∣∣∣
∫ T

0

|f̃(s, u(s))|dg(s)

≤ max(M,M2)∣∣∣α(T )e
∫ T
0 b̃(r)dg(r) − 1

∣∣∣
∫ T

0

φ(s)dg(s);

therefore, the set is pointwise (in fact, even uniformly) bounded.
Lemma 1 implies that {Au : u ∈ B} is relatively compact, thus A is a compact
operator.

Let us now see that the set

{u ∈ Sg : u = λAu for some λ ∈ (0, 1)}
is bounded.

Let u be an arbitrary element of this set. One can find λ ∈ (0, 1) such
that

u(t) =
λ

α(t)

∫ T

0

α(s)g̃(t, s)f̃(s, u(s))dg(s), t ∈ [0, T ].

It follows, as before, that

‖u‖C ≤ λ
max(M,M2)∣∣∣α(T )e

∫ T
0 b̃(r)dg(r) − 1

∣∣∣
∫ T

0

φ(s)dg(s)

≤ max(M,M2)∣∣∣α(T )e
∫ T
0 b̃(r)dg(r) − 1

∣∣∣
∫ T

0

φ(s)dg(s)
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and the boundedness is achieved.
Schaeffer’s fixed point theorem yields that the operator has fixed points,

which are solutions to our problem. This follows exactly as in Theorem 17
since b̃ and f̃(·, u(·)) satisfy the Stieltjes integrability conditions and, by
Lemma 16, the continuity on [0, T ]\Dg. �

Remark 23. The large applicability of our result is a motivation for the less
general assumptions on the function f (comparing with the existence results
available in particular cases, e.g. [3,14,17,33] or [32]).
In counterbalance, this is, as far as the authors know, the first existence result
for periodic Stieltjes differential boundary value problems (and, consequently,
for periodic measure boundary value problems). In particular, new results can
be deduced for dynamic boundary value problems on time scales or for peri-
odic impulsive differential equations allowing a countable number of impulses
(i.e. the impulse moments can accumulate) which cannot be studied through
the theory of impulsive differential equations.
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[4] Cichoń, M., Satco, B., Sikorska-Nowak, A.: Impulsive nonlocal differential
equations through differential equations on time scales. Appl. Math. Comput.
218, 2449–2458 (2011)

[5] Dhage, B.C., Graef, J.R.: First order functional differential equations with
periodic boundary condition. Appl. Anal. 86, 205–221 (2007)

[6] Diestel, J., Uhl, J.J.: Vector Measures, Mathematical Surveys 15. American
Mathematical Society, Providence (1977)

[7] Di Piazza, L., Marraffa, V., Satco, B.: Closure properties for integral problems
driven by regulated functions via convergence results. J. Math. Anal. Appl.
466, 690–710 (2018)

[8] Federson, M., Mesquita, J.G., Slav́ık, A.: Measure functional differential equa-
tions and functional dynamic equations on time scales. J. Differ. Equ. 252,
3816–3847 (2012)



94 Page 22 of 23 B. Satco and G. Smyrlis JFPTA

[9] Federson, M., Grau, R., Mesquita, J.G.: Prolongation of solutions of measure
differential equations and dynamic equations on time scales. Math. Nachr. 292,
22–55 (2019)
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