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Abstract. The purpose of this paper is to introduce the notions of ex-
tended F -contraction of Hardy–Rogers type, extended F -contraction
of Suzuki–Hardy–Rogers type and generalized F -weak contraction of
Hardy–Rogers type and to establish some new fixed point results for
such kind of mappings in the setting of complete b-metric spaces. These
fixed point results improve (and/or) extend those obtained in Vetro
(Nonlinear Anal Model Control 21(4):531–546, 2016) and Lukács and
Kajántó (Fixed Point Theory 19(1):321–334, 2018) since some condi-
tions made therein are removed or weakened. In addition, some illustra-
tive examples are provided to show the usability of the obtained results.
As an application of our results, we obtain the existence and uniqueness
of solutions for certain functional, integral and differential equations.
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1. Introduction

The well-known Banach’s contraction mapping principle [4] is the most sig-
nificant fundamental fixed point result. Since this principle has a lot of appli-
cations in different branches of mathematics, several authors have extended,
generalized and improved it in many directions by considering different forms
of mappings or various types of spaces. In the paper [46], an interesting gener-
alization of Banach contraction principle is given by introducing the concept
of F -contraction. After that, the notion of F -contraction of Hardy–Rogers
is introduced in [12] as a generalization of F -contraction in complete metric
spaces. One of the most prevalent generalization of the metric spaces was
given in the article [3] through the notion of b-metric spaces. In our paper,
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we utilize these two last notions to introduce new types of F -contractions of
Hardy–Rogers in the setting of b-metric spaces and to prove some fixed point
results. Roughly speaking, we extend and improve (respectively, improve)
some results in [43] (respectively, in [23]). The work [43] has been later en-
riched and published as a book chapter [44] in which the authors (F. Vetro
and C. Vetro) have proposed an important review concerning F -contraction
conditions in the setting of metric and Banach spaces. More precisely, the re-
sults obtained in our paper extended the aforementioned results in b-metric
spaces and contain less conditions imposed on the function F . Moreover, the
consequences of our main results are improved and generalized versions of
some results appearing in literature.

The article is organized as follows. In Sect. 2, we recollect some known
definitions and results concerning b-metric spaces and various types of F -
contractions. In Sect. 3, we define the notions of extended F -contraction of
Hardy–Rogers type, extended F -contraction of Suzuki–Hardy–Rogers type
and generalized F -weak contraction of Hardy–Rogers type. Using these con-
cepts, we prove new fixed point theorems in the setting of complete b-metric
spaces and we give some examples to illustrate the validity of the obtained
results. In Sect. 4, we present three different applications and in each one we
prove the existence and uniqueness of solutions for some classes of equations.
In the first application, we deal with functional equations arising in dynamic
programming. The second one concerns nonlinear Volterra integral equations.
The last application is devoted to the study of a boundary value problem for
the second-order differential equation.

2. Preliminaries

In this section, we recall some known definitions and results which will be
used in the sequel. Throughout this paper, we denote by N, R the sets of
positive integers and real numbers, respectively. We also write N0 = N∪ {0}.
Henceforth, X will denote a nonempty set and the Picard sequence of a self-
mapping T : X → X based on an arbitrary x0 ∈ X is given by xn = Txn−1 =
Tnx0 for all n ∈ N, where Tn denotes the nth-iterates of T .

2.1. b-Metric spaces

In 1989, Bakhtin [3] introduced the concept of b-metric spaces as a generaliza-
tion of the metric spaces in the sense that the triangle inequality contains a
suitable constant s ≥ 1 (see also Czerwik [13]). Since then, several published
papers have dealt with b-metric spaces and fixed point theory in the setting
of b-metric spaces (see, e.g., [1,2,6,8–10,16,32,34,42] and some related refer-
ences therein). For more details concerning some technical and useful tools
in the context of b-metric spaces, the reader may consult [1] and [32]. Note
that the topological framework of a b-metric space with the topology induced
by its convergence was studied in [2].

We will first recall the definition of a b-metric space.
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Definition 2.1. (See [14]) Let X be a nonempty set and let s ≥ 1 be a given
real number. A mapping σ : X × X → [0,∞) is said to be a b-metric if, for
all x, y, z ∈ X, the following conditions hold:

(b1) σ (x, y) = 0 if and only if x = y;
(b2) σ (x, y) = σ (y, x);
(b3) σ (x, z) ≤ s [σ (x, y) + σ (y, z)].

The pair (X,σ) is called a b-metric space with constant s ≥ 1.

It is obvious from the above definition that the class of b-metric spaces
is larger than that of metric spaces, since a b-metric space is a metric space
when s = 1 but the converse is not true. The following classical examples
illustrate this fact.

Example 2.2. (See [1,42]) Let (X, d) be a metric space and let the mapping
σd : X × X → [0,∞) be defined by

σd (x, y) = (d (x, y))p
, for all x, y ∈ X,

where p > 1 is a fixed real number. Then (X,σd) is a b-metric space with
s = 2p−1.

In particular, if X = R, d (x, y) = |x − y| is the usual Euclidean metric
and

σd (x, y) = (x − y)2, for all x, y ∈ R,

then (R, σd) is a b-metric with s = 2. However, (R, σd) is not a metric space
on R since (b3) does not hold. Indeed,

σd(−2, 2) = 16 > 8 = 4 + 4 = σd(−2, 0) + σd(0, 2).

Example 2.3. (See [21]) Let X be the set of Lebesgue measurable functions
on [0, 1] such that ∫ 1

0

|f (x)|2 dx < ∞.

Define D : X × X → [0,∞) by

D (f, g) =
∫ 1

0

|f (x) − g (x)|2 dx.

Then D satisfies the following properties
1. D (f, g) = 0 if and only if f = g,
2. D (f, g) = D (g, f), for any f, g ∈ X,
3. D (f, g) ≤ 2 (D (f, h) + D (h, g)), for any points f, g, h ∈ X.

Clearly, (X,D) is a b-metric space with s = 2 but is not a metric space. For

example, take f(x) = 0, g(x) = 1 and h(x) =
1
2
, for all x ∈ [0, 1]. Then

D (0, 1) = 1 >
1
2

=
1
4

+
1
4

= D

(
0,

1
2

)
+ D

(
1
2
, 1

)
.

We present now the concepts of convergence, Cauchy sequence and com-
pleteness in b-metric spaces.
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Definition 2.4. (See [8–10]) Let (X,σ) be a b-metric space. Then a sequence
{xn} in X is called

(a) convergent if and only if there exists x ∈ X such that limn→∞σ (xn, x)
= 0 and in this case we write limn→∞xn = x;
(b) Cauchy if and only if limn,m→∞σ (xn, xm) = 0.

Definition 2.5. (See [8–10]) The b-metric space (X,σ) is said complete if every
Cauchy sequence in X converges in X.

Remark 2.6. (See [8–10]) In a b-metric space, the following assertions hold:

(i) a convergent sequence has a unique limit;
(ii) each convergent sequence is Cauchy.

Lemma 2.7. (See [16, Lemma 2.1]) Let (X,σ) be a b-metric space with con-
stant s ≥ 1 and {xn}, {yn} two sequences such that limn→∞xn = x, limn→∞
yn = y in (X,σ). Then limn→∞σ (xn, yn) = 0 if and only if x = y.

It is worth recalling that a b-metric is generally not continuous (see,
e.g., [19, Example 3.3]). The following lemmas are very useful to manage this
problem.

Lemma 2.8. (See [1,23]) Let (X,σ) be a b-metric space with constant s ≥ 1
and {xn} be a convergent sequence in X with lim xn = x. Then for each
y ∈ X, we have

1
s
σ (x, y) ≤ lim inf

n→∞ σ (xn, y) ≤ lim sup
n→∞

σ (xn, y) ≤ sσ (x, y) .

Lemma 2.9. (See [32, Lemma 1.7]) Let (X,σ) be a b-metric space with con-
stant s ≥ 1 and let {xn} be a sequence in X such that

lim
n→∞σ (xn, xn+1) = 0. (2.1)

If {xn} is not a Cauchy sequence in (X,σ), then there exist ε > 0 and two
sequences {m(k)} and {n(k)} of positive integers such that the following items
hold:

ε ≤ lim inf
k→∞

σ
(
xm(k), xn(k)

) ≤ lim sup
k→∞

σ
(
xm(k), xn(k)

) ≤ sε;
ε

s
≤ lim inf

k→∞
σ

(
xm(k), xn(k)+1

) ≤ lim sup
k→∞

σ
(
xm(k), xn(k)+1

) ≤ s2ε;
ε

s
≤ lim inf

k→∞
σ

(
xm(k)+1, xn(k)

) ≤ lim sup
k→∞

σ
(
xm(k)+1, xn(k)

) ≤ s2ε;
ε

s2
≤ lim inf

k→∞
σ

(
xm(k)+1, xn(k)+1

) ≤ lim sup
k→∞

σ
(
xm(k)+1, xn(k)+1

) ≤ s3ε.

Inspired by the works in [30], we can state the following lemma.

Lemma 2.10. Let all the conditions of Lemma 2.9 be satisfied. Then there
exist ε > 0 and two sequences {m(k)} and {n(k)} of positive integers such
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that the following items hold:

ε+ ≤ lim inf
k→∞

σ
(
xm(k), xn(k)

) ≤ lim sup
k→∞

σ
(
xm(k), xn(k)

) ≤ sε+;
ε

s
≤ lim inf

k→∞
σ

(
xm(k), xn(k)+1

) ≤ lim sup
k→∞

σ
(
xm(k), xn(k)+1

) ≤ s2ε;
ε

s
≤ lim inf

k→∞
σ

(
xm(k)+1, xn(k)

) ≤ lim sup
k→∞

σ
(
xm(k)+1, xn(k)

) ≤ s2ε;
ε

s2
≤ lim inf

k→∞
σ

(
xm(k)+1, xn(k)+1

) ≤ lim sup
k→∞

σ
(
xm(k)+1, xn(k)+1

) ≤ s3ε.

Proof. If {xn} is not a Cauchy sequence, then there exist ε > 0 and sequences{
xm(k)

}
and

{
xn(k)

}
of positive integers such that n (k) is the smallest index

for which n (k) > m (k) > k and σ
(
xm(k), xn(k)

)
> ε. Due to (2.1), this

implies that σ
(
xm(k), xn(k)−1

) ≤ ε for all k ≥ 1. Using the relaxed triangle
inequality (b3), we have

σ
(
xm(k), xn(k)

) ≤ sσ
(
xm(k), xn(k)−1

)
+ sσ

(
xn(k)−1, xn(k)

)
≤ sε + sσ

(
xn(k)−1, xn(k)

)
.

This leads to
1
s
σ

(
xm(k), xn(k)

) ≤ ε + σ
(
xn(k)−1, xn(k)

)
.

Since σ
(
xn(k)−1, xn(k)

)
> 0, then by taking limit superior as k → ∞ with

(2.1), we get
1
s
lim sup

k→∞
σ

(
xm(k), xn(k)

) ≤ ε+,

or, equivalently,
lim sup

k→∞
σ

(
xm(k), xn(k)

) ≤ sε+. (2.2)

On the other hand, we have
1
k

+ σ
(
xm(k), xn(k)

)
>

1
k

+ ε, for all k ≥ 1.

Taking the limit inferior as k → ∞, we have

lim inf
k→∞

σ
(
xm(k), xn(k)

) ≥ ε+. (2.3)

From (2.2) and (2.3), we obtain the first item of Lemma 2.10. Since the
remaining items are the same as in Lemma 2.9, the proof is completed. �

Remark 2.11. Taking s = 1 (the case corresponding to a metric space (X, d))
in Lemma 2.10, we find Lemma 2.2 in [30]. More precisely, the above items
become as follows:

lim
k→∞

d
(
xm(k), xn(k)

)
= ε+

and
lim

k→∞
d

(
xm(k)+1, xn(k)

)
= lim

k→∞
d

(
xm(k), xn(k)+1

)

= lim
k→∞

d
(
xm(k)+1, xn(k)+1

)
= ε.

In 2015, An et al. [2] proved the following result:
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Proposition 2.12. (See [2, Proposition 3.11]) Let (X,σ) be a b-metric space
with constant s ≥ 1. If σ is continuous with respect in one variable, then σ
is continuous in other variable.

Obviously, we observe from the above result that if σ is not continuous
with respect one variable, then σ is not continuous in each variable (refer to
[2, Examples 3.9, 3.10].

We end this subsection by giving an example which illustrates some
preceding properties concerning b-metric spaces.

Example 2.13. Let X = [0,∞). Let σ : X×X → [0,∞) be a mapping defined
by

σ (x, y) =
{

d (x, y) , xy �= 0,
4d (x, y) , xy = 0,

where d (x, y) = |x − y| . Then the following hold:
(1) (X,σ) is a complete b-metric space with constant s = 4.
(2) σ is not a metric on X.
(3) σ is not continuous in each variable.

Proof. (1) We start to prove that (X,σ) is a b-metric space with constant
s = 4. Clearly, (b1) and (b2) are satisfied. For (b3), we can easily observe that
for any x, y ∈ X,

d (x, y) ≤ σ (x, y) ≤ 4d (x, y) . (2.4)
We consider then the following cases.
Case 1 Suppose that xy �= 0. Then using (2.4), for any z ∈ X, we obtain

σ (x, y) = d (x, y) ≤ d (x, z) + d (z, y)

≤ σ (x, z) + σ (z, y) ≤ 4 (σ (x, z) + σ (z, y)) .

Case 2 Assume that xy = 0. Also, through (2.4), we have for any z ∈ X

σ (x, y) = 4d (x, y) ≤ 4d (x, z) + 4d (z, y)

≤ 4 (σ (x, z) + σ (z, y)) .

Next, since (X, d) is a complete metric space, the completeness of (X,σ)
follows immediately from (2.4).

(2) Indeed, σ is not a metric on X since we have

σ(0, 2) = 8 > 5 = 4 + 1 = σ(0, 1) + σ(1, 2).

(3) Let xn =
1
n

for each n ∈ N. We have

lim
n→∞σ

(
1
n

, 0
)

= lim
n→∞

4
n

= 0.

Then limn→∞xn = 0 in (X,σ). On the other hand, we have

lim
n→∞σ (xn, 1) = 1 �= 4 = σ (0, 1) .

This, together with Proposition 2.12, proves that σ is not continuous in each
variable. �
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2.2. F -contractions

Now, let us review some results concerning F -contractions related to the
existing literature. In 2012, Wardowski [46] introduced the notion of F -
contraction as follows:

Definition 2.14. (See [46]) Let (X, d) be a metric space. A mapping T : X →
X is said to be an F -contraction if there exist F ∈ F and τ > 0 such that
for all x, y ∈ X,

d (Tx, Ty) > 0 ⇒ τ + F (d (Tx, Ty)) ≤ F (d (x, y)) , (2.5)

where F is the family of all functions F : (0,∞) → R satisfying the following
conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞), if α < β, then
F (α) < F (β).
(F2) For each sequence {αn} of positive numbers, the following holds:

lim
n→∞αn = 0 if and only if lim

n→∞F (αn) = −∞.

(F3) There exists k ∈ (0, 1) such that limα→0+αkF (α) = 0.

Remark 2.15. (See [46]) Let α > 0. Let the following functions F1 (α) = lnα,

F2 (α) = lnα + α, F3 (α) =
−1√

α
and F4 (α) = ln

(
α2 + α

)
. Then F1, F2, F3

and F4 ∈ F .

Remark 2.16. (See [46]) Clearly, if F is an increasing function (not necessary
strictly increasing), inequality (2.5) implies that T is a contractive mapping,
i.e.,

d (Tx, Ty) < d (x, y) , ∀x, y ∈ X, x �= y.

Hence, every F -contraction is a continuous mapping.

Wardowski’s result is given as follows:

Theorem 2.17. (See [46, Theorem 2.1]) Let (X, d) be a complete metric space
and let T : X → X be an F -contraction. Then T has a unique fixed point x∗

and for every x0 ∈ X the sequence {Tnx0}n∈N
converges to x∗.

Remark 2.18. (See [46]) Wardowski showed that T is a Banach contraction
[4] by taking F (α) = lnα in (2.5).

In [35], Secelean showed that condition (F2) can be replaced by an
equivalent and more easier one (noted (F ′

2): inf F = −∞). Afterwards, Piri
and Kumam [26] established Wardowski’s theorem using (F ′

2) and the con-
tinuity instead of (F2) and (F3), respectively. Later, Wardowski [47] proved
a fixed point theorem concerning F -contractions when τ is taken as a func-
tion. In this work, the author used a relaxed version of (F2) and dropped
also condition (F3). In 2018, Lukács and Kajántó [23] extended Wardowski’s
theorem in the setting of b-metric spaces and omitted condition (F2). Very
recently, some authors proved (in different ways) the original results of War-
dowski without both conditions (F2) and (F3) (see, e.g., [24, Remark 3.7],
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[30, Corollary 3.21 and Theorem 4.1]). It is also worth mentioning that many
others papers dealing with various types of F -contractions can be found in
the literature (see, e.g., [11,15,17,20,24,25,27–29,33,36–38,40,41,44,45] and
references therein).

2.2.1. F -contractions of Hardy–Rogers type. We present here various types
of F -contractions of Hardy–Rogers and some related works which will be
needed for stating our results in the sequel.

In 2014, Wardowski and Dung [48] proved the following result.

Theorem 2.19. (See [48, Corollary 2.5]) Let (X, d) be a complete metric
space. Assume that there exist τ > 0 and F ∈ F such that T : X → X
satisfies

d (Tx, Ty) > 0 ⇒ τ + F (d (Tx, Ty)) ≤ F
(
Bd

T (x, y)
)
,

where

Bd
T (x, y) = ad (x, y) + bd (x, Tx) + cd (y, Ty) + e [d (x, Ty) + d (y, Tx)]

with a, b, c, e ≥ 0 and a + b + c + 2e < 1. If T or F is continuous, then
(1) T has a unique fixed point x∗ ∈ X.
(2) For all x ∈ X, the sequence {Tnx} is convergent to x∗.

Afterwards, Cosentino and Vetro [12] introduced a new notion, namely
the notion of F -contraction of Hardy–Rogers type given below.

Definition 2.20. (See [12]) Let (X, d) be a metric space. A self-mapping T on
X is called an F -contraction of Hardy–Rogers type if there exist F ∈ F and
τ > 0 such that for all x, y ∈ X,

d (Tx, Ty) > 0 ⇒ τ + F (d (Tx, Ty)) ≤ F
(
Qd

T (x, y)
)
,

where

Qd
T (x, y) = αd (x, y) + βd (x, Tx) + γd (y, Ty) + δd (x, Ty) + Ld (y, Tx)

with α, β, γ, δ, L ≥ 0, α + β + γ + 2δ = 1 and γ �= 1.

The authors in [12] obtained the following fixed point result.

Theorem 2.21. (See [12, Theorem 3.1]) Let (X, d) be a complete metric space
and let T : X → X be an F -contraction of Hardy–Rogers type. Then T has
a fixed point. Moreover, if α + δ + L ≤ 1, then the fixed point of T is unique.

Later, Vetro [43] proved some new results about F -contraction of Hardy–
Rogers type. Before enunciating these results, we need to introduce some no-
tations and definitions. Let us note S the family of all functions τ : (0,∞) →
(0,∞) satisfying the following property:

lim inf
t→η+

τ (t) > 0, for all η ≥ 0.

Let us consider also the following condition:
(F ′

3) : F is continuous on (0,∞) .
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Henceforth, we denote by F the set of all functions F : (0,∞) → R satisfying
the conditions (F1), (F2) and (F ′

3) and by F the set of all functions F :
(0,∞) → R satisfying the conditions (F1) and (F2).

Vetro [43] generalized the notion of F -contraction of Hardy–Rogers type
as follows:

Definition 2.22. (See [43, Definition 3]) Let (X, d) be a complete metric
space. A self-mapping T on X is called an F -contraction of Hardy–Rogers
type if there exist F ∈ F and τ ∈ S such that for all x, y ∈ X,

d (Tx, Ty) > 0 ⇒ τ (d (x, y)) + F (d (Tx, Ty)) ≤ F
(
Qd

T (x, y)
)
,

where α, β, γ, δ, L ≥ 0, α + β + γ + 2δ = 1, γ �= 1 and α + δ + L ≤ 1.

Also, the author introduced the notion of F -contraction of Suzuki–
Hardy–Rogers type given below.

Definition 2.23. (See [43, Definition 3]) Let (X, d) be a complete metric
space. A self-mapping T on X is called an F -contraction of Suzuki–Hardy–
Rogers type if there exist F ∈ F and τ ∈ S such that for all x, y ∈ X with
Tx �= Ty,

1
2s

σ (x, Tx) < σ (x, y) ⇒ τ (d (x, y)) + F (d (Tx, Ty)) ≤ F
(
Qd

T (x, y)
)
,

where α, β, γ, δ, L ≥ 0, α + β + γ + 2δ = 1, γ �= 1 and α + δ + L ≤ 1.

The first Vetro’s result is the following:

Theorem 2.24. (See [43, Theorem 1]) Let (X, d) be a complete metric space.
If T is an F -contraction of Hardy–Rogers type and F is continuous (i.e.,
F ∈ F), then T has a unique fixed point.

The second Vetro’s result (Suzuki-type version) is given as follows:

Theorem 2.25. (See [43, Theorem 2]) Let (X, d) be a complete metric space.
If T is an F -contraction of Suzuki–Hardy–Rogers type and F is continuous
(i.e., F ∈ F), then T has a unique fixed point.

Remark 2.26. In [43, Remark 3], Vetro proved that if (F ′
3) is weaken to the

condition that F is upper semicontinuous on (0,∞), then Theorem 2.24 holds
for the strict inequality α + δ + L < 1.

Vetro established also the following corollaries.

Corollary 2.27. (See [43, Corollary 1]) Let (X, d) be a complete metric space
and let T be a self-mapping on X. Assume that there exist an upper semi-
continuous F ∈ F and τ ∈ S such that for all x, y ∈ X with Tx �= Ty,

τ (d (x, y)) + F (d (Tx, Ty)) ≤ F (βd (x, Tx) + γd (y, Ty)) ,

where β, γ ∈ [0,∞) satisfying β + γ = 1 and γ �= 1. Then T has a unique
fixed point in X.
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Corollary 2.28. (See [43, Corollary 3]) Let (X, d) be a complete metric space
and let T be a self-mapping on X. Assume that there exist a continuous F ∈ F

and τ ∈ S such that for all x, y ∈ X with Tx �= Ty,

τ (d (x, y)) + F (d (Tx, Ty)) ≤ F (αd (x, y) + βd (x, Tx) + γd (y, Ty)) ,

where α, β, γ ∈ [0,∞) satisfying α + β + γ = 1 and γ �= 1. Then T has a
unique fixed point in X.

Consistent with [11] and [23], what follows is needed to deal with more
results concerning F -contraction of Hardy–Rogers type.

In 2015, Cosentino et al. [11] introduced the following condition (noted
(F4) in [11, Definition 3.1]):

Let s ≥ 1. If {αn} ⊂ (0,∞) is a sequence such that τ + F (sαn) ≤
F (αn−1), for all n ∈ N and some τ > 0, then τ + F (snαn) ≤ F

(
sn−1αn−1

)
,

for all n ∈ N.
In the same context, Lukács and Kajántó [23] defined a new class of

functions (noted Fs,τ ) satisfying an easier condition than (F4). Their defini-
tion is given below.

Definition 2.29. (See [23, Definition 2.7]) Let s ≥ 1 and τ > 0. We say that
F ∈ F

∗ belongs to Fs,τ if it is also satisfies
(Fs,τ ) if inf F = −∞ and x, y, z ∈ (0,∞) are such that τ + F (sx) ≤

F (y) and τ + F (sy) ≤ F (z) then

τ + F
(
s2x

) ≤ F (sy) ,

where F
∗ is the set of all functions F : (0,∞) → R satisfying the conditions

(F1) and (F3).

Next, the authors in [23] introduced the notion of F -weak contraction
of Hardy–Rogers type in the setting of b-metric spaces as follows:

Definition 2.30. (See [23, Definition 5.1]) Let (X,σ) be a b-metric space with
constant s ≥ 1, a, b, c, e, f ≥ 0 real numbers and T : X → X an operator.
If there exist τ > 0 and F ∈ Fs,τ such that for all x, y ∈ X the inequality
σ (Tx, Ty) > 0 implies

τ + F (sσ (Tx, Ty)) ≤ F (Aσ
T (x, y)) ,

where

Aσ
T (x, y) = aσ (x, y) + bσ (x, Tx) + cσ (y, Ty) + eσ (x, Ty) + fσ (y, Tx) ,

then T is called an F -weak contraction of Hardy–Rogers type.

In [23], Lukács and Kajántó showed that if F is an increasing function,
then (Fs,τ ) is equivalent to (F4) (see [23, Proposition 2.8]) and proved the
fixed point result below.

Theorem 2.31. (See [23, Theorem 5.2]) Suppose that (X,σ) is a b-metric
space with constant s ≥ 1 and T : X → X is an F -weak contraction of
Hardy–Rogers type. If either a+b+c+(s + 1) e < 1 or a+b+c+(s + 1) f < 1
holds, then every x0 ∈ X, the sequence xn+1 = Txn converges to a fixed point
of T. Moreover, if a + e + f < s holds as well, then T has exactly one fixed
point.
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3. Main results

In this section, we essentially improve (and/or) extend the aforementioned
results: Theorem 2.24, Theorem 2.25, Remark 2.26 and Theorem 2.31 in the
setting of b-metric spaces. It is worth mentioning that in our following results,
the b-metric need not to be continuous.

For convenience, we set

Fc = {F : (0,∞) → R : F is nondecreasing continuous function} .

Let ω ≥ 1 be a given real number. We denote by Sω the family of all functions
τ : (0,∞) → (0,∞) which satisfy the following condition:

lim inf
t→r

τ (t) > 0, where r ∈ [
η+, η+ω

]
, for all η > 0. (Aω)

Remark 3.1. Obviously, if ω = 1, condition (Aω) becomes as follows:

lim inf
t→η+

τ (t) > 0, for all η > 0. (A1)

Henceforth, we denote by S1 the set Sω when ω = 1. Clearly, we have
Sω ⊆ S1.

Example 3.2. Let the following function G : (0,∞) → R, G (x) =
−1

x + 1
.

Clearly, G ∈ Fc but it does not satisfy condition (F2). Indeed, if αn =
1
n

, n ∈
N, we have limn→∞αn = 0 and limn→∞G (αn) = −1 �= −∞. More precisely,
we have F ⊂Fc.

Example 3.3. (See [40, Example 2.2])
(a) Let τ > 0 be a fixed real number and τ1 (t) = τ for all t ∈ (0,∞).
Then τ1 ∈ Sω.
(b) Let τ2 (t) = ln (1 + t) for all t ∈ (0,∞) . Then τ2 ∈ Sω.
(c) Let τ3 (t) = �t for all t ∈ (0,∞), where � > 0. Then τ3 ∈ Sω.

Remark 3.4. Since τ2 /∈ S, it is easy to see that S ⊂ S1.

Motivated by the works in [23] and [43], we refine the notions of F -
contraction of Hardy–Rogers type, F -contraction of Suzuki–Hardy–Rogers
type and F -weak contraction of Hardy–Rogers type by introducing new no-
tions in the context of b-metric spaces, namely the notions of extended F -
contraction of Hardy–Rogers type, extended F -contraction of Suzuki–Hardy–
Rogers type and generalized F -weak contraction of Hardy–Rogers type.

Before stating and proving our main results, we start to prove the fol-
lowing useful lemma (see also the works in [30] and [39]).

Lemma 3.5. Let κ ≥ 1 be a given real number. Let {tn} ⊂ (0,∞) be a se-
quence and let φ, ψ : (0,∞) → R be two functions satisfying the following
conditions:

(i) ψ (κ tn) ≤ φ (tn−1), for all n ∈ N;
(ii) ψ is nondecreasing;
(iii) φ (t) < ψ (t), for all t > 0;
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(iv) lim supt→η+ φ (t) < ψ (η+), for all η > 0.

Then limn→∞tn = 0.

Proof. First, we note that the right limit of ψ exists since ψ is nondeceasing.
Through (i) and (iii), we have

ψ (κtn) ≤ φ (tn−1) < ψ (tn−1) , for all n ∈ N.

Taking into account condition (ii), it follows that

κtn < tn−1, for all n ∈ N.

As κ ≥ 1, the last inequality implies that {tn} is a strictly decreasing sequence
of positive numbers. Hence, there exists r ≥ 0 such that

lim
n→∞tn = r+.

Now, we show that r = 0. Arguing by contradiction, we assume that r > 0.
Again by (i) and (ii), we have

ψ (tn) ≤ φ (tn−1) , for all n ∈ N. (3.1)

Taking the upper limit as n → ∞ in (3.1), we get

ψ
(
r+

)
= lim

n→∞ψ (tn) ≤ lim sup
n→∞

φ (tn−1) ≤ lim sup
t→r+

φ (t) ,

which contradicts (iv). Thus, r = 0, that is, limn→∞tn = 0. �

We prove now the following proposition which plays an important role
in the proofs of our results.

Proposition 3.6. Let (X,σ) be a b-metric space with constant s ≥ 1 and let λ
be a given real number such that 1 ≤ λ ≤ s. Let T : X → X be a mapping and
{xn} the Picard sequence of T based on an arbitrary x0 ∈ X. Assume that
there exist a nondecreasing function F and τ ∈ S1 such that for all z ∈ X
with Tz �= T 2z,

τ (σ (z, Tz)) + F
(
λσ

(
Tz, T 2z

))
≤ F ((d1 + d2) σ (z, Tz) + d3σ

(
Tz, T 2z

)
+ d4σ

(
z, T 2z

)
), (P )

where d1, d2, d3, d4 are nonnegative real numbers satisfying

d1 + d2 + d3 + 2d4s =
λ

s
and d3 �= λ

s
. (D)

Then limn→∞σ (xn, xn+1) = 0.

Proof. Let us put σn := σ (xn, xn+1). If xn = xn+1 for some n ∈ N0, the
proof is immediately finished. Hence, we assume that

xn �= xn+1, for all n ∈ N0.

This means that Txn−1 �= T 2xn−1 for all n ∈ N. Applying the inequality (P )
with z = xn−1, we have for all n ∈ N

τ (σn−1) + F (λσn)
≤ F ((d1 + d2) σn−1 + d3σn + d4σ (xn−1, xn+1)) .

(3.2)
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Using the relaxed triangle inequality (b3), we get

σ (xn−1, xn+1) ≤ s (σn−1 + σn) , for all n ∈ N.

So, (3.2) turns into

τ (σn−1) + F (λσn)
≤ F ((d1 + d2 + d4s) σn−1 + (d3 + d4s) σn) , for all n ∈ N.

(3.3)

Since F is nondecreasing and τ (t) > 0,∀t > 0, it follows that

λσn < (d1 + d2 + d4s) σn−1 + (d3 + d4s) σn, for all n ∈ N.

This implies that

(λ − d3 − d4s) σn < (d1 + d2 + d4s) σn−1, for all n ∈ N. (3.4)

Since

λ − d3 − d4s ≥ λ

s
− d3 − d4s,

inequality (3.4) gives(
λ

s
− d3 − d4s

)
σn < (d1 + d2 + d4s) σn−1, for all n ∈ N. (3.5)

Since d1 + d2 + d3 + 2d4s =
λ

s
and d3 �= λ

s
, we get

λ

s
− d3 − d4s > 0.

Therefore, inequality (3.5) yields

σn <
d1 + d2 + d4s

λ

s
− d3 − d4s

σn−1 = σn−1, for all n ∈ N. (3.6)

As F is nondecreasing, then by substituting (3.6) into (3.3) and using again

d1 + d2 + d3 + 2d4s =
λ

s
with 1 ≤ λ ≤ s, we obtain

F (λσn) ≤ F ((d1 + d2 + d4s)σn−1 + (d3 + d4s)σn−1) − τ (σn−1)

= F

(
λ

s
σn−1

)
− τ (σn−1)

≤ F (σn−1) − τ (σn−1) .

(3.7)

This leads to

F (λσn) ≤ F (σn−1) − τ (σn−1) , for all n ∈ N. (3.8)

Taking ψ (t) = F (t) and φ (t) = F (t) − τ (t) for all t ∈ (0,∞), inequality
(3.8) can be written in the following form:

ψ (λσn) ≤ φ (σn−1) , for all n ∈ N.

As F is nondecreasing, then in view of the last inequality and using the fact
that τ ∈ S1 (i.e., (A1) holds), it is easy to see that all the conditions of
Lemma 3.5 with (κ = λ ≥ 1) are satisfied. Thus, limn→∞σn = 0 and the
proof is finished. �
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Remark 3.7. As in [43, Proposition 1, inequality (6)], Proposition 3.6 also
furnishes that the sequence {σn} is a strictly decreasing (see inequality (3.6))
when σn > 0, for all n ∈ N0.

Remark 3.8. Proposition 3.6 extends and improves [43, Proposition 1]. In
fact, taking s = 1 (which yields λ = 1 as well) in Proposition 3.6 (it corre-
sponds to the case of metric spaces), we find [43, Proposition 1]. Moreover,
condition (F2) from [43, Proposition 1] is omitted. Otherwise, for the func-
tion τ , we have used the condition that τ ∈ S1 instead of the condition that
τ ∈ S. This is a slightly weaker condition since S ⊂ S1. In addition, we also
change the condition that F is strictly increasing from [43, Proposition 1]
into the weaker condition that F is nondecreasing (i.e., the strictness of the
monotonicity of F is not necessary).

3.1. Extended F -contraction of Hardy–Rogers type

In this subsection and for the sake of readability, we present our results
gradually to point out the different techniques used in some steps of our
proofs in the case where the only omitted condition is (F2) and in the case
where we assume only the condition that F is nondecreasing.

Let (X,σ) be a b-metric space with constant s ≥ 1. Throughout this
subsection, we denote, for all x, y ∈ X,

Qσ
T (x, y) = ασ (x, y) + βσ (x, Tx) + γσ (y, Ty) + δσ (x, Ty) + Lσ (y, Tx) ,

where α, β, γ, δ, L are nonnegative real numbers. If s = 1, we write Qd
T (x, y)

instead of Qσ
T (x, y), where d is a metric on X.

We begin this subsection with the following definitions.

Definition 3.9. Let (X,σ) be a b-metric space with constant s ≥ 1. A mapping
T : X → X is said to be an extended F -contraction of Hardy–Rogers type if
there exist F : (0,∞) → R and τ ∈ Sω such that for all x, y ∈ X,

σ (Tx, Ty) > 0 ⇒ τ (σ (x, y)) + F (σ (Tx, Ty)) ≤ F (Qσ
T (x, y)) . (3.9)

Remark 3.10. If F is nondecreasing, it is easy to see from Definition 3.9 that
every T which is an extended F -contraction of Hardy–Rogers type satisfies
the following condition

σ (Tx, Ty) < Qσ
T (x, y), (3.10)

for all x, y ∈ X with Tx �= Ty.

Consistent with [43], we give analogously the definition of an extended
F -contraction of Suzuki–Hardy–Rogers type in b-metric spaces.

Definition 3.11. Let (X,σ) be a b-metric space with constant s ≥ 1. A map-
ping T : X → X is said to be an extended F -contraction of Suzuki–Hardy–
Rogers type if there exist F : (0,∞) → R and τ ∈ Sω such that for all
x, y ∈ X with Tx �= Ty,

1
2s

σ (x, Tx) < σ (x, y) ⇒ τ (σ (x, y)) + F (σ (Tx, Ty)) ≤ F (Qσ
T (x, y)) .

(3.11)
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Remark 3.12. If F is nondecreasing, it is easy also to see from Definition 3.11
that every T which is an extended F -contraction of Suzuki–Hardy–Rogers
type satisfies the following condition:

σ (Tx, Ty) < Qσ
T (x, y), (3.12)

for all x, y ∈ X with Tx �= Ty and
1
2s

σ (x, Tx) < σ (x, y) .

Now, we are ready to state and prove our main results. The following
theorem is one of them and it is an extension and an improvement of Theorem
2.24.

Theorem 3.13. Let (X,σ) be a complete b-metric space with constant s ≥ 1
and T : X → X an extended F -contraction of Hardy–Rogers type with F ∈
Fc. Suppose that either

(H1
s

)
or

(H2
s

)
holds, where

(H1
s

)
α + β + γ + 2δs =

1
s
and γ �= 1

s
,

(H2
s

)
α + β + γ + 2Ls =

1
s
and β �= 1

s
.

Furthermore, we assume that s2α+s3 (δ + L) ≤ 1. Then T has a unique fixed
point x∗ and for every x0 ∈ X the sequence {Tnx0}n∈N

converges to x∗.

Proof. First, we will show that T has at most one fixed point. Assume that
x∗ and y∗ are two distinct fixed points of T , that is, Tx∗ = x∗ �= y∗ = Ty∗.
Then

σ (Tx∗, T y∗) = σ (x∗, y∗) > 0.

1. If α + δ + L > 0, from (3.9) (with x = x∗ and y = y∗), we obtain

τ (σ (x∗, y∗)) + F (σ (x∗, y∗)) ≤ F ((α + δ + L) σ (x∗, y∗))

≤ F (
(
s2α + s3 (δ + L)

)
σ (x∗, y∗))

≤ F (σ (x∗, y∗)).

The last inequality yields τ (σ (x∗, y∗)) ≤ 0, which is a contradiction.
2. If α + δ + L = 0, from (3.10) (with x = x∗ and y = y∗), we have

σ (x∗, y∗) < Qσ
T (x∗, y∗) = (α + δ + L) σ (x∗, y∗) = 0,

which is a contradiction.

Thus, in both cases, we get a contradiction. Hence, T has at most one fixed
point.

Next, we prove the existence of a fixed point. Let {xn} be the Picard
sequence based on an arbitrary x0 ∈ X. If there exists n0 ∈ N0, such that
xn0 = xn0+1, then xn0 is the fixed point of T and the proof is completed. If
xn �= xn+1, for all n ∈ N0, we have

σn := σ (xn, xn+1) = σ (Txn−1, Txn) > 0, for all n ∈ N. (3.13)

From the hypothesis of the theorem, we consider the following cases:
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Case 1 If
(H1

s

)
holds. Owing to (3.13), we can apply the contractive condition

(3.9) with x = xn−1 and y = xn. Hence, we get for all n ∈ N

τ (σ (xn−1, xn)) + F (σ (Txn−1, Txn))
≤ F ((α + β) σ (xn−1, xn) + γσ (xn, Txn) + δσ (xn−1, Txn)). (3.14)

Putting xn−1 = z in (3.14) and using the fact that

Tz = Txn−1 = xn �= xn+1 = T 2xn−1 = T 2z,

the inequality (3.14) turns into (P ) with d1 = α, d2 = β, d3 = γ, d4 = δ and
λ = 1. Therefore, by virtue of (Sω ⊆ S1) and Proposition 3.6 with λ = 1, we
have limn→∞σn = 0.
Case 2 If

(H2
s

)
holds. From (3.13), we can also apply (3.9) with x = xn and

y = xn−1. So, using the symmetry condition (b2), we get for all n ∈ N

τ (σ (xn−1, xn)) + F (σ (Txn−1, Txn))
≤ F ((α + γ) σ (xn−1, xn) + βσ (xn, Txn) + Lσ (xn−1, Txn)). (3.15)

Similarly, as in Case 1, inequality (3.15) turns into (P ) with d1 = α, d2 = γ,
d3 = β, d4 = L and λ = 1. Again, according to Proposition 3.6 with λ = 1,
we have limn→∞σn = 0.

Consequently, in both cases, we obtain

lim
n→∞ σn = lim

n→∞ σ (xn, xn+1) = 0. (3.16)

Now, we prove that {xn} is a Cauchy sequence. Suppose on the contrary,
i.e., {xn} is not a Cauchy sequence. Then from (3.16) and the first item of
Lemma 2.10, there exist ε > 0 and two sequences {m(k)} , {n(k)} of positive
integers such that

ε+ ≤ lim inf
k→∞

σ
(
xm(k), xn(k)

) ≤ lim sup
k→∞

σ
(
xm(k), xn(k)

) ≤ sε+.

Thus, we infer that there exists k0 ∈ N such that
{
σ

(
xm(k), xn(k)

)}
is

bounded for all k ≥ k0 and thereby it has a convergent subsequence. It
follows that there exist a real number l and a subsequence {k (p)}p≥k0

of
{k}k≥k0

such that

lim
p→∞σ

(
xm(k(p)), xn(k(p))

)
= l (3.17)

with

0 < ε+ ≤ lim inf
k→∞

σ
(
xm(k), xn(k)

) ≤ l ≤ lim sup
k→∞

σ
(
xm(k), xn(k)

) ≤ sε+.

(3.18)
On the other hand, using (b3), we get for all p ≥ k0

σ
(
xm(k(p)), xn(k(p))

)
≤ sσ

(
xm(k(p)), xm(k(p))+1

)
+ sσ

(
xm(k(p))+1, xn(k(p))

)
≤ sσ

(
xm(k(p)), xm(k(p))+1

)
+ s2σ

(
xm(k(p))+1, xn(k(p))+1

)
+s2σ

(
xn(k(p)), xn(k(p))+1

)
= sσm(k(p)) + s2σ

(
xm(k(p))+1, xn(k(p))+1

)
+ s2σn(k(p)).
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This leads to
σ

(
xm(k(p))+1, xn(k(p))+1

)
≥ 1

s2
(
σ

(
xm(k(p)), xn(k(p))

) − sσm(k(p)) − s2σn(k(p))

)
,

(3.19)

for all p ≥ k0.
Taking the lower limit as p → ∞ in (3.19) and using (3.16), we obtain

lim inf
p→∞ σ

(
xm(k(p))+1, xn(k(p))+1

) ≥ l

s2
. (3.20)

Consequently, there exists N ≥ k0 such that

σ
(
Txm(k(p)), Txn(k(p))

)
= σ

(
xm(k(p))+1, xn(k(p))+1

)
> 0, for all p ≥ N.

(3.21)
For convenience, we set

ap = σ
(
xm(k(p)), xn(k(p))

)
, bp = σ

(
xm(k(p))+1, xn(k(p))+1

)
,

cp = σ
(
xm(k(p)), xn(k(p))+1

)
, dp = σ

(
xn(k(p)), xm(k(p))+1

)
.

Therefore, it follows from (3.21) that the contractive inequality (3.9) can be
applied with x = xm(k(p)) and y = xn(k(p)). Hence, for all p ≥ N , we have

τ (ap) + F (bp) ≤ F
(
αap + βσm(k(p)) + γσn(k(p)) + δcp + Ldp

)
.

Using (b3), the monotonicity of F and s2α + s3 (δ + L) ≤ 1, we get

τ (ap) + F (bp)
≤ F

(
(α + s (δ + L)) ap + (β + sL) σm(k(p)) + (γ + sδ)σn(k(p))

)
≤ F

(
1
s2

ap + (β + sL) σm(k(p)) + (γ + sδ) σn(k(p))

)
,

for all p ≥ N .
Now, combining the above inequality with (3.17) and (3.20) through the

fact that F ∈ Fc, we obtain the following chain of inequalities

lim inf
t→l

τ (t) + F

(
l

s2

)

≤ lim inf
p→∞ τ (ap) + F

(
l

s2

)

≤ lim inf
p→∞ τ (ap) + F

(
lim inf
p→∞ bp

)

= lim inf
p→∞ τ (ap) + lim inf

p→∞ F (bp) = lim inf
p→∞ [τ (ap) + F (bp)]

≤ lim
p→∞F

(
1
s2

ap + (β + sL) σm(k(p)) + (γ + sδ) σn(k(p))

)

= F

(
l

s2

)
.

Having in mind (3.18), the preceding inequality implies that

lim inf
t→l

τ (t) ≤ 0, where l ∈ [
ε+, ε+s

]
,

which is a contradiction with (Aω) (η = ε > 0, ω = s ≥ 1). This contradiction
shows that {xn} is a Cauchy sequence. By completeness of (X,σ), {xn}
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converges to some point x∗ in X, that is,

lim
n→∞σ (xn, x∗) = 0. (3.22)

Finally, we show that x∗ is a fixed point of T , that is, Tx∗ = x∗. Assume on
the contrary, i.e., σ (x∗, Tx∗) > 0. Then through (3.22), there exists n0 ∈ N

such that

σ (xn, x∗) ≤ σ (x∗, Tx∗)
2s

, ∀n ≥ n0. (3.23)

On the other hand, by (b3), we have

σ (x∗, Tx∗) ≤ sσ (x∗, Txn) + sσ (Txn, Tx∗) . (3.24)

Using (3.23), inequality (3.24) yields

σ (Txn, Tx∗) ≥ 1
s

(σ (x∗, Tx∗) − sσ (x∗, Txn))

=
1
s
σ (x∗, Tx∗) − σ (x∗, xn+1)

≥ σ (x∗, Tx∗)
2s

> 0,

(3.25)

for all n ≥ n0.
Taking into account (3.25), we can apply (3.10) with x = xn and y = x∗.

Hence, for all n ≥ n0, (3.24) gives
σ (x∗, Tx∗) ≤ sσ (x∗, Txn) + sσ (Txn, Tx∗) .

< sσ (x∗, Txn) + sασ (xn, x∗) + sβσ (xn, Txn)

+ sγσ (x∗, Tx∗) + sδσ (xn, Tx∗) + sLσ (x∗, Txn)

= s (1 + L) σ (x∗, xn+1) + sασ (xn, x∗)

+ sβσ (xn, Txn) + sδσ (xn, Tx∗) + sγσ (x∗, Tx∗) .

The above inequality leads to
(1 − sγ) σ (x∗, Tx∗) < s (1 + L) σ (x∗, xn+1) + sασ (xn, x∗)

+ sδσ (xn, Tx∗) + sβσ (xn, Txn) ,
(3.26)

for all n ≥ n0.
Taking the limit superior as n → ∞ in (3.26) and using Lemma 2.8,

(3.16) and (3.22), we get

(1 − sγ) σ (x∗, Tx∗) ≤ s2δσ (x∗, Tx∗) . (3.27)

In a similar way, we can also apply (3.10) with x = x∗, y = xn and we obtain

(1 − sβ) σ (x∗, Tx∗) ≤ s2Lσ (x∗, Tx∗) . (3.28)

Again, according to the hypothesis of the theorem, we consider the following
cases:
Case 1 If

(H1
s

)
holds. In this case, we have 1 − sγ > 0 and γ + sδ <

1
s
.

Consequently, (3.27) implies that

σ (x∗, Tx∗) ≤ s2δ

(1 − sγ)
σ (x∗, Tx∗) < σ (x∗, Tx∗) ,

which is a contradiction.



Vol. 22 (2020) F -contractions of Hardy–Rogers type in b-metric spaces Page 19 of 44 86

Case 2 If
(H2

s

)
holds. In this case, we have 1 − sβ > 0 and β + sL <

1
s
.

Hence, (3.28) yields

σ (x∗, Tx∗) ≤ s2L

(1 − sβ)
σ (x∗, Tx∗) < σ (x∗, Tx∗) ,

which is a contradiction. Therefore, whether
(H1

s

)
or

(H2
s

)
holds, we obtain

a contradiction. So, we have Tx∗ = x∗ and this completes the proof of the
theorem. �

Remark 3.14. By inspecting the proof of Theorem 3.13 and taking into ac-
count Remark 2.11, we observe that if s = 1 (its corresponds to the case
of metric spaces), it suffices to use the condition that τ ∈ S1 instead of the
condition that τ ∈ Sω.

In the sequel,
(H1

s

)
and

(H2
s

)
denote the hypotheses given in Theorem

3.13. Also, if s = 1,
(H1

s

)
and

(H2
s

)
are noted

(H1
1

)
and

(H2
1

)
, respectively.

Remark 3.15. Theorem 3.13 extends and greatly improves Theorem 2.24.
Actually, by taking s = 1 in Theorem 3.13 with the hypothesis

(H1
1

)
, we

recover Theorem 2.24. In addition, we show that Theorem 2.24 can be proved
also through the hypothesis

(H2
1

)
. Moreover, condition (F2) from Theorem

2.24 is omitted and the condition that τ ∈ S is weaken to the condition
that τ ∈ S1 (see Remark 3.14). Besides these, we have shown implicitly from
the proof of Theorem 3.13 that the strictness of the monotonicity of F and
lim inf t→0+τ (t) > 0 are superfluous conditions for all s ≥ 1.

If s = 1, then by taking δ = L = 0 in Theorem 3.13 and taking into
account Remark 3.14, we obtain the following result.

Corollary 3.16. Let (X, d) be a complete metric space and let T be a self-
mapping on X. Assume that there exist F ∈ Fc and τ ∈ S1 such that for all
x, y ∈ X with Tx �= Ty,

τ (d (x, y)) + F (d (Tx, Ty)) ≤ F (αd (x, y) + βd (x, Tx) + γd (y, Ty)) ,

where α, β, γ ∈ [0,∞) satisfying α + β + γ = 1 and γ �= 1. Then T has a
unique fixed point x∗ and for every x0 ∈ X the sequence {Tnx0}n∈N

converges
to x∗.

Remark 3.17. Corollary 3.16 improves Corollary 2.28. Indeed, condition (F2)
from Theorem 2.24 is deleted and the condition that τ ∈ S is weaken to the
condition that τ ∈ S1. In addition, Corollary 2.28 remains true without the
strictness of the monotonicity of F .

Remark 3.18. Corollary 3.16 generalizes and improves [26, Theorem 2.1]. In
fact, by taking α = 1, β = γ = 0 in Corollary 3.16 and τ (t) = τ > 0 for
all t ∈ (0,∞), we find Theorem 2.1 of Piri and Kumam [26]. Corollary 3.16
shows that condition (F ′

2) can be omitted from [26, Theorem 2.1]. Besides
these, the strictness of the monotonicity of F is not necessary.

The following example illustrates the usability of Theorem 3.13.
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Example 3.19. Let X = [0, 7]. Let T : X → X be a mapping given by

Tx =
{

7, if x ∈]0, 7],
6, if x = 0.

Let σ : X × X → [0,∞) be the mapping defined by

σ (x, y) = (x − y)2 , for all x, y ∈ X.

By Example 2.2, (X,σ) is a complete b-metric space with constant s = 2.
First, we observe that

σ (Tx, Ty) = 1 > 0 ⇔ [(x ∈]0, 7] ∧ y = 0) ∨ (y ∈]0, 7] ∧ x = 0)] .

Let x, y ∈ X and denote

M (x, y) =
1
8
σ (x, y) +

1
8
σ (y, Ty) +

1
16

σ (x, Ty) .

Now, we consider the following cases:
Case 1 If x ∈]0, 7] and y = 0. In this case, we obtain

σ (x, 0)
294

− 1
σ (Tx, T0) + 1

≤ 49
294

− 1
2

= −1
3

< − 8
36

= − 8
σ (0, T0)

≤ − 1
M (x, 0)

< − 1
M (x, 0) + 1

.

(3.29)

Case 2 If y ∈]0, 7] and x = 0. In this case, we get

σ (0, y)
294

− 1
σ (T0, T y) + 1

≤ 49
294

− 1
2

= −1
3

< −16
49

= − 16
σ (0, T y)

≤ − 1
M (0, y)

< − 1
M (0, y) + 1

.

(3.30)

From (3.29) and (3.30), we deduce

σ (x, y)
294

− 1
σ (Tx, Ty) + 1

< − 1
M (x, y) + 1

,

for all x, y ∈ X with σ (Tx, Ty) = 1 > 0.

Therefore, by choosing F (t) = − 1
t + 1

, τ (t) =
t

294
, for all t ∈ (0,∞),

we see that T is an extended F -contraction of Hardy–Rogers type with α =
1
8
, γ =

1
8
, δ =

1
16

, β = L = 0 and all the conditions of Theorem 3.13 (with(H1
s

)
) are satisfied. Hence, T has a unique fixed point x∗ (here x∗ = 7).

Notice that F does not satisfy condition (F2) and τ /∈ S.



Vol. 22 (2020) F -contractions of Hardy–Rogers type in b-metric spaces Page 21 of 44 86

The following example shows that Theorem 3.13 greatly improves The-
orem 2.24.

Example 3.20. Let X = [10, 20] be endowed with the euclidean metric d = |.|
and T : X → X a mapping defined as follows:

Tx =
{

20, if x ∈]10, 20],
19, if x = 10.

Obviously, T is not an F -contraction since T is not continuous (see Remark
2.16).

Let x, y ∈ X and denote

D (x, y) =
1
2
d (x, Tx) +

1
4
d (y, Tx) .

First, we have

d (Tx, Ty) = 1 > 0 ⇔ [(x = 10 ∧ y ∈]10, 20]) ∨ (y = 10 ∧ x ∈]10, 20])] .

Second, T is an extended F -contraction of Hardy–Rogers type. In fact, we
distinguish the following cases:
Case 1 If (x = 10 ∧ y ∈]10, 20]) . In this case, we get

1 + D (10, y) ≥ 1 +
1
2
d (10, T10) =

11
2

≥
(

d (10, y)
20

)
(1 + d (T10, T y)) .

Case 2 If (y = 10 ∧ x ∈]10, 20]) . In this case, we obtain

1 + D (x, 10) ≥ 1 +
1
4
d (10, Tx) =

10
4

≥
(

d (x, 10)
20

+ 1
)

(1 + d (Tx, T10)) .

In view of the above cases, we deduce that

1 + D (x, y) ≥
(

d (x, y)
20

+ 1
)

(1 + d (Tx, Ty)) .

By passing to logarithms, we get

τ (d (x, y)) + F (d (Tx, Ty)) ≤ F (D (x, y)) ,

where F (t) = ln (t + 1) and τ (t) = ln
(

t

20
+ 1

)
, for all t ∈ (0,∞) .

Consequently, T is an extended F -contraction of Hardy–Rogers type

with β =
1
2
, L =

1
4

and α = γ = δ = 0. Then we conclude that Theorem 3.13

holds true (with
(H2

1

)
) and x∗ = 20 is the unique fixed point of T . On the

other hand, Theorem 2.24 is not applicable in this case since α+β +γ +2δ =
1
2

�= 1, τ /∈ S and F does not satisfy condition (F2).

The following example shows that Corollary 3.16 improves Corollary
2.28.
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Example 3.21. Let X = [0, 10] be endowed with the euclidean metric d = |.|
and T : X → X a mapping given by

Tx =
{

10, if x ∈]0, 10],
9, if x = 0.

First, since T is not continuous, T is not an F -contraction by Remark 2.16.
Let x, y ∈ X and denote

G (x, y) =
1
3

[d (x, y) + d (x, Tx) + d (y, Ty)] .

On the one hand, it easy to see that

d (Tx, Ty) = 1 > 0 ⇔ [(x ∈]0, 10] ∧ y = 0) ∨ (y ∈]0, 10] ∧ x = 0)] .

On the other hand, in both cases [(x ∈]0, 10] ∧ y = 0) ∨ (y ∈]0, 10] ∧ x = 0)],
we have

1 + G (x, y) ≥ 1 +
1
3
d (0, T0) = 4.

= 2 (d (Tx, Ty) + 1) .

Consequently, we obtain

τ (d (x, y)) + F (d (Tx, Ty)) ≤ F (G (x, y))

for all x, y ∈ X and σ (Tx, Ty) = 1 > 0, where τ (t) = ln (2) and F (t) =
ln (t + 1), for all t ∈ (0,∞). Hence, we claim that all the conditions of Corol-

lary 3.16 are fulfilled with α = β = γ =
1
3
. So, T has a unique fixed point

(which is 10). However, Corollary 2.28 can not be applied since F does not
satisfy condition (F2).

Our second result is devoted to prove a fixed point theorem concerning
an extended F -contraction of Suzuki–Hardy–Rogers type in the setting of
b-metric spaces. The following theorem is an extension and an improvement
of Theorem 2.25.

Theorem 3.22. Let (X,σ) be a complete b-metric space with constant s ≥ 1
and T : X → X an extended F -contraction of Suzuki–Hardy–Rogers type with
F ∈ Fc. Suppose that either

(H1
s

)
or

(H2
s

)
holds. Furthermore, we assume

that s2α + s3 (δ + L) ≤ 1. Then T has a unique fixed point x∗ and for every
x0 ∈ X the sequence {Tnx0}n∈N

converges to x∗.

Proof. First, we show that T has at most one fixed point. Assume that x∗

and y∗ are two distinct fixed points of T , that is, Tx∗ = x∗ �= y∗ = Ty∗. So,
we have

σ (Tx∗, T y∗) = σ (x∗, y∗) > 0,

which implies that
1
2s

σ (x∗, Tx∗) = 0 < σ (x∗, y∗) . (3.31)

Therefore, through the contractive inequalities (3.11) and (3.12), the unique-
ness of the fixed point is obtained similarly as in the proof of Theorem 3.13.
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Let {xn} be the Picard sequence based on an arbitrary x0 ∈ X. As in
the proof of Theorem 3.13, without loss of generality, we can assume that
xn �= xn+1 for all n ∈ N0. Thus,

σn = σ (xn, xn+1) = σ (xn, Txn) > 0.

Hence,
1
2s

σ (xn, Txn) < σ (xn, Txn) .

In addition, we have also

Tz = Txn = xn+1 �= xn+2 = T 2xn = T 2z.

Then following the same steps as those used in the proof of Theorem 3.13,
we get according to the case

(H1
s

)
(respectively,

(H2
s

)
), that the contractive

inequality (3.11) with x = xn and y = Txn (respectively, with x = Txn and
y = xn) turns into (P ) with z = xn, λ = 1 and d1 = α, d2 = β, d3 = γ, d4 = δ
(respectively, d1 = α, d2 = γ, d3 = β, d4 = L). Accordingly, by Proposition
3.6 with λ = 1, we obtain

lim
n→∞σn = 0 (3.32)

and {σn} is a strictly decreasing (see Remark 3.7).
Now we claim that {xn} is a Cauchy sequence. We argue by contradic-

tion by supposing that {xn} is not a Cauchy sequence. By (3.32) and having in
mind the process of proof of Theorem 3.13, there exist ε > 0, k0 ∈ N and two
subsequences

{
xm(k(p))

}
p≥k0

,
{
xn(k(p))

}
p≥k0

of positive integers such that

lim
p→∞σ

(
xm(k(p)), xn(k(p))

)
= l, (3.33)

where 0 < ε+ ≤ l ≤ sε+.
Again, as in the proof of Theorem 3.13, there exists N ≥ k0 such that

σ
(
Txm(k(p)), Txn(k(p))

)
> 0, for all p ≥ N. (3.34)

On the one hand, from (3.33), there exists p0 ≥ k0 such that

σ
(
xm(k(p)), xn(k(p))

) ≥ l

2
, for all p ≥ p0.

On the other hand, by (3.32), there exists p1 ≥ k0 such that

σ
(
xm(k(p)), xm(k(p))+1

) ≤ l

2
, for all p ≥ p1.

Thus, setting p2 = max {p0, p1}, we obtain
1
2s

σ
(
xm(k(p)), Txm(k(p))

)
=

1
2s

σ
(
xm(k(p)), xm(k(p))+1

)

≤ l

4s
<

l

2
≤ σ

(
xm(k(p)), xn(k(p))

)
,

(3.35)

for all p ≥ p2.
Consequently, in view of (3.34) and (3.35), the contractive condition

(3.11) can be applied with x = xm(k(p)) and y = xn(k(p)) for all p ≥ p3 =
max {N, p2}. Hence, following the same method as the one used in the proof
of Theorem 3.13, we find a contradiction. In other words, {xn} is a Cauchy
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sequence. As (X,σ) is complete, {xn} converges to some point x∗ in X, that
is,

lim
n→∞σ (xn, x∗) = 0.

Next, we show that x∗ is a fixed point of T , that is, Tx∗ = x∗. Assume on
the contrary, i.e., σ (x∗, Tx∗) > 0. We now prove that, for every n ∈ N

1
2s

σ (xn, Txn) < σ (xn, x∗) or
1
2s

σ
(
Txn, T 2xn

)
< σ (Txn, x∗) . (3.36)

Arguing by contradiction, we assume that there exists m ∈ N such that

1
2s

σ (xm, Txm) ≥ σ (xm, x∗) and
1
2s

σ
(
Txm, T 2xm

) ≥ σ (Txm, x∗) .

(3.37)
Using (b3) and (3.37) with the fact that {σn} is a strictly decreasing, we get

σ (xm, Txm) ≤ sσ (xm, x∗) + sσ (x∗, Txm)

≤ 1
2
σ (xm, Txm) +

1
2
σ

(
Txm, T 2xm

)

<
1
2
σ (xm, Txm) +

1
2
σ (xm, Txm)

= σ (xm, Txm) .

This is a contradiction. Hence, (3.36) holds. Through the same arguments as
those used in the proof of Theorem 3.13, it follows that there exists n1 ∈ N

such that

σ (Txn, Tx∗) ≥ σ (Tx∗, x∗)
2s

> 0 (3.38)

and

σ
(
T 2xn, Tx∗) ≥ σ (Tx∗, x∗)

2s
> 0, (3.39)

for all n ≥ n1.
Therefore, from the proof of Theorem 3.13, the first case in (3.36) (re-

spectively, the second case) with (3.38) (respectively, (3.39)), allow us to
apply (3.12) with (x = xn, y = x∗ or x = x∗, y = xn) (respectively, with
(x = Txn, y = x∗ or x = x∗, y = Txn) for all n ≥ n1. Hence, in a similar way
as in the proof of Theorem 3.13, we arrive at a contradiction. So, Tx∗ = x∗

and the proof is completed.

Remark 3.23. Due to the same reasons mentioned in Remark 3.15, Theorem
3.22 extends and greatly improves Theorem 2.25.

Remark 3.24. By taking s = 1 with α = 1, β = γ = δ = L = 0 in Theorem
3.22 and taking into account the same arguments as those given in Remark
3.18, we recover, generalize and improve Theorem 2.2 of Piri and Kumam
[26].

The following example shows that Theorem 3.22 greatly improves The-
orem 2.25.



Vol. 22 (2020) F -contractions of Hardy–Rogers type in b-metric spaces Page 25 of 44 86

Example 3.25. Let X = {0, 3, 7} be endowed with the metric d defined by
d (x, y) = |x − y| for all x, y ∈ X. Also define the mapping T : X → X by
T (0) = T (3) = 3 and T (7) = 0.

Clearly, we have

d (Tx, Ty) = 3 > 0 ⇔
[

(x = 0 ∧ y = 7) ∨ (x = 7 ∧ y = 0)
∨ (x = 3 ∧ y = 7) ∨ (x = 7 ∧ y = 3)

]
. (3.40)

On the other hand, in each of the above cases (3.40), we obtain

1
2
d (x, Tx) < 4 ≤ d (x, y) ,

and yields
d (x, y)

8
+ d (Tx, Ty) =

d (x, y)
8

+ 3

≤ d (x, y)
8

+
3d (x, y)

4

=
7d (x, y)

8
≤ Z (x, y) ,

(3.41)

where Z (x, y) =
7
8
d (x, y) +

1
16

d (y, Tx).

Equivalently, inequality (3.41) takes the form

τ (d (x, y)) + F (d (Tx, Ty)) ≤ F (Z (x, y)) ,

where F (t) = t and τ (t) =
t

8
, for all t ∈ (0,∞).

Therefore, T is an extended F -contraction of Suzuki–Hardy–Rogers type

with α =
7
8

and L =
1
16

, β = γ = δ = 0 and all the conditions of Theorem

3.22 are satisfied (with
(H2

1

)
). Hence, T has a unique fixed point x∗ (which

is 3). Note that Theorem 2.25 is not applicable since α+β +γ +2δ =
7
8

�= 1,

τ /∈ S and F does not satisfy condition (F2).

Our third result extends and greatly improves the result stated in Re-
mark 2.26. In the following theorem, we prove a fixed point result concerning
an extended F -contraction of Hardy–Rogers type in the setting of b-metric
spaces without both conditions (F2) and “F is upper semicontinuous”.

Theorem 3.26. Let (X,σ) be a complete b-metric space with constant s ≥ 1
and T : X → X satisfying the contractive condition (3.9) with F : (0,∞) → R

a nondecreasing function and τ ∈ S1. Suppose that either
(H1

s

)
or

(H2
s

)
holds.

Furthermore, we assume that s2α+s3 (δ + L) < 1. Then T has a unique fixed
point x∗ and for every x0 ∈ X the sequence {Tnx0}n∈N

converges to x∗.

Proof. In this proof, for the sake of avoiding repetition, many details are
omitted here and readers are referred essentially to the proof of Theorem
3.13.

The uniqueness part is obtained similarly as in Theorem 3.13. Let {xn}
be the Picard sequence based on an arbitrary x0 ∈ X. Also, as in the proof
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of Theorem 3.13, without loss of generality, we can assume that xn �= xn+1

for all n ∈ N0. Hence, we have

σn = σ (xn, xn+1) > 0.

Following the same steps as those used in the proof of Theorem 3.13, we
obtain

lim
n→∞σn = 0. (3.42)

Now we prove that {xn} is a Cauchy sequence. Arguing by contradiction, we
assume that {xn} is not a Cauchy sequence. By (3.42) and recalling again
the process of proof of Theorem 3.13, there exist ε > 0, k0 ∈ N and two
subsequences

{
xm(k(p))

}
p≥k0

,
{
xn(k(p))

}
p≥k0

of positive integers such that

lim
p→∞σ

(
xm(k(p)), xn(k(p))

)
= l, (3.43)

where 0 < ε+ ≤ l ≤ sε+.
Again, as in the proof of Theorem 3.13, we have

lim inf
p→∞ σ

(
xm(k(p))+1, xn(k(p))+1

) ≥ l

s2
. (3.44)

Let us put

μs =
l (1 − As)

s2Bs
, (3.45)

where
As = s2α + s3 (δ + L) (3.46)

and
Bs = 1 + α + β + γ + 2s (δ + L) . (3.47)

From the fact that s2α + s3 (δ + L) < 1, we get As < 1 and μs > 0. This
implies, using (3.42), that there exist j1, j2 ≥ k0 such that

σm(k(p)) = σ
(
xm(k(p)), xm(k(p))+1

) ≤ μs, for all p ≥ j1,

σn(k(p)) = σ
(
xn(k(p)), xn(k(p))+1

) ≤ μs, for all p ≥ j2.
(3.48)

On the other hand, by virtue of (3.43) and μs > 0, it follows that there exists
j3 ≥ k0 such that

σ
(
xm(k(p)), xn(k(p))

) ≤ l + μs, for all p ≥ j3. (3.49)

Since Bs > 1 (otherwise, if Bs = 1, we get α = β = γ = δ = L = 0, which

contradicts
(H1

s

)
or

(H2
s

)
), we have μs <

l

s2
. Then in view of (3.44) and

μs > 0, there exists j4 ≥ k0 such that

σ
(
Txm(k(p)), Txn(k(p))

)
>

l − s2μs

s2
> 0, for all p ≥ j4. (3.50)

Using (3.50), the relaxed triangle inequality (b3) and the monotonicity of F
with keeping the same notations as those used in the proof of Theorem 3.13,
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the contractive inequality (3.9) with x = xm(k(p)) and y = xn(k(p)) gives for
all p ≥ j4

τ (ap) + F (bp)

≤ F
(
(α + s (δ + L)) ap + (β + sL) σm(k(p)) + (γ + sδ) σn(k(p))

)
. (3.51)

Setting j = max {j1, j2, j3, j4} and using (3.45)–(3.51) through again the
monotonicity of F , we arrive at

τ (ap) + F

(
l − s2μs

s2

)

≤ F

(
As

s2
ap + (β + sL) σm(k(p)) + (γ + sδ) σn(k(p))

)

≤ F

(
As

s2
(l + μs) + (β + sL) μs + (γ + sδ) μs

)

= F

(
lAs

s2
+ (Bs − 1) μs

)

= F

(
l − s2μs

s2

)
,

for all p ≥ j.
The above inequality implies that τ (ap) ≤ 0, for all p ≥ j, which is a

contradiction. In other words, {xn} is a Cauchy sequence. By completeness
of (X,σ), {xn} converges to some point x∗ in X, that is,

lim
n→∞σ (xn, x∗) = 0. (3.52)

Following the same method as the one used in the proof of Theorem 3.13, we
obtain also that x∗ is a fixed point, i.e., Tx∗ = x∗. This completes the proof
of the theorem. �

Remark 3.27. Theorem 3.26 extends and greatly improves the result stated
in Remark 2.26 on several sides. First, by taking s = 1 in Theorem 3.26 with
the hypothesis

(H1
1

)
, we recover the result given in Remark 2.26. Second,

Theorem 3.26 shows that both conditions (F2) and “F is upper semicon-
tinuous” can be omitted from the result stated in Remark 2.26. Third, we
show that the result given in Remark 2.26 can be proved also through the
hypothesis

(H2
1

)
. Fourth, the condition that τ ∈ S is weaken to the condi-

tion that τ ∈ S1 and the condition that F is strictly increasing is changed
into the weaker condition that F is nondecreasing (i.e., the strictness of the
monotonicity of F is not necessary).

By combining the proofs of Theorem 3.22 and Theorem 3.26, it is easy
to state and prove the following theorem.

Theorem 3.28. Let (X,σ) be a complete b-metric space with constant s ≥ 1
and T : X → X satisfying the contractive condition (3.11) with F : (0,∞) →
R a nondecreasing function and τ ∈ S1. Suppose that either

(H1
s

)
or

(H2
s

)
holds. Furthermore, we assume that s2α+s3 (δ + L) < 1. Then T has a unique
fixed point x∗ and for every x0 ∈ X the sequence {Tnx0}n∈N

converges to x∗.
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Remark 3.29. Regarding the proof of Theorem 3.28, inequality (3.35) in the
proof of Theorem 3.22 will be written in the following form:

1
2s

σ
(
xm(k(p)), Txm(k(p))

)
=

1
2s

σ
(
xm(k(p)), xm(k(p))+1

)

≤ μs

2s
<

l

2s3
≤ l

2
≤ σ

(
xm(k(p)), xn(k(p))

)
,

for infinitely many values of p.

Putting α = δ = L = 0, Theorem 3.26 reduces to the following corollary.

Corollary 3.30. Let (X,σ) be a complete b-metric space with constant s ≥ 1
and let T be a self-mapping on X. Assume that there exist a nondecreasing
function F : (0,∞) → R and τ ∈ S1 such that for all x, y ∈ X with Tx �= Ty,

τ (d (x, y)) + F (d (Tx, Ty)) ≤ F (βd (x, Tx) + γd (y, Ty)) ,

where β, γ ∈ [0,∞) satisfying β + γ =
1
s

and γ �= 1
s
. Then T has a unique

fixed point x∗ and for every x0 ∈ X the sequence {Tnx0}n∈N
converges to x∗.

Remark 3.31. Corollary 3.30 is a proper extension and an improvement of
Corollary 2.27. In fact, by taking s = 1 in Corollary 3.30, we recover Corol-
lary 2.27. Moreover, we show that both conditions (F2) and “F is upper
semicontinuous” from Corollary 2.27 can be removed. In addition, the con-
dition that τ ∈ S is changed into the slightly weaker condition that τ ∈ S1

and Corollary 2.27 remains valid without the strictness of the monotonicity
of F .

Example 3.32. Let X = [0, 4]. Let T : X → X be a mapping given by

Tx =

{
3, if x ∈]0, 4],
5
2
, if x = 0.

(3.53)

Let σ : X × X → [0,∞) be the mapping defined by

σ (x, y) = (x − y)2 , for all x, y ∈ X.

As in Example 3.19, (X,σ) is a complete b-metric space with constant s = 2.
First, we easily obtain

σ (Tx, Ty) =
1
4

> 0 ⇔ [(x ∈]0, 4] ∧ y = 0) ∨ (y ∈]0, 4] ∧ x = 0)] .

Let x, y ∈ X and denote

N (x, y) =
1
4

[σ (x, Tx) + σ (y, Ty)] .

Next, in both cases [(x ∈]0, 4] ∧ y = 0) ∨ (y ∈]0, 4] ∧ x = 0)], we get

N (x, y) ≥ 1
4
σ (0, T0) =

25
16

.

On the other hand, using the following inequality

h +
1
h

≥ 2, for all h > 0,
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we obtain
σ (x, y)

17
+ ln (σ (Tx, Ty) + 1) ≤ 16

17
+ ln

(
1
4

+ 1
)

< 2 ≤ N (x, y) +
1

N (x, y)
,

for all x, y ∈ X with Tx �= Ty.

As σ (Tx, Ty) < 1 and N (x, y) > 1, then by choosing τ (t) =
t

17
,

t ∈ (0,∞) and F : (0,∞) → R given as follows:

F (t) =

{
ln (t + 1) , if t ∈]0, 1],

t +
1
t
, if t > 1,

we see that all the hypotheses of Corollary 3.30 are satisfied for β = γ =
1
4
.

Consequently, T has a unique fixed point x∗ (here x∗ = 3). Notice that F is
not upper semicontinuous at t = 1 and does not satisfy condition (F2).

The following example illustrates that Corollary 3.30 generalizes Corol-
lary 2.27.

Example 3.33. Let X = [0, 4] be equipped with the euclidean distance d = |.|
and T : X → X defined by (3.53).

In view of Remark 2.16, T is not an F -contraction because T is not
continuous.

First, we get

d (Tx, Ty) =
1
2

> 0 ⇔ [(x ∈]0, 4] ∧ y = 0) ∨ (y ∈]0, 4] ∧ x = 0)] .

Let x, y ∈ X and denote

Nd (x, y) =
1
2

[d (x, Tx) + d (y, Ty)] .

Next, in both cases [(x ∈]0, 4] ∧ y = 0) ∨ (y ∈]0, 4] ∧ x = 0)], we obtain

Nd (x, y) ≥ 1
2
d (0, T0) =

5
4
.

On the other hand, we get
d (x, y)

3
− 1

d (Tx, Ty) + 1
≤ 4

3
− 2

3
=

2
3

< ln
(

9
4

)
= ln

(
1 +

5
4

)

≤ ln (1 + Nd (x, y)) ,

for all x, y ∈ X with Tx �= Ty.

Since d (Tx, Ty) < 1 and Nd (x, y) > 1, then by choosing τ (t) =
t

3
,

t ∈ (0,∞) and F : (0,∞) → R given as follows:

F (t) =

{
− 1

t + 1
, if t ∈]0, 1],

ln (t + 1) , if t > 1,
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we see that all the conditions of Corollary 3.30 are satisfied for β = γ =
1
2
.

Accordingly, T has a unique fixed point x∗ (which is 3). However, Corollary
2.27 can not be applied since F is not upper semicontinuous at t = 1 and
does not satisfy condition (F2). Besides these, the function τ /∈ S.

Remark 3.34. Notice that Example 3.33 (α = δ = L = 0, β = γ =
1
2
)

allow us also to show that Theorem 3.26 greatly improves the result stated
in Remark 2.26.

3.2. Generalized F -weak contraction of Hardy–Rogers type

In this subsection, we do several improvements in Theorem 2.31. For the
sake of readability, we keep some notations used in [23]. Throughout this
subsection, (X,σ) represents a b-metric space with constant s ≥ 1. We recall
again (see Definition 2.30), for all x, y ∈ X

Aσ
T (x, y) = aσ (x, y) + bσ (x, Tx) + cσ (y, Ty) + eσ (x, Ty) + fσ (y, Tx) ,

where a, b, c, e, f are nonnegative real numbers. If s = 1, we write Aσ
T (x, y) =

Ad
T (x, y), where d is a metric on X.

Before sating our result, we introduce the following definition.

Definition 3.35. Let (X,σ) be a b-metric space with constant s ≥ 1. A map-
ping T : X → X is said to be a generalized F -weak contraction of Hardy–
Rogers type if there exist a nondecreasing function F : (0,∞) → R and τ ∈ S1

such that for all x, y ∈ X,

σ (Tx, Ty) > 0 ⇒ τ (σ (x, y)) + F (sσ (Tx, Ty)) ≤ F (Aσ
T (x, y)) . (3.54)

Remark 3.36. It is easy to see from Definition 3.35 that every T which is a
generalized F -weak contraction of Hardy–Rogers type satisfies the following
condition:

σ (Tx, Ty) <
1
s
Aσ

T (x, y) , (3.55)

for all x, y ∈ X with Tx �= Ty.

Now, we are ready to state and prove our fourth result.

Theorem 3.37. Let (X,σ) be a complete b-metric space with constant s ≥ 1
and T : X → X a generalized F -weak contraction of Hardy–Rogers type.
Suppose that either

(A1
s

)
or

(A2
s

)
holds, where(A1

s

)
a + b + c + (s + 1) e < 1,(A2

s

)
a + b + c + (s + 1) f < 1.

Furthermore, we assume that sa + s2 (e + f) < 1. Then T has a unique fixed
point x∗ and for every x0 ∈ X the sequence {Tnx0}n∈N

converges to x∗.

Proof. The uniqueness part is obtained similarly as in Theorem 3.13. Let
{xn} be the Picard sequence based on an arbitrary x0 ∈ X. Again, as in
Theorem 3.13 and without loss of generality, we can assume that xn �= xn+1

for all n ∈ N0. Hence, we have

σn = σ (xn, xn+1) > 0.
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Following the same steps as those used in Theorem 2.31 with (3.54) and
(3.55), we obtain analogously

F (sσn) ≤ F (σn−1) − τ (σn−1) , for all n ∈ N. (3.56)

Note that the above part of the proof is proved without conditions (F3) and
(Fs,τ ) (see Definition 2.29).

Now, by taking ψ (t) = F (t) and φ (t) = F (t) − τ (t) for all t ∈ (0,∞),
inequality (3.56) can be written in the following form:

ψ (sσn) ≤ φ (σn−1) , for all n ∈ N.

Since F is nondecreasing, then in view of the above inequality and using the
fact that τ ∈ S1, it is easy to see that all the conditions of Lemma 3.5 are
satisfied for κ = s ≥ 1. Thus, limn→∞σn = 0.

Now we prove that {xn} is a Cauchy sequence. Arguing by contradiction,
we assume that {xn} is not a Cauchy sequence. Again, by the process of proof
of Theorem 3.26 and using

μ∗
s =

l (1 − A∗
s)

sB∗
s

,

where

A∗
s = sa + s2 (e + f) , B∗

s = a + b + c + s [1 + 2 (e + f)] ,

instead of μs =
l (1 − As)

s2Bs
, we get

τ (ap) + F

(
l − s2μ∗

s

s

)
≤ F

(
l − s2μ∗

s

s

)
, (3.57)

for infinitely many values of p.
This is a contradiction. Therefore, {xn} is a Cauchy sequence. By com-

pleteness of (X,σ), {xn} converges to some point x∗ in X, that is,

lim
n→∞σ (xn, x∗) = 0. (3.58)

The rest of the proof still the same as in Theorem 2.31 and the fact that x∗

is a fixed point of T is proven in a similar way using (3.55). Thus, the proof
of the theorem is finished. �

Remark 3.38. It is worth noticing that (3.57) is well defined since l−s2μ∗
s > 0.

This last fact comes from B∗
s > s (otherwise, if B∗

s = s, we get α = β = γ =
δ = L = 0 which contradicts inequality (3.55)).

Remark 3.39. Compared with Theorem 2.31, it is clear that Theorem 3.37
gives some improvements. Actually, τ is taken as a function in Theorem
3.37. Moreover, Theorem 3.37 shows that both conditions (F3) and (Fs,τ )
from Theorem 2.31 are dropped and replaced by the condition that sa +
s2 (e + f) < 1. This latter condition is quite simple and ensures simultane-
ously, with the remaining common hypotheses of Theorem 2.31 and Theorem
3.37, the existence and uniqueness of the fixed point. However, Theorem 3.37
does not cover totally Theorem 2.31, since the condition that a+e+f < s (in
Theorem 2.31) which is only used in the uniqueness part is slightly weaker
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than the condition that sa + s2 (e + f) < 1. Besides, the strictness of the
monotonicity of F is not necessary.

Remark 3.40. By inspecting the proofs of Theorem 3.37 and Theorem 2.31,
we can also obtain limn→∞σn = 0 in a straightforward manner using an
adapted version of Proposition 3.6 ((D) is changed into d1 + d2 + d3 +

(s + 1) d4 <
λ

s
). The desired result is obtained by taking λ = s.

By taking s = 1 and τ (t) = τ > 0, t ∈ (0,∞) in Theorem 3.37, we
obtain the following result.

Corollary 3.41. Let (X, d) be a complete metric space and let T be a self-
mapping on X. Assume that there exist a nondecreasing function F : (0,∞) →
R and τ > 0 such that for all x, y ∈ X with Tx �= Ty,

τ + F (d (Tx, Ty)) ≤ F
(
Ad

T (x, y)
)
.

Suppose that either
(A1

1

)
or

(A2
1

)
holds, where(A1

1

)
a + b + c + 2e < 1,(A2

1

)
a + b + c + 2f < 1.

Furthermore, we assume that a + e + f < 1. Then T has a unique fixed point
x∗ and for every x0 ∈ X the sequence {Tnx0}n∈N

converges to x∗.

Remark 3.42. Corollary 3.41 generalizes and greatly improves Theorem 2.19
in the following sense.

1. By taking f = e in Corollary 3.41, we recover Theorem 2.19.
2. The assumption that T or F is continuous is removed.
3. Both conditions (F2) and (F3) are omitted.
4. The strictness of the monotonicity of F is not necessary.

The following example illustrates that Corollary 3.41, generalizes and
greatly improves Theorem 2.19.

Example 3.43. Let X = [0, 5] be equipped with the euclidean distance d = |.|
and T : X → X a mapping defined by

Tx =

{
5, if x ∈]0, 5],
9
2
, if x = 0.

Obviously, we get

d (Tx, Ty) =
1
2

> 0 ⇔ [(x ∈]0, 5] ∧ y = 0) ∨ (y ∈]0, 5] ∧ x = 0)] . (3.59)

Let x, y ∈ X and denote

D (x, y) =
1
8
d (x, y) +

1
4
d (x, Tx) +

1
4
d (y, Ty) +

1
16

(d (x, Ty) + d (y, Tx)) .

Next, in each of the above cases (3.59), we obtain

D (x, y) ≥ 1
4
d (0, T0) =

9
8
.
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On the other hand, using h +
1
h

≥ 2, ∀h > 0, we get

22
9

− 1
(d (Tx, Ty))2 + 1 + (−1)q ≤ 22

9
− 4

9
= 2

≤ D (x, y) +
1

D (x, y)
,

for all x, y ∈ X with Tx �= Ty and q ∈ N0.

As d (Tx, Ty) < 1 and D (x, y) > 1, then by choosing τ =
22
9

and

F : (0,∞) → R defined by

F (t) =

⎧⎪⎨
⎪⎩

− 1
t2 + 1 + (−1)q , if 0 < t ≤ 1, q ∈ N0,

t +
1
t
, if t > 1,

it is easy to see that all the conditions of Corollary 3.41 are fulfilled for

a =
1
8
, b = c =

1
4

and e = f =
1
16

. Consequently, T has a unique fixed point

x∗ (which is 5). However, Theorem 2.19 cannot be applied since neither T nor
F is continuous. Moreover, F does not satisfy condition (F2) when q is even
and does not satisfy condition (F3) when q is odd. In other words, Corollary
3.41 is greatly superior to Theorem 2.19.

In what follows, we give an another proof of Theorem 1-(a) of Hardy–
Rogers [18] (see also Reich [31]).

Corollary 3.44. (See [18, Theorem 1-(a)]) Let (X, d) be a complete metric
space and T a self-mapping on X satisfying for all x, y ∈ X,

d (Tx, Ty) ≤ θ1d (x, y) + θ2d (x, Tx) + θ3d (y, Ty) + θ4d (x, Ty) + θ5d (y, Tx) ,
(3.60)

where θi, i = 1, . . . , 5 are nonnegative numbers such that θ =
∑5

i=1 θi < 1.
Then T has a unique fixed point.

Proof. First, we prove that T has at most one fixed point. Assume that x∗

and y∗ are two fixed points of T, i.e., Tx∗ = x∗ �= y∗ = Ty∗. Using (3.60)
with x = x∗ and y = y∗, we get when θ �= 0 (the case θ = 0 is trivial)

0 < d (x∗, y∗) ≤ θd (x∗, y∗) < d (x∗, y∗) .

It is a contradiction. Accordingly, T has at most one fixed point.
If d (Tx, Ty) > 0 with x, y ∈ X, we have θ > 0 (otherwise, θi = 0,∀i =

1, . . . , 5 and from (3.60), this yields d (Tx, Ty) = 0, which is a contradiction).
Thus, choosing ρ ∈]θ, 1[, we can write

d (Tx, Ty) ≤ ρ [ad (x, y) + bd (x, Tx) + cd (y, Ty) + ed (x, Ty) + fd (y, Tx)] ,
(3.61)

where

a =
θ1
ρ

, b =
θ2
ρ

, c =
θ3
ρ

, e =
θ3
ρ

, f =
θ4
ρ

.
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In addition, we have

a + b + c + e + f =
θ

ρ
< 1. (3.62)

By taking F (t) = ln (t) , t ∈ (0,∞) and τ (t) = ln
(

1
ρ

)
> 0, (3.61) turns

into
τ + F (d (Tx, Ty))
≤ F [ad (x, y) + bd (x, Tx) + cd (y, Ty) + ed (x, Ty) + fd (y, Tx)] ,

for all x, y ∈ X with Tx �= Ty and a, b, c, e, f are nonnegative real numbers
satisfying (3.62). Then we distinguish the following cases:

(i) If e ≤ f , from (3.62), we obtain a + b + c + 2e < 1. Therefore,
Corollary 3.41 with

(A1
1

)
ensures that T has a fixed point.

(ii) If e > f , (3.62) implies that a + b + c + 2f < 1. Consequently, the
desired result follows from Corollary 3.41 with

(A2
1

)
.

�

4. Applications

4.1. Existence and uniqueness of bounded solutions of functional equations
in dynamic programming

In this subsection, we study the existence and uniqueness of the bounded
solution of the following functional equation occurring in dynamic program-
ming of multistage decision processes (see, e.g., [5] and [7]):

u (x) = sup
y∈D

{f (x, y) + G (x, y, u (ϕ (x, y)))} , x ∈ W, (4.1)

where f : W × D → R and G : W × D × R → R are bounded, ϕ : W × D →
W . We assume that W and D are Banach spaces. In this framework, W
(respectively, D) is called the state space (respectively, the decision space).
Furthermore, ϕ is the transformation of process and u (x) represents the
optimal return function with initial state x.

Let X = B (W ) denotes the space of all bounded real-valued functions
on W . Now, we endow X with σ defined by

σ (h, k) = sup
x∈W

|h (x) − k (x)|p , p ≥ 1,

for all h, k ∈ X. Hence, (X,σ) is a complete b-metric space with s = 2p−1 ≥ 1.
Indeed, from Example 2.2, we can deduce that (X,σ) is a b-metric space with
s = 2p−1 ≥ 1. Also, it is easy to see that every Cauchy sequence {hn} in X
converges uniformly to a bounded function h∗, which allows us to obtain the
completeness of X.

We also define the mapping T : X → X by

(Tu) (x) = sup
y∈D

{f (x, y) + G (x, y, u (ϕ (x, y)))} , (4.2)

for all u ∈ X and x ∈ W . Since f and G are bounded, it is easy to see that
T is well defined.
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Let p ≥ 1 and let Ψ : (0,∞) → (0,∞) be defined by

Ψ (t) =

⎧⎪⎪⎨
⎪⎪⎩

(3t)
1
p

21+
3
p

, if 0 < t ≤ 1,

1

21− 1
p

, if t > 1.

Let h, k ∈ X. Denote

χp (h, k) := ξM (h, k) ,

where M (h, k) = σ (h, Th) + σ (k, Tk) and ξ =
1
2p

, p ≥ 1.
Now, we are ready to state and prove our next result.

Theorem 4.1. Let p ≥ 1. Let T be the self-mapping on X defined by (4.2)
and assume that the following condition is satisfied:

(K): For all h, k ∈ X with Th �= Tk,

|G (x, y, h (z)) − G (x, y, k (z))| ≤ Ψ (χp (h, k)) ,

where x, z ∈ W and y ∈ D. Then the functional equation (4.1) has a unique
bounded solution.

Proof. Let λ be an arbitrary positive number, x ∈ W and h, k ∈ X with
Th �= Tk. Then there exist y1, y2 ∈ D such that

(Th) (x) < f (x, y1) + G (x, y1, h (ϕ (x, y1))) +
λ

1
p

2
, (4.3)

(Tk) (x) < f (x, y2) + G (x, y2, k (ϕ (x, y2))) +
λ

1
p

2
. (4.4)

Again, by definition of T , we have

(Th) (x) ≥ f (x, y2) + G (x, y2, h (ϕ (x, y2))) , (4.5)
(Tk) (x) ≥ f (x, y1) + G (x, y1, k (ϕ (x, y1))) . (4.6)

Utilizing (4.3) and (4.6) together with (K), one can get

(Th) (x) − (Tk) (x) < G (x, y1, h (ϕ (x, y1))) − G (x, y1, k (ϕ (x, y1))) +
λ

1
p

2

≤ |G (x, y1, h (ϕ (x, y1))) − G (x, y1, k (ϕ (x, y1)))| +
λ

1
p

2

≤ Ψ (χp (h, k)) +
λ

1
p

2
.

(4.7)
Analogously, from (4.4) and (4.5) together with (K), we have

(Tk) (x) − (Th) (x) < Ψ (χp (h, k)) +
λ

1
p

2
. (4.8)

Combining (4.7) and (4.8), we deduce

|(Th) (x) − (Tk) (x)| < Ψ (χp (h, k)) +
λ

1
p

2
.
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Using the following inequality

(a + b)p ≤ 2p−1 (ap + bp) , a, b > 0,

it follows that

|(Th) (x) − (Tk) (x)|p < 2p−1 [Ψ (χp (h, k))]p +
λ

2
.

The above inequality yields

σ (Th, Tk) < 2p−1 [Ψ (χp (h, k))]p +
λ

2
. (4.9)

Now, we discuss the two possible cases:
Case 1 If 0 < χp (h, k) ≤ 1. In this case, (4.9) turns into

σ (Th, Tk) <
3χp (h, k)

16
+

λ

2
. (4.10)

As (4.10) does not depend on x ∈ W and λ > 0 is taken arbitrarily, we have

σ (Th, Tk) ≤ 3χp (h, k)
16

, (4.11)

which follows that
σ (Th, Tk) < 1. (4.12)

On the other hand, using (b3), we have

σ (h, k) ≤ sσ (h, Th) + s2σ (Th, Tk) + s2σ (Tk, k)

≤ s2σ (h, Th) + s2σ (k, Tk) + s2σ (Th, Tk)

≤ s2M (h, k) + s2σ (Th, Tk)

≤ s2
χp (h, k)

ξ
+ s2σ (Th, Tk) .

Keeping in mind s = 2p−1 and ξ =
1
2p

, the last inequality leads to

σ (h, k) ≤ 2s3χp (h, k) + s2σ (Th, Tk) . (4.13)

Owing to (4.10) and (4.13), we get

σ (h, k)
16s3

≤ χp (h, k)
8

+
σ (Th, Tk)

16s

<
χp (h, k)

8
+ σ (Th, Tk)

<
χp (h, k)

8
+

3χp (h, k)
16

+
λ

2

=
5χp (h, k)

16
+

λ

2
.

(4.14)

Taking into account (4.14) and using the following compound inequality
a

1 + a
< ln (1 + a) < a, for all a > 0,
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we obtain

σ (h, k)
16s3

+ ln (1 + σ (Th, Tk)) <
5χp (h, k)

16
+

λ

2
+ σ (Th, Tk)

<
χp (h, k)

2
+ λ

≤ χp (h, k)
1 + χp (h, k)

+ λ

< ln (1 + χp (h, k)) + λ.

Since the last inequality does not depend on x ∈ W and λ > 0 is taken
arbitrarily, we get

σ (h, k)
16s3

+ ln (1 + σ (Th, Tk)) ≤ ln (1 + χp (h, k)) . (4.15)

In addition, by virtue of (4.11) and (4.13) with the fact that 0 < χp (h, k) ≤ 1,
we get

σ (h, k) ≤ 2s3 +
3s2

16
= 23p−2 + 3 × 22p−6. (4.16)

Case 2 If χp (h, k) > 1. In this case, (4.9) takes the form

σ (Th, Tk) < 1 +
λ

2
. (4.17)

Again, as (4.17) does not depend on x ∈ W and λ > 0 is taken arbitrarily,
we have

σ (Th, Tk) ≤ 1. (4.18)

From (4.17) and using the following inequalities

ln (1 + b) < b, b +
1
b

≥ 2, for all b > 0,

one gets
1 + ln (1 + σ (Th, Tk)) < 1 + σ (Th, Tk)

< 2 +
λ

2

< χp (h, k) +
1

χp (h, k)
+ λ.

(4.19)

Since (4.19) does not depend on x ∈ W and λ > 0 is taken arbitrarily, we
have

1 + ln (1 + σ (Th, Tk)) ≤ χp (h, k) +
1

χp (h, k)
. (4.20)

Therefore, bearing in mind inequalities (4.12), (4.16) and (4.18), inequalities
(4.15) and (4.20) allow us to obtain

τ (σ (h, k)) + F (σ (Th, Tk)) ≤ F (χp (h, k))

= F

(
1
2p

M (h, k)
)

,
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for all h, k ∈ X and Th �= Tk with F : (0,∞) → R given by

F (t) =

{
ln (t + 1) , if t ∈]0, 1],

t +
1
t
, if t > 1

and τ : (0,∞) → (0,∞) given as follows:

τ (t) =

{ t

23p+1
, if t ∈]0, Cp],

1, otherwise,

where Cp = 23p−2 + 3 × 22p−6.

Hence, all the conditions of Corollary 3.30 are satisfied with β = γ =
1
2p

,

p ≥ 1. Consequently, T has a unique fixed point u∗ in X = B (W ). Thus, the
functional equation (4.1) has a unique bounded solution. �

4.2. Application to nonlinear Volterra integral equations

Inspired by the approaches developed in the works [25,33,38], we apply Theo-
rem 3.26 to prove the existence and uniqueness of a solution for the following
integral equation of Volterra type :

u (t) = g (t) +
∫ t

0

K (t, r, u (r)) dr, t ∈ [0, a] , (4.21)

where a > 0, K : [0, a] × [0, a] × R → R and g : [0, a] → R.
Let us consider X = C([0, a] ,R) be the set of all continuous functions

u : [0, a] → R. It is well known that X equipped with Bielecki’s norm

‖u‖ = sup
t∈[0,a]

e−t |u (t)|

is a Banach space. Thus, X endowed with the distance associated with Bi-
elecki’s norm

d (u, v) = sup
t∈[0,a]

e−t |u (t) − v (t)| , for all u, v ∈ X

is a complete metric space. Now, we define

σ (u, v) = (d (u, v))2 = sup
t∈[0,a]

e−2t(u (t) − v (t))2, for all u, v ∈ X. (4.22)

Clearly, (X,σ) is a complete b-metric space with constant s = 2.

Theorem 4.2. Suppose that the following hypotheses hold:

(H1) the functions K and g are continuous;
(H2) for all r, t ∈ [0, a] and for all z, ω ∈ R, we have

|K (t, r, z) − K (t, r, w)| ≤
√

2 |z − w|√
a((z − w)2 + 16)

.

Then integral equation (4.21) has a unique solution in X.
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Proof. Endow X = C([0, a] ,R) with the b-metric defined by (4.22) and con-
sider the mapping T : X → X as follows:

(Tu) (t) = g (t) +
∫ t

0

K (t, r, u (r)) dr, u ∈ X, t ∈ [0, a] .

Obviously, under the assumptions of the theorem, T is well defined.
Let u, v ∈ X such that Tu �= Tv. Using Cauchy–Schwarz inequality and

assumption (H2), we obtain

|(Tu) (t) − (Tv) (t)|2 ≤
(∫ t

0

1dr

) ∫ t

0

|K (t, r, u (r)) − K (t, r, v (r))|2 dr

≤
∫ t

0

2(u (r) − v (r))2

(u (r) − v (r))2 + 16
dr

≤
∫ t

0

2(u (r) − v (r))2

(u (r) − v (r))2e−2r + 16
dr

=
∫ t

0

2(u (r) − v (r))2e−2re2r

(u (r) − v (r))2e−2r + 16
dr

≤ 2σ (u, v)
σ (u, v) + 16

∫ t

0

e2rdr

≤ σ (u, v) e2t

σ (u, v) + 16
.

This implies that

((Tu) (t) − (Tv) (t))2e−2t ≤ σ (u, v)
σ (u, v) + 16

.

Taking the supremum with respect to t ∈ [0, a] in the above inequality, we
have

σ (Tu, Tv) ≤ σ (u, v)
σ (u, v) + 16

. (4.23)

Using (4.23), after routine calculations, one can get

ln
(

σ (u, v)
16

+ 1
)

+ σ (Tu, Tv) + �σ (Tu, Tv)� ≤ σ (u, v)
8

+
⌊

σ (u, v)
8

⌋

≤ N (u, v) + �N (u, v)� ,

(4.24)
where �x� denotes the integral part of x and

N (u, v) =
1
8
d (x, y) +

1
4
d (x, Tx) +

1
16

d (y, Ty) +
1
64

(d (x, Ty) + d (y, Tx)) .

By choosing F (t) = t + �t� and τ (t) = ln
(

t

16
+ 1

)
, for all t ∈ (0,∞),

inequality (4.24) can be equivalently written as

τ (σ (u, v)) + F (σ (Tu, Tv)) ≤ F (N (u, v)) .

Therefore, all the conditions of Theorem 3.26 are satisfied with α =
1
8
,

β =
1
4
, γ =

1
16

and L = δ =
1
64

. Hence, T has unique fixed point u∗ in
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X = C([0, a] ,R). Then integral equation (4.21) has a unique solution u∗ in
C([0, a] ,R). �
4.3. Application to second-order differential equations

Motivated and inspired by the works [33] and [45], we discuss the existence
and uniqueness of solutions of the following two-point boundary value prob-
lem for the second order differential equation:⎧⎨

⎩−d2x

dt2
= f (t, x (t)) , t ∈ I,

x (0) = x (1) = 0,
(4.25)

where I = [0, 1] and f : [0, 1] × R → R is a continuous function.
Let X = C(I,R) be the space of all continuous functions x : I → R. It

is well known that X endowed with

σ∞ (x, y) = sup
t∈I

{
(x (t) − y (t))2

}
, for all x, y ∈ X

is a complete b-metric space with constant s = 2.

Theorem 4.3. Suppose that the following condition is satisfied:
(W ) for all z, ω ∈ R and for all r ∈ I, we have

|f (r, z) − f (r, w)| ≤
√√√√ln

(
(z − w)2

16
+ 1

)
.

Then problem (4.25) has a unique solution x∗ ∈ C2(I,R).

Proof. It is known that problem (4.25) is equivalent to the following integral
equation:

x (t) =
∫ 1

0

G (t, r) f (r, x (r)) dr, ∀t ∈ I, (4.26)

where G is the Green function associated to problem (4.25), given by

G (t, r) =
{

t (1 − r) , 0 ≤ t ≤ r ≤ 1,
r (1 − t) , 0 ≤ r ≤ t ≤ 1.

Consequently, x ∈ C2(I,R) is a solution of problem (4.25) if and only if
x ∈ C(I,R) is a solution of the integral equation (4.26). Now, we can define
the mapping T : X → X as follows:

Tx (t) =
∫ 1

0

G (t, r) f (r, x (r)) dr, ∀t ∈ I, ∀x ∈ X.

Then finding a unique fixed point x∗ ∈ X of T is equivalent to establishing
the existence and uniqueness of solutions of problem (4.25).

Let x, y ∈ X such that Tx �= Ty. From assumption (W ), we get

((Tx) (t) − (Ty) (t))2 ≤
[∫ 1

0
G (t, r)

√
ln

(
(x(r)−y(r))2

16 + 1
)
dr

]2

≤ ln
(

σ∞(x,y)
16 + 1

) (
sup
t∈I

∫ 1

0
G (t, r) dr

)2

= 1
64 ln

(
σ∞(x,y)

16 + 1
)

.
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In the above inequality, we have used that supt∈I

∫ 1

0
G (t, r) dr = 1

8 . Hence,

σ∞ (Tx, Ty) ≤ 1
64

ln
(

σ∞ (x, y)
16

+ 1
)

. (4.27)

Utilizing (4.27), after routine calculations, we obtain

σ∞ (x, y)
16

+ σ∞ (Tx, Ty) ≤ σ∞ (x, y)
8

≤ M (x, y) ,

where

M (u, v) =
1
8
(d (x, y) + d (x, Tx) + d (y, Ty)) +

1
32

(d (x, Ty) + d (y, Tx)) ,

or, equivalently,

τ (σ (u, v)) + F (σ (Tu, Tv)) ≤ F (M (u, v)) .

Hence, all the conditions of Theorem 3.13 are satisfied with F (t) = t, τ (t) =
t
16 , for all t ∈ (0,∞), α = β = γ = 1

8 and L = δ =
1
32

. Therefore, T has

unique fixed point u∗ in X = C(I,R). Then problem (4.25) has a unique
solution u∗ in C2(I,R). �
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[39] Shazad, N., Karapinar, E., Roldán López de Hierro, A.F.: On some fixed point
theorems under (α, ψ, φ)-contractivity conditions in metric spaces endowed
with transitive binary relations. Fixed Point Theory Appl. 2015, 124 (2015)

[40] Shukla, S., Gopal, D., Mart́ınez-Moreno, J.: Fixed points of set-valued F -
contractions and its application to non-linear integral equations. Filomat
31(11), 3377–3390 (2017)

[41] Singh, D., Joshi, V., Imdad, M., Kumam, P.: Fixed point theorems via gen-
eralized F -contractions with applications to functional equations occurring in
dynamic programming. J. Fixed Point Theory Appl. 19, 1453–1479 (2017)

[42] Sintunavarat, W.: Nonlinear integral equations with new admissibility types in
b-metric spaces. J. Fixed Point Theory Appl. 18, 397–416 (2016)

[43] Vetro, F.: F -contractions of Hardy–Rogers type and application to multistage
decision processes. Nonlinear Anal. Model. Control 21(4), 531–546 (2016)

[44] Vetro, F., Vetro, C.: The class of F -contraction mappings with a measure of
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