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Abstract. In this paper, we study the existence of nontrivial solutions
to the following nonlinear differential equation with derivative term:{

u′′(t) + a(t)u(t) = f
(
t, u(t), u′(t)

)
, t ∈ [0, ω],

u(0) = u(ω), u′(0) = u′(ω),

where a: [0, ω] → R
+

(
R

+ = [0, +∞)
)

is a continuous function with
a(t) �≡ 0, f : [0, ω] ×R×R → R is continuous and may be sign-changing
and unbounded from below. Without making any nonnegative assump-
tion on nonlinearity, using the first eigenvalue corresponding to the rele-
vant linear operator and the topological degree, the existence of nontriv-
ial solutions to the above periodic boundary value problem is established
in C1[0, ω]. Finally, an example is given to demonstrate the validity of
our main result.
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1. Introduction

Due to wide applications in physics and engineering, second-order periodic
boundary value problems (PBVPs) have been extensively studied by many
authors, see [1–12] and relevant references therein.

In [1], the following problem was discussed by Atici and Guseinov{
−(

p(t)u′(t)
)′ + q(t)u(t) = f

(
t, u(t)

)
, t ∈ [0, ω],

u(0) = u(ω), p(0)u′(0) = p(ω)u′(ω),

where p(x) and q(x) are real-valued measurable functions defined on [0, ω]
satisfying p(x) > 0, q(x) ≥ 0, q(x) �= 0 almost everywhere, and∫ ω

0

dx

p(x)
< +∞,

∫ ω

0

q(x)dx < +∞,
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f : [0, ω] × R → R is continuous and f(t, x) ≥ 0 for (t, x) ∈ [0, ω] × [0,∞]. If
there exist numbers 0 < r < R < +∞ such that for all t ∈ [0, ω],

f(t, x) ≤ 1
ωM

x for 0 ≤ x ≤ r and f(t, x) ≥ M

ωm2
x for R ≤ x < +∞,

where m = mint,s∈[0,ω] G(t, s),M = maxt,s∈[0,ω] G(t, s) and G(t, s) is the
Green’s function according to its linear problem, the authors established the
existence of positive solutions.

Graef et al. [2] investigated the existence of positive solutions, under

lim
u→0

f(u)
u

= +∞, lim
u→+∞

f(u)
u

= 0or lim
u→0

f(u)
u

= 0, lim
u→+∞

f(u)
u

= +∞

with f convex and nondecreasing, to{
u′′(t) + a(t)u(t) = g(t)f(u(t)), t ∈ [0, 2π],
u(0) = u(2π), u′(0) = u′(2π),

where f : [0,+∞) → [0,+∞), g : [0, 2π] → [0,+∞) are continuous such that
mint∈[0,2π] g(t) > 0, and the Green’s function is nonnegative.

Hai [3] proved the existence of positive solutions to{
u′′(t) + a(t)u(t) = λg(t)f(u(t)), t ∈ [0, 2π],
u(0) = u(2π), u′(0) = u′(2π)

for all λ > 0, where a : [0, 2π] → [0,+∞) is continuous with a(t) ≤ 1/4 for
all t and a(t) �≡ 0, f : [0,+∞) → [0,+∞) is continuous, g ∈ L1(0, 2π) with
g ≥ 0 and g �≡ 0 on any subinterval of (0, 2π).

Li and Liang in [4] obtained the existence of positive solutions for{
u′′(t) + a(t)u(t) = f(t, u(t)), t ∈ [0, ω],
u(0) = u(ω), u′(0) = u′(ω), (1.1)

where f : [0, ω] × [0,+∞) → [0,+∞) and a : [0, ω] → [0,+∞) are continuous
with a(t) �≡ 0, provided that a constant 0 < M ≤ (π/ω)2 and

lim sup
u→0+

max
t∈[0,ω]

f(t, u)
u

< λ1 < lim inf
u→+∞ min

t∈[0,ω]

f(t, u)
u

or

lim inf
u→0+

min
t∈[0,ω]

f(t, u)
u

> λ1 > lim sup
u→+∞

max
t∈[0,ω]

f(t, u)
u

.

Torres [5] gave classical conditions that guarantee the nonnegativity of
the Green’s function G(t, s) of the linear problem{

u′′(t) + a(t)u(t) = 0, a.e. t ∈ (0, ω),
u(0) = u(ω), u′(0) = u′(ω). (1.2)

The following best Sobolev constants were used:

K(q) =

⎧⎨
⎩

2π

qω
1+ 2

q

(
2

2+q

)1− 2
q

(
Γ( 1

q )
Γ( 1

2+ 1
q )

)2

, 1 ≤ q < +∞,

4
ω , q = +∞,

(1.3)
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where Γ is the Gamma function. Let a ∈ Lp(0, ω)(1 ≤ p ≤ +∞) and a 	 0
which means that a(t) ≥ 0 for a.e. t ∈ (0, ω) and a(t) > 0 for t in a subset of
positive measure. Then,

G(t, s) ≥ (>)0 for (t, s) ∈ [0, ω] × [0, ω] when ‖a‖p ≤ (<)K(2p∗), (1.4)

where 1/p + 1/p∗ = 1. Define

Δ = {a ∈ Lp(0, ω) : a 	 0, ‖a‖p < K(2p∗) for some 1 ≤ p ≤ +∞} . (1.5)

For a ∈ Δ, the explicit expression of G(t, s) was found by Ma et al. in [6]
which shows that it is symmetrical, i.e., G(t, s) = G(s, t),∀t, s ∈ [0, ω].

For ω = 1, PBVP (1.1) was studied in [7] when a ∈ L1[0, 1]
⋂

Δ and
f : [0, 1] × (0,+∞) → R with a bound below. Under some other conditions,
the existence of positive solutions was obtained.

By means of the fixed point theory, Liu et al. in [8] established the
existence of nontrivial solutions for PBVP (1.1) in which a : [0, ω] → [0,+∞)
is a continuous function with a(t) �≡ 0, and f : [0, ω] × R → R is continuous
under constraints associated with the first eigenvalue corresponding to the
relevant linear operator.

In the works mentioned above, all the nonlinearities are independence
of the derivative term u′. By Leray–Schauder fixed point theorem, Li and
Guo in [9] considered the existence of solution to{

u′′(t) = f(t, u(t), u′(t)), t ∈ [0, 2π],
u(0) = u(2π), u′(0) = u′(2π),

where f : R3 → R is continuous and satisfies the following conditions:

(F1) f(−t,−x, y) = −f(t, x, y),∀(t, x, y) ∈ R
3;

(F2) there exist nonnegative constants a and b satisfying a + b < 1 and a
positive constant C0 such that f(t, x, y)x ≥ −ax2 − by2 − C0, (t, x, y) ∈
R

3;
(F3) the following Nagumo condition is satisfied, that is, for any given M > 0,

there is a positive continuous function gM (ρ) on R
+ = [0,+∞) satisfying∫ +∞

0
ρdρ

gM (ρ)+1 = +∞ such that |f(t, x, y)| ≤ gM (|y|), (t, x, y) ∈ [0, 2π] ×
[−M,M ] × R.

Inspired by the references cited above and [13–17], we in this paper ex-
plore the existence of nontrivial solutions to the following periodic boundary
value problem with the nonlinearity dependent on derivative term{

u′′(t) + a(t)u(t) = f
(
t, u(t), u′(t)

)
, t ∈ [0, ω],

u(0) = u(ω), u′(0) = u′(ω), (1.6)

where a : [0, ω] → R
+ is a continuous function with a(t) �≡ 0, f : [0, ω]×R

2 →
R is continuous and may be sign-changing and unbounded from below. With-
out making any nonnegative assumption on the nonlinearity, using the first
eigenvalue corresponding to the relevant linear operator and the topological
degree, the existence of nontrivial solutions is established in C1[0, ω]. As far
as we know, this kind of PBVP has achieved fewer results.
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2. Preliminaries

Let E = C1[0, ω] be the Banach space of all continuously differentiable func-
tions on [0, ω] with the norm ‖u‖C1 = max{‖u‖C , ‖u′‖C} for all u ∈ E.
Set P = {u ∈ C[0, ω] : u(t) ≥ 0, t ∈ [0, ω]}, it is clear that P is a solid
cone in C[0, ω], that is, the interior point set of P is nonempty. Thus P
is a total cone in C[0, ω], i.e. C[0, ω] = P − P , which means that the set
P − P = {u − v : u, v ∈ P} is dense in C[0, ω] (see [18,19]).

To state our main theorem in this paper, we make the following hy-
potheses:
(C1) a : [0, ω] → R

+ is a continuous function with a(t) �≡ 0 and ‖a‖C <(
π
ω

)2 = K(2), where K is defined by (1.3);
(C2) f : [0, ω] × R

2 → R is continuous.

Lemma 2.1. If (C1) and (C2) hold, then PBVP (1.6) is equivalent to

u (t) =
∫ ω

0

G(t, s)f(s, u(s), u′(s))ds,

where G(t, s) is the Green’s function of (1.2).

Lemma 2.2. [5,6] If (C1) holds, then G(t, s) has the following properties:
(1) G(t, s) = G(s, t) > 0 for all (t, s) ∈ [0, ω] × [0, ω];
(2) Let l1 = min0≤t,s≤ω G(t, s) and l2 = max0≤t,s≤ω G(t, s), then l2 > l1 >

0;
(3) Let l3 = sup0≤t,s≤ω

∣∣∣∂G(t,s)
∂t

∣∣∣, then l3 > 0;

(4) For c = l1
l2

∈ (0, 1), G(t, s) ≥ cG(τ, s), ∀ t, s, τ ∈ [0, ω].

Remark 2.3. By (C1), a ∈ L∞[0, ω] and thus a ∈ Δ defined by (1.4) for
p = +∞ and p∗ = 1. Lemma 2.1 follows from (1.4). If a(t) ≡ m2 , m ∈ (0, 1

2 )
and ω = 2π, we can obtain that G(t, s) defined as follows satisfies Lemma
2.2.

G(t, s) =

{
sin m(t−s)+sin m(2π−t+s)

2m(1−cos 2mπ) , 0 ≤ s ≤ t ≤ 2π,
sin m(s−t)+sin m(2π−s+t)

2m(1−cos 2mπ) , 0 ≤ t ≤ s ≤ 2π,

∂G(t, s)
∂t

=

{
cos m(t−s)−cos m(2π−t+s)

2(1−cos 2mπ) , 0 ≤ s ≤ t ≤ 2π,
− cos m(s−t)+cos m(2π−s+t)

2(1−cos 2mπ) , 0 ≤ t ≤ s ≤ 2π,

l1 =
sin 2mπ

2m(1 − cos 2mπ)
, l2 =

sin mπ

m(1 − cos 2mπ)
, l3 =

1
2
.

Define a linear operator L : C[0, ω] → C[0, ω] by

(Lu)(t) =
∫ ω

0

G(t, s)u(s)ds (2.1)

and an operator A : E → E as follows:

(Au)(t) =
∫ ω

0

G(t, s)f(t, u(t), u′(t))ds, u ∈ E. (2.2)

Clearly, A : E → E is a completely continuous operator, and the exis-
tence of solutions of (1.6) is equivalent to the fixed points of A. Moreover,
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L : C[0, ω] → C[0, ω] is a completely continuous linear operator, satisfying
L(P ) ⊂ P . Since G(t, s) > 0 for (t, s) ∈ [0, ω]× [0, ω], the spectral radius r(L)
of L is positive by Lemma 2.2. The Krein-Rutman theorem [20] then asserts
that there exists ϕ ∈ P\ {0} corresponding to the first eigenvalue λ1 = 1

r(L)

of L such that

λ1Lϕ = ϕ. (2.3)

It is easy to see that ϕ ∈ E. According to (2.1), (2.3) and Lemma 2.2 (1),
one has ∫ ω

0

ϕ(t)(Lu)(t)dt =
1
λ1

∫ ω

0

ϕ(t)u(t)dt for all u ∈ E. (2.4)

Let δ = c
∫ ω

0
ϕ(t)dt, so δ > 0.

Choose a subcone P1 of P given by

P1 =
{

u ∈ P :
∫ ω

0

ϕ(t)u(t)dt ≥ δ‖u‖C

}
.

Lemma 2.4. L(P ) ⊂ P1.

Proof. Suppose u ∈ P , the following equation can be obtained in light of
Lemma 2.2:∫ ω

0

ϕ(t)(Lu)(t)dt =
∫ ω

0

ϕ(t)
∫ ω

0

G(t, s)u(s)dsdt

≥ c

∫ ω

0

ϕ(t)dt

∫ ω

0

G(τ, s)u(s)ds = δ(Lu)(τ),

where τ ∈ [0, ω]. Obviously,
∫ ω

0
ϕ(t)(Lu)(t)dt ≥ δ‖Lu‖C .

Lemma 2.5. [18,19] Let E be a Banach space and Ω be a bounded open set in
E with 0 ∈ Ω. Suppose that A : Ω → E is a completely continuous operator.
If

Au �= τu, ∀u ∈ ∂Ω, τ ≥ 1,

then the topological degree deg(I − A,Ω, 0) = 1.

Lemma 2.6. [18,19] Let E be a Banach space and Ω be a bounded open set
in E. Suppose that A : Ω → E is a completely continuous operator. If there
exists u0 �= 0 such that

u − Au �= μu0, ∀u ∈ ∂Ω, μ ≥ 0,

then the topological degree deg(I − A,Ω, 0) = 0.

Three sets are given for the sake of simplicity for later writing as follows:

Br = {u ∈ E : ‖u‖C1 < r} , ∂Br = {u ∈ E : ‖u‖C1 = r} ,

Br = {u ∈ E : ‖u‖C1 ≤ r} for r > 0.
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3. Main result

Theorem 3.1. Under the hypotheses (C1)-(C2) suppose that

(C3) there exists a constant α > 1 such that lim infx+α|y|→+∞
f(t,x,y)
x+α|y| >

λ1 uniformly on t ∈ [0, ω];
(C4) lim supx+|y|→−∞

f(t,x,y)
x+|y| < λ1 uniformly on t ∈ [0, ω];

(C5) there exist nonnegative constants a ≥ 0, b ≥ 0 and r > 0 satisfying

ω(a + b)max {l2, l3} < 1, (3.1)

such that

|f(t, x, y)| ≤ a|x| + b|y|, (3.2)

for all (t, x, y) ∈ [0, ω] × [−r, r]2, where λ1 is the first eigenvalue of the
operator L defined by (2.1) and l2, l3 are as Lemma 2.2.

If the following Nagumo condition is fulfilled, i.e.
(C6) for any M > 0 there is a positive continuous function HM (ρ) on R

+

satisfying ∫ +∞

0

ρdρ

HM (ρ) + 1
= +∞, (3.3)

such that

|f(t, x, y)| ≤ HM (|y|),∀(t, x, y) ∈ [0, ω] × [−M,M ] × R, (3.4)

then PBVP (1.6) has at least one nontrivial solution.

Proof. (i) First, we prove that Au �= τu for u ∈ ∂Br and τ ≥ 1. In fact, if
there exist u1 ∈ ∂Br and τ0 ≥ 1 such that Au1 = τ0u1, then we deduce from
Lemma 2.1, (3.1), (3.7) and −r ≤ u1(t) ≤ r,−r ≤ u′

1(t) ≤ r,∀t ∈ [0, ω] that

‖u1‖C =
1
τ0

max
0≤t≤ω

∣∣∣
∫ ω

0

G(t, s)f(s, u1(s), u′
1(s))ds

∣∣∣
≤

∫ ω

0

l2|f
(
s, u1(s), u′

1(s)
)|ds ≤

∫ ω

0

l2
(
a|u1(s)| + b|u′

1(s)|
)
ds

≤ ω(a + b)l2‖u1‖C1 < ‖u1‖C1 = r

and

‖u′
1‖C =

1
τ 0

max
0≤t≤ω

∣∣∣
∫ ω

0

∂G(t, s)
∂t

f
(
s, u1(s), u′

1(s)
)
ds

∣∣∣
≤ 1

τ 0
max

0≤t≤ω

∫ ω

0

∣∣∣∂G(t, s)
∂t

∣∣∣|f(
s, u1(s), u′

1(s)
)|ds

≤
∫ ω

0

l3
(
a|u1(s)| + b|u′

1(s)|
)
ds ≤ ω(a + b)l3‖u1‖C1 < ‖u1‖C1 = r.

Hence ‖u1‖C1 < r, which contradicts u1 ∈ ∂Br.

Therefore, it follows from Lemma 2.5 that

deg(I − A,Br, 0) = 1. (3.5)
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(ii) It follows from (C3) and (C4) that there exist ε0 ∈ (0, λ1) and
X0 > 0 such that

f(t, x, y) ≥ (λ1 + ε0)(x + α|y|) for x + α|y| > X0 and t ∈ [0, ω]

and

f(t, x, y) ≥ (λ1 − ε0)(x + |y|) for x + |y| < −X0 and t ∈ [0, ω].

Let

Ω = R
2\ ({(x, y) : x + α|y| > X0} ∪ {(x, y) : x + |y| < −X0}) = Ω1 ∪ Ω2,

where Ω1 = Ω ∩ {(x, y) : x + |y| ≥ 0},Ω2 = Ω ∩ {(x, y) : x + |y| ≤ 0}, it is
easy to see that Ω, Ω1 and Ω2 are closed bounded sets in R

2.
Take C1 > 0 such that

−C1 ≤ min
t∈[0,ω],(x,y)∈Ω1

{f(t, x, y) − (λ1 + ε0) (x + α|y|)},

hence

f(t, x, y) ≥ (λ1 + ε0)(x + α|y|) − C1 ≥ (λ1 + ε0)x − C1 (3.6)

and

f(t, x, y) ≥ (λ1 + ε0)(x + α|y|) − C1 ≥ (λ1 − ε0)x − C1 (3.7)

on {(x, y) : x + α|y| > X0} ∪ Ω1 and t ∈ [0, ω].
Take C2 > 0 such that

−C2 ≤ min
t∈[0,ω],(x,y)∈Ω2

{f(t, x, y) − (λ1 − ε0) (x + |y|)} ,

hence

f(t, x, y) ≥ (λ1 − ε0)(x + |y|) − C2 ≥ (λ1 − ε0)x − C2 (3.8)

and

f(t, x, y) ≥ (λ1 − ε0)(x + |y|) − C2 ≥ (λ1 + ε0)x − C2 (3.9)

on {(x, y) : x + |y| < −X0} ∪ Ω2 and t ∈ [0, ω].
Let C = max {C1, C2}. We can derive from (3.7) and (3.8) that

f(t, x, y) ≥ (λ1 − ε0)x − C, ∀(t, x, y) ∈ [0, ω] × R
2, (3.10)

from (3.6) and (3.9) that

f(t, x, y) ≥ (λ1 + ε0)x − C, ∀(t, x, y) ∈ [0, ω] × R
2. (3.11)

(iii) Let ϕ0(t) ≡ 1,∀t ∈ [0, ω], then∫ ω

0

ϕ(t)ϕ0(t)dt ≥ c

∫ ω

0

ϕ(t)dt = δ‖ϕ0‖C ,

and hence ϕ0 ∈ P1. Let

D =
{
u ∈ C1[0, ω] : there exists some μ ≥ 0 such that u = Au + μϕ0

}
.

We claim that there is M > 0 such that ‖u‖C ≤ M,∀u ∈ D. Indeed, if
u0 ∈ D, then there is μ0 ≥ 0 such that by (3.11)

u0(t) = (Au0)(t) + μ0ϕ0(t)
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=
∫ ω

0

G(t, s)f(s, u0(s), u′
0(s))ds + μ0ϕ0(t)

≥
∫ ω

0

G(t, s)f(s, u0(s), u′
0(s))ds

≥
∫ ω

0

G(t, s) ((λ1 + ε0)u0(s) − C) ds

= (λ1 + ε0)(Lu0)(t) − C(Lϕ0)(t),

i.e.,

u0(t) ≥ (λ1 + ε0)(Lu0)(t) − C(Lϕ0)(t). (3.12)

Multiplying (3.12) by ϕ(t) on both sides and integrating over [0, ω], from
(2.4) we obtain∫ ω

0

u0(t)ϕ(t)dt ≥ (λ1 + ε0)
∫ ω

0

(Lu0)(t)ϕ(t)dt − C

∫ ω

0

(Lϕ0)(t)ϕ(t)dt

=
(
1 +

ε0

λ1

) ∫ ω

0

u0(t)ϕ(t)dt − C

∫ ω

0

(Lϕ0)(t)ϕ(t)dt.

Thus by (2.4) we have∫ ω

0

u0(t)ϕ(t)dt ≤ λ1C

ε0

∫ ω

0

(Lϕ0)(t)ϕ(t)dt =
C

ε0

∫ ω

0

ϕ(t)dt. (3.13)

By the definition of D,

u0(t) − (λ1 − ε0)(Lu0)(t) + C(Lϕ0)(t)

= (Au0)(t) + μ0ϕ0(t) − (λ1 − ε0)(Lu0)(t) + C(Lϕ0)(t)

= L[(Fu0) − (λ1 − ε0)u0 + Cϕ0](t) + μ0ϕ0(t),

where (Fu0)(t) = f(t, u0(t), u′
0(t)). In light of (3.10), one has

(Fu0) − (λ1 − ε0)u0 + Cϕ0 ∈ P,

which implies that L[(Fu0) − (λ1 − ε0)u0 + Cϕ0] ∈ P1 from Lemma 2.4. So
we have

u0 − (λ1 − ε0)Lu0 + CLϕ0 ∈ P1.

Therefore, by (2.4) and (3.13), we have

‖u0 − (λ1 − ε0)Lu0 + CLϕ0‖C

≤ 1
δ

∫ ω

0

ϕ(t)[u0 − (λ1 − ε0)Lu0 + CLϕ0](t)dt

=
1

δλ1

(
ε0

∫ ω

0

ϕ(t)u0(t)dt + C

∫ ω

0

ϕ(t)dt

)

≤ 1
δλ1

(
C

∫ ω

0

ϕ(t)dt + C

∫ ω

0

ϕ(t)dt

)
≤ 2Cω

δλ1
‖ϕ‖C .

Since (λ1 − ε0)r(L) < 1, the operator I − (λ1 − ε0)L has the bounded inverse
operator (I − (λ1 − ε0)L)−1 in C[0, ω]. Therefore, there is M > 0 such that
‖u‖C ≤ M,∀u ∈ D.
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(iv) By (3.3), it is easy to see that there exists M1 > 2M such that∫ M1

0

ρdρ

HM (ρ) + B
> 2M, (3.14)

where B = π2

ω2 M .
Let R > max{r,M1} and we will show that

u − Au �= μϕ0, ∀u ∈ ∂BR, μ ≥ 0. (3.15)

If it does not hold, there exist u2 ∈ ∂BR and μ1 ≥ 0 such that

u2 − Au2 = μ1ϕ0, (3.16)

thus u2 ∈ D, ‖u2‖C ≤ M. We can derive from (3.4) and (3.16) that

u′′
2(t) = −a(t)u2(t) + f

(
t, u2(t), u′

2(t)
)

≤ ‖a‖C‖u2‖C + |f(
t, u2(t), u′

2(t)
)|

≤ π2

ω2
M + |f(

t, u2(t), u′
2(t)

)| ≤ HM (|u′
2(t)|) + B. (3.17)

In the same way,

−u′′
2(t) = a(t)u2(t) − f

(
t, u2(t), u′

2(t)
)

≤ ‖a‖C‖u2‖C + |f(
t, u2(t), u′

2(t)
)|

≤ π2

ω2
M + |f(

t, u2(t), u′
2(t)

)| ≤ HM (|u′
2(t)|) + B. (3.18)

We will use (3.14), (3.17) and (3.18) to show that ‖u′
2‖C ≤ M1.

Let u′
2(t) �≡ 0. Since u2(0) = u2(ω), there exist t0 ∈ (0, ω) and t1 ∈ [0, ω]

with t1 �= t0 such that

u′
2(t0) = 0, ‖u′

2‖C = |u′
2(t1)| > 0. (3.19)

Case 1. u′
2(t1) > 0, t0 < t1. Set

s1 = sup{s ∈ [t0, t1) : u′
2(s) = 0}. (3.20)

Then s1 < t1 and by the definition of supremum,

u′
2(t) > 0, t ∈ (s1, t1]; u′

2(s1) = 0. (3.21)

Hence, for every t ∈ [s1, t1], by (3.17) we have

u′
2(t)u

′′
2(t)

HM (u′
2(t)) + B

≤ u′
2(t), t ∈ [s1, t1]. (3.22)

Then integrating the inequality (3.22) over [s1, t1] and making the variable
transformation ρ = u′

2(t), we have∫ u′
2(t1)

0

ρdρ

HM (ρ) + B
=

∫ u′
2(t1)

u′
2(s1)

ρdρ

HM (ρ) + B
≤ u2(t1) − u2(s1) ≤ 2M.

From this inequality and (3.14) it follows that u′
2(t1) ≤ M1. Hence, ‖u′

2‖C =
u′

2(t1) ≤ M1.
Case 2. u′

2(t1) > 0, t0 > t1. Set

s2 = inf{s ∈ (t1, t0] : u′
2(s) = 0}. (3.23)
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Then t1 < s2 and by the definition of infimum,

u′
2(t) > 0, t ∈ [t1, s2); u′

2(s2) = 0. (3.24)

Hence, for every t ∈ [t1, s2], by (3.18) we have

−u′
2(t)u

′′
2(t)

HM (u′
2(t)) + B

≤ u′
2(t), t ∈ [t1, s2]. (3.25)

Then integrating the inequality (3.25) over [t1, s2] and making the variable
transformation ρ̃ = u′

2(t), we have∫ u′
2(t1)

0

ρ̃dρ̃

HM (ρ̃) + B
= −

∫ u′
2(s2)

u′
2(t1)

ρ̃dρ̃

HM (ρ̃) + B
≤ u2(s2) − u2(t1) ≤ 2M.

From this inequality and (3.14) it follows that u′
2(t1) ≤ M1. Hence, ‖u′

2‖C =
u′

2(t1) ≤ M1.
Case 3. u′

2(t1) < 0, t0 < t1. Set

s3 = sup{s ∈ [t0, t1) : u′
2(s) = 0}. (3.26)

Then s3 < t1 and by the definition of supremum,

u′
2(t) < 0, t ∈ (s3, t1]; u′

2(s3) = 0. (3.27)

Hence, for every t ∈ [s3, t1], by (3.18) we have

−u′
2(t)u

′′
2(t)

HM (−u′
2(t)) + B

≥ u′
2(t), t ∈ [s3, t1]. (3.28)

Then integrating the inequality (3.28) over [s3, t1] and making the variable
transformation τ = −u′

2(t), we have

−
∫ −u′

2(t1)

0

τdτ

HM (τ) + B
= −

∫ −u′
2(t1)

−u′
2(s3)

τdτ

HM (τ) + B
≥ u2(t1) − u2(s3) ≥ −2M.

From this inequality and (3.14), it follows that −u′
2(t1) ≤ M1. Hence, ‖u′

2‖C =
−u′

2(t1) ≤ M1.
Case 4. u′

2(t1) < 0, t0 > t1. Set

s4 = inf{s ∈ (t1, t0] : u′
2(s) = 0}. (3.29)

Then t1 < s4 and by the definition of infimum,

u′
2(t) < 0, t ∈ [t1, s4); u′

2(s4) = 0. (3.30)

Hence, for every t ∈ [t1, s4], by (3.17) we have

−u′
2(t)u

′′
2(t)

HM (−u′
2(t)) + B

≤ −u′
2(t), t ∈ [t1, s4]. (3.31)

Then integrating the inequality (3.31) over [t1, s4] and making the variable
transformation τ̃ = −u′

2(t), we have∫ −u′
2(t1)

0

τ̃ dτ̃

HM (τ̃) + B
= −

∫ −u′
2(s4)

−u′
2(t1)

τ̃ dτ̃

HM (τ̃) + B
≤ u2(t1) − u2(s4) ≤ 2M,

From this inequality and (3.14) it follows that −u′
2(t1) ≤ M1. Hence, ‖u′

2‖C =
−u′

2(t1) ≤ M1.
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In summary, ‖u′
2‖C ≤ M1 and thus ‖u2‖C1 ≤ M1, which is a contradic-

tion to ‖u2‖C1 = R > M1. Therefore, (3.15) holds.
According to Lemma 2.6, one has

deg(I − A,BR, 0) = 0. (3.32)

From (3.7) and (3.32) we have

deg(I − A,BR\Br, 0) = deg(I − A,BR, 0) − deg(I − A,Br, 0) = −1.

As a result, A has at least one fixed point on BR\Br, which means that
PBVP (1.6) has at least one nontrivial solution.

Example. Consider the following PBVP{
u′′(t) + 1

16u(t) = f(u(t), u′(t)), t ∈ [0, 2π],
u(0) = u(2π), u′(0) = u′(2π), (3.33)

where

f(x, y) =
{

1
72 (x + 2|y|), x + 2|y| ≤ 0,
(x + 2|y|)2, x + 2|y| > 0.

Obviously, a(t) = 1
16 and f(x, y) satisfy (C1) and (C2), respectively. It is easy

to see that l2 = 2
√

2 and l3 = 1
2 .

It follows from (2.1) and Lemma 2.2 that for u ∈ C[0, ω],

(Lu)(t)| ≤
∫ ω

0

|G(t, s)u(s)|ds ≤ 2πl2‖u‖C

and the spectral radius r(L) ≤ ‖L‖ ≤ 2πl2, thus λ1 ≥ 1
2πl2

= 1
4
√

2π
.

Obviously, for α = 2, we have

lim inf
x+2|y|→+∞

f(x, y)
x + 2|y| = lim inf

x+2|y|→+∞
(x + 2|y|)2
x + 2|y| = +∞ > λ1.

If x + 2|y| ≤ 0, then x + |y| ≤ x + 2|y| ≤ 0 and |x + 2|y|| ≤ |x + |y||, hence

lim sup
x+|y|→−∞

f(x, y)
x + |y| = lim sup

x+|y|→−∞

x + 2|y|
72(x + |y|) ≤ 1

72
< λ1;

if x + 2|y| > 0, then

lim sup
x+|y|→−∞

f(x, y)
x + |y| = lim sup

x+|y|→−∞

(x + 2|y|)2
x + |y| ≤ 0 < λ1.

Therefore, (C3) and (C4) are satisfied.
Take a = b = 1

36 , r = 1
180 , and thus 2π(a + b)max{l2, l3} = 2

√
2π

9 < 1. If
x + 2|y| ≤ 0,

|f(x, y)| ≤ |x|
72

+
|y|
36

≤ a|x| + b|y|;
if x + 2|y| > 0 and (x, y) ∈ [−r, r]2,

|f(x, y)| ≤ (|x| + 2|y|)2 ≤ 5r|x| + 4r|y| ≤ a|x| + b|y|.
So (C5) holds.
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For any M > 0 define HM (ρ) = (M + 2ρ)2 + 1 on R
+, it is clear that

(3.3) holds. If −1 ≤ x + 2|y| ≤ 0,

|f(x, y)| =
1
72

|x + 2|y|| ≤ 1 ≤ HM (|y|);
if x + 2|y| < −1 and (x, y) ∈ [−M,M ] × R,

|f(x, y)| =
1
72

|x + 2|y|| ≤ |x + 2|y||2 ≤ (|x| + 2|y|)2 ≤ HM (|y|);
if x + 2|y| > 0 and (x, y) ∈ [−M,M ] × R,

|f(x, y)| = |x + 2|y||2 ≤ (|x| + 2|y|)2 ≤ HM (|y|).
Therefore, (3.4) also holds. By Theorem 3.1, we know that PBVP (3.4) has
at least one nontrivial solution.
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