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Abstract. Let E be a real normed space. A new notion of quasi-boundedness
for operators A : E → 2E is introduced and the following general impor-
tant result for accretive operators is proved: an accretive operator with
zero in the interior of its domain is quasi-bounded. Using this result,
a new strong convergence theorem for approximating a zero of an m-
accretive operator is proved in a uniformly smooth real Banach space.
This result complements the celebrated proximal point algorithm for ap-
proximating solutions of 0 ∈ Au in a real Hilbert space where A is a
maximal monotone operator. Furthermore, as an application of our the-
orem, a new strong convergence theorem for approximating a solution
of a Hammerstein equation is proved. Finally, several numerical experi-
ments are presented to illustrate the strong convergence of the sequence
generated by our algorithm and the results obtained are compared with
those obtained using some recent important algorithms.
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1. Introduction

Let H be a real Hilbert space and A : H → 2H be an operator (possibly
nonlinear). A fundamental problem in nonlinear operator theory is that of
finding an element

u ∈ H such that 0 ∈ Au, (1.1)

where A is monotone, i.e., A satisfies the following inequality: 〈x−y, η−ζ〉 ≥
0, ∀ η ∈ Ax, ζ ∈ Ay. For example, if A is the subdifferential, ∂f : H → 2H

of a proper, lower semi-continuous and convex function f : H → (−∞,∞],
defined by ∂f(x) :=

{
u ∈ H : f(y) − f(x) ≥ 〈u, y − x〉, ∀y ∈ H

}
, then, ∂f

is a monotone operator and it is easy to see that a solution of the inclusion
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0 ∈ Au corresponds to a minimizer of f . Furthermore, for an example where
solutions of 0 ∈ Au, A monotone, represent solutions of variational inequality
problems, the reader may see, for example, Rockafellar [54]; and for problems
where solutions of 0 ∈ Au, A monotone, represent equilibrium state of a
dynamical system, the reader may see Browder, [3].
Existence theorems have been proved for problem (1.1) (see, e.g., Browder
[3], Martin [42]). Also, iterative algorithms for approximating solutions of the
inclusion (1.1) have been studied extensively by numerous authors (see e.g.,
Bruck and Reich [8], Chidume and Chidume [14], Chidume [12,13], Browder
[3], Martin [42], Chidume et al. [15] and the references contained in them).
One of the classical methods for approximating solution(s) of inclusion (1.1)
is the celebrated proximal point algorithm (PPA) introduced by Martinet
[41] and studied extensively by Rockafellar [54] and a host of other authors
(see, e.g., Bruck and Reich [8] and Reich [45]).
Let E be a real normed space with dual space E∗, and let Jq (q > 1) denote
the generalized duality mapping from E to 2E∗

. A set-valued mapping A :
E → 2E is said to be accretive if, ∀x, y ∈ E, there exists jq(x−y) ∈ Jq(x−y)
such that

〈η − ζ, jq(x − y)〉 ≥ 0, η ∈ Ax, ζ ∈ Ay. (1.2)

The mapping A is called m-accretive if it is accretive and R(I+λA) (the range
of range of (I +λA)) is E, for all λ > 0. In Hilbert spaces, accretive mappings
are called monotone and m-accretive mappings are maximal monotone.
Let H be a real Hilbert space. If A is monotone, a classical result of Minty [43]
states that for each u ∈ H and λ > 0, there exists a unique v ∈ H such that
(u − v) ∈ λAv, i.e., u ∈ (I + λA)v. The mapping Jλ := (I + λA)−1 is single-
valued from H to H and nonexpansive. Furthermore, one has Jλ(u) = u if
and only if 0 ∈ Au (for more on this see Sect. 7 of Reich [50]).
The proximal point algorithm for a maximal monotone operator (i.e., a mono-
tone operator whose graph is not contained in the graph of any other mono-
tone operator) is an iterative procedure that starts at a point u1 ∈ H, and

generates inductively a sequence {un} in H by un+1 =
(
I + 1

αn
A

)−1

un,

where {αn} is a sequence of positive numbers. Martinet [41] proved that the
sequence {un} converges weakly to a point u∗ ∈ H such that 0 ∈ Au∗. The
question of whether the weak convergence established by Martinet can be im-
proved to strong convergence remained open for many years. The answer is
known to be affirmative if A := ∂f with f quadratic (see, e.g., Krasnoselskii
[36], also Kryanev [37,38]). Strong convergence of the PPA is also assured if
αn is bounded away from zero and A is strongly monotone i.e., there exists
k > 0 such that 〈x − y, η − ζ〉 ≥ k‖x − y‖2, ∀η ∈ Ax, ζ ∈ Ay (see, e.g., Bruck
and Reich [8], Reich [45] and Rockafellar [54]).
In 1976, Rockafellar [54] proved that the PPA converges weakly starting from
any point. He then posed the following question: “Does the proximal point
algorithm always converge strongly?”.
Güler [34] gave a negative answer to this question. He proved (using a result
of Bruck [7]) that in l2, there exists a function f such that given any positive
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bounded sequence {αn}, there exists a starting point u1 ∈ D(f) (domain of
f) and the PPA starting from u1 with un+1 = Jαn

(un) converges weakly,
but not strongly (see also Bauschke et al. [2]).
In [56], Solodov and Svaiter proposed a modification of the proximal point
algorithm which guarantees strong convergence in a real Hilbert space. The
authors themselves noted ([56], p 195) that “. . . at each iteration, there are
two subproblems to be solved. . .” : (i) find an inexact solution of the proximal
point algorithm, and (ii) find the projection of x0 onto Ck ∩ Qk. They also
acknowledged that these two subproblems constitute a serious drawback in
using their algorithm.
Kamimura and Takahashi [35] extended this work of Solodov and Svaiter [56]
to the framework of arbitrary real Banach spaces that are both uniformly
convex and uniformly smooth, where the operator A is maximal monotone.
Reich and Sabach [49] extended this result to reflexive Banach spaces (see
also Reem and Reich [53]).
In [39], Lehdili and Moudafi considered the technique of the proximal map-
ping and Tikhonov regularization to introduce and construct the so-called
Prox–Tikhonov method. Using the notion of variational distance, they proved
strong convergence theorems for their algorithm and its perturbed version,
under appropriate conditions on the parameters of their algorithm.
Xu [57] also studied the recurrence relation Lehdili and Moudafi [39]. He used
the technique of nonexpansive mappings to get convergence theorems for the
perturbed version of the algorithm of Lehdili and Moudafi [39], under much
relaxed conditions on the parameters.
In 2006, Xu [58] introduced and studied the following proximal type algorithm

Theorem 1.1. Let E be a reflexive Banach space that has a weakly continuous
duality map Jϕ with gauge ϕ and let A be an m-accretive operator in X such
that C = D(A) is convex. Assume

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(ii) limn→∞ λn = ∞.

Given u, x1 ∈ C, let {xn} be the sequence generated by

xn+1 = αnu + (1 − αn)Jλn
xn, n ≥ 1. (1.3)

Then {xn} converges strongly to a zero of A.

Qin and Su [59] extended and generalized the result of Xu [58]. They intro-
duced and studied the following algorithm

Theorem 1.2. Let E be a uniformly smooth Banach space and A be an m-
accretive operator in E such that A−1(0) �= ∅. Given a point u ∈ C and given
{αn} in (0, 1) and {βn} in [0, 1], suppose {αn}, {βn} and {λn} satisfy the
conditions

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(ii) λn ≥ ε, ∀ n and βn ∈ [0, a), for some a ∈ (0, 1);
(iii)

∑∞
n=1 |αn+1 − αn| < ∞,

∑∞
n=1 |βn+1 − βn| < ∞ and

∑∞
n=1 |λn+1 −

λn| < ∞.
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Let {xn} be the composite process defined by
{

yn = βnxn + (1 − βn)Jλn
xn,

xn+1 = αnu + (1 − αn)yn.
(1.4)

Then {xn} converges strongly to a zero of A.

Remark 1. The proximal point algorithm and its modifications listed above
require either the computation of

(
I + 1

αn
A

)−1(un) or, the construction of
two closed convex non-empty subsets of E and the projection of the initial
vector onto the intersection of the two closed convex subsets constructed.

Following this, Chidume posed the following question “ Can an iteration pro-
cess be developed which will not involve the computation of

(
I + 1

αn
A

)−1(un)
or the construction of two closed convex subsets of E and the projection of
the initial vector onto the intersection of the two sets at each step of the
iteration process, that will still guarantee strong convergence to a solution of
0 ∈ Au?”
This question was eventually resolved in the affirmative by Chidume and
Djitte [26]. However, the following more general theorem has been proved.

Theorem 1.3. (Chidume, [11]). Let E be a uniformly smooth real Banach
space with modulus of smoothness ρE, and let A : E → 2E be a set-valued
bounded m-accretive operator with D(A) = E such that the inclusion 0 ∈ Au
has a solution. For arbitrary u1 ∈ E define a sequence {un} by,

un+1 = un − αnζn − αnβn(un − u1), ζn ∈ Aun, n ≥ 1, (1.5)

where {αn} and {βn} are e in (0,1) satisfying the following conditions:
(i) limn→∞ βn = 0, {βn} is decreasing;
(ii)

∑∞
n=1 αnβn = ∞,

∑∞
n=1 ρE(αnM1) < ∞, for some constant M1;

(iii) limn→∞

(
βn−1−βn

βn

)

αnβn
= 0.

Assume that there exists a constant γ0 > 0 such that ρE(αn)
αn

≤ γ0βn, then
the sequence {un} converges strongly to a zero of A.

Remark 2. Theorem 1.3 is a significant extension of the result of Chidume
and Djitte [26] in the sense that Theorem 1.3 extends the theorem of Chidume
and Djitte [26] from 2-uniformly smooth real Banach spaces to uniformly
smooth real Banach spaces. Observe that Theorem 1.3 is restricted to m-
accretive operators that are bounded.

2. Preliminaries

The following lemmas will be needed in the proof of our main theorems.

Lemma 2.1. Let E be a normed real linear space, and Jq : E → 2E∗
, 1 < q <

∞, be the generalized duality map. Then, the following inequality holds:

‖x + y‖q ≤ ‖x‖q + q〈y, jq(x + y)〉,
∀ jq(x + y) ∈ Jq(x + y), ∀ x, y ∈ E (2.1)



Vol. 22 (2020) On the strong convergence of the proximal point algorithm Page 5 of 21 61

Lemma 2.2. (Reich, [52], [51]). Let E be a uniformly smooth real Banach
space. Then, there exists a nondecreasing function ρ : [0,∞) → [0,∞) satis-
fying the following condition:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, Jx〉 + max{‖x‖, 1}‖y‖ρ(‖y‖), ∀ x, y ∈ E

(see also, Xu and Roach [60] for another inequality).

Lemma 2.3. (Fitzpatrick et al. [33]) Let E be a real reflexive Banach space
and let A : D(A) ⊂ E → E be an accretive mapping. Then A is locally
bounded at any interior point of D(A).

3. Main result

Definition 3.1. A mapping A : E → 2E is called quasi-bounded if for any
M > 0 there exists CM > 0 such that whenever 〈ζ, jx−j(x−y)〉 ≤ M(2‖x‖+
‖y‖) and ‖y‖ ≤ M, ‖x‖ ≤ M, forsome jx ∈ Jx and j(x − y) ∈ J(x − y),
then ‖ζ‖ ≤ CM , ζ ∈ Ay.

Remark 3. A notion of quasi-boundedness for maps A : E → 2E∗
, where E∗

is the dual space of E, is already defined (see e.g., Cioranescu [30], p 176,
Exercise 9). If x = 0 and E is a real Hilbert space, Definition 3.1 and that
given for maps from E → 2E∗

coincide.

We now prove one of our main theorems.

Theorem 3.2. Let E be a smooth and reflexive real Banach space. Any accre-
tive mapping A : D(A) ⊂ E → 2E with 0 ∈ int D(A) is quasi-bounded.

Proof. By Lemma 2.3, A is locally bounded at 0. This implies that there exist
r > 0, M∗ > 0 such that BE(0, r) := {x ∈ E : ‖x‖ ≤ r} ⊂ int D(A) and

‖η‖ ≤ M∗, ∀ x ∈ BE(0, r), η ∈ Ax.

Let M > 0, x ∈ BE(0, r) and y ∈ D(A). Assume that ‖y‖ ≤ M and ζ ∈ Ay
such that

〈ζ, Jx − J(x − y)〉 ≤ M(2‖x‖ + ‖y‖).

By the accretivity of A, 〈ζ − η, J(y − x)〉 ≥ 0, ∀η ∈ Ax. This implies that

〈ζ, J(x − y)〉 ≤ 〈η, J(x − y)〉 ≤ M∗(‖y‖ + r).

Furthermore,

〈ζ, Jx〉 = 〈ζ, J(x − y)〉 + 〈ζ, Jx − J(x − y)〉
≤ M∗(‖y‖ + r) + M(2‖x‖ + ‖y‖)

≤ M∗(M + r) + M(2r + M).
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This implies that

|〈ζ, Jx〉| ≤ M∗(M + r) + M(2r + M), ∀x ∈ BE(0, r).

For f ∈ BE∗(0, 1), by the reflexivity and smoothness of E, there exists x ∈
BE(0, r) such that Jx = rf . So,

|〈ζ, f〉| =
1
r
|〈ζ, Jx〉| ≤ 1

r

(
M∗(M + r) + M(2r + M)

)
.

Therefore,

sup
‖f‖≤1

|〈ζ, f〉| ≤ 1
r

(
M∗(M + r) + M(2r + M)

)
.

The quasi-boundedness of A follows. �

We first prove the following Lemma.

Lemma 3.3. Let E be a uniformly smooth real Banach space and let A : E →
2E be a set-valued m-accretive mapping such that the inclusion 0 ∈ Au has a
solution. For arbitrary u1 ∈ E, define inductively a sequence {un} by

un+1 = (1 − αnβn)un − αnζn, ζn ∈ Aun, n ≥ 1, (3.1)

where {αn} and {βn} are sequences in (0, 1). Assume there exists a constant
γ0 > 0 such that if ρE(αn)

αn
≤ γ0βn, for some M0 > 0 (ρE is the function

appearing in Lemma 2.2), then the sequence {un} is bounded.

Proof. Let u∗ be a solution of the inclusion 0 ∈ Au, i.e., 0 ∈ Au∗ and let
u1 ∈ E. Then, there exists r > 0 such that ‖u∗‖ ≤ r

2 and ‖u1 − u∗‖ ≤ r
2 .

Define B := {u ∈ E : ‖u−u∗‖ < r}. It suffices to show that un ∈ B, ∀n ≥ 1.
We show this by induction. Let u ∈ B, then ‖u‖ ≤ ‖u∗‖ + r. Sincce A is
locally bounded at 0 ∈ B, there exist m1 > 0, k1 > 0 such that

‖η‖ ≤ k1, η ∈ Av, ∀v ∈ B1(0,m1) ⊂ B.

Let v ∈ B1(0,m1) such that ωJ(‖v‖) < m1, where ωJ is the modulus of
continuity of J . By the accretivity of A, we have that

〈ζ, Ju〉 ≥ 〈η, J(u − v)〉 + 〈ζ, Ju − J(u − v)〉, ζ ∈ Au.

This implies that

〈ζ, J(−u)〉 ≤ 〈η, J(v − u)〉 + 〈ζ, J(u − v) − Ju〉.
Let z = −u. Then,

〈ζ, Jz〉 ≤ 〈η, J(v + z)〉 + 〈ζ, Jz − J(z + v)〉
≤ ‖η‖(‖v‖ + ‖z‖) + ‖ζ‖‖Jz − J(z + v)‖
≤ k1(m1 + ‖u∗‖ + r) + ‖ζ‖m1.

Thus,

sup
‖z‖=‖Jz‖≤‖u∗‖+r

|〈ζ, Jz〉| ≤ k1(m1 + ‖u∗‖ + r) + ‖ζ‖m1.

This implies that

(‖u∗‖ + r)‖ζ‖ ≤ k1(m1 + ‖u∗‖ + r) + ‖ζ‖m1,
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so that

‖ζ‖ ≤ k1(m1 + ‖u∗‖ + r)
‖u∗‖ + r − m1

:= k2.

Setting M = max{k2, ‖u∗‖ + r}, we have

〈ζ, Jv − J(vu)〉 ≤ M(2‖v‖ + ‖u‖), ‖u‖ ≤ M and ‖v‖ ≤ M.

By Theorem 3.2, A is quasi-bounded. Thus, there exists k > 0 such that

‖ζ‖ ≤ k, ∀u ∈ B.

Define

M0 := sup
u∈B, θ∈(0,1)

{‖θu + ζ‖} + 1, ζ ∈ Au,

γ0 := min
{

1,
r2

8(r + 1)M2
0

}
.

The quasi-boundedness of A and u ∈ B guarantee that M0 is well defined.
Then, for n = 1, by construction, ‖u1 − u∗‖ ≤ r. Assume ‖un − u∗‖ ≤ r,
for some n ≥ 1. We show that ‖un+1 − u∗‖ ≤ r. For contradiction, suppose
r < ‖un+1 − u∗‖. Now, using recursion formula (3.1), Lemma 2.2, and the
condition that ρE(αn)

αn
≤ γ0βn, we have:

r2 < ‖un+1 − u∗‖2 = ‖(1 − αnβn)un − αnζn − u∗‖2
≤ ‖un − u∗‖2 − 2αn〈ζn + βnun, J(un − u∗)〉

+ max{‖un − u∗‖, 1}αn‖ζn

+ βnun‖ρE(αn‖ζn + βnun‖)

≤ ‖un − u∗‖2 − 2αn〈ζn, J(un − u∗)〉
− 2αnβn〈un − u∗, J(un − u∗)〉
− 2αnβn〈u∗, J(un − u∗)〉
+ (r + 1)M0ρE(αn‖ζn + βnun‖)

≤ ‖un − u∗‖2 − 2αnβn‖un − u∗‖2
+ αnβn(‖u∗‖2 + ‖un − u∗‖2)
+ (r + 1)M0ρE(αn‖ζn + βnun‖)

≤ (1 − αnβn)‖un − u∗‖2 + αnβn‖u∗‖2

+ (r + 1)M0
ρE(αnM0)

αnM0
αnM0

≤ (1 − αnβn)‖un − u∗‖2 + αnβn‖u∗‖2
+ (r + 1)M2

0 γ0βnαn

≤
(

1 − 5αnβn

8

)
r2 < r2.

This is a contradiction. Hence, ‖un+1 −u∗‖ ≤ r. Therefore, {un} is bounded.
�
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We now state and prove our strong convergence theorem.

Theorem 3.4. Let E be a uniformly smooth real Banach space and let A :
E → 2E be a set-valued m-accretive mapping such that the inclusion 0 ∈ Au
has a solution. For arbitrary u1 ∈ E, define inductively a sequence {un} by

un+1 = (1 − αnβn)un − αnζn, ζn ∈ Aun, n ≥ 1, (3.2)

where {αn} {βn} are sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ βn = 0, {βn} is decreasing;
(i)

∑∞
n=1 αnβn = ∞;

∑∞
n=1 ρE(αnM0) < ∞, for some constant M0 > 0;

(i) limn→∞

(
βn−1

βn
−1

)

αnβn
= 0.

There exists a constant γ0 > 0 such that ρE(αn)
αn

≤ γ0βn. Then, the sequence
{un} converges strongly to a zero of A.

Proof. We observe that the recurrence relation (3.2) is the same as the recur-
rence relation (1.5) in which u1 ≡ 0. This is possible since u1 is an arbitrary
element in domain of A which, in this case, is E. By Lemma 3.3, the sequence
{un} is bounded. The rest of the argument now follows exactly as in the proof
of Theorem 1.3 (see, Chidume [11]). �

The following estimates have been obtained for ρE in Lp spaces, 1 < p < ∞

ρE(t) ≤
{

1
p tp, 1 < p < 2;
(p−1)

2 t2, p ≥ 2;

where t ≥ 0, (see e.g., Lindenstrauss and Tzafriri, [40], see also, Chidume,
[10], p 18).
Prototype
For Lp spaces, 2 ≤ p < ∞, let αn = (n + 1)−a and βn = (n + 1)−b, n ≥ 1
with 0 < b < a, 1

2 < a < 1 and a + b < 1.
Now, we verify conditions (i)–(iii) and ρE(αn)

αn
≤ γ0βn given in Theorem 3.4.

Clearly, limn→∞ βn = limn→∞ 1
(n+1)b = 0 and the sequence βn is decreasing.

For (ii), using the fact that a+b < 1, we have
∑∞

n=1 αnβn =
∑∞

n=1
1

(n+1)a+b =
∞.
Furthermore, the condition 1

2 < a < 1 implies that
∞∑

n=1

ρE(αnM0) ≤
∞∑

n=1

(
p − 1

2

)
α2

nM2
0 ≤ M2

0

(
p − 1

2

) ∞∑

n=1

1
(n + 1)2a < ∞.

Next, for (iii), using the fact that (1+x)s ≤ 1+sx, for x > −1 and 0 < s < 1,
we have

0 ≤
(

βn−1
βn

− 1
)

αnβn
=

[(
1 +

1
n

)b

− 1
]

· (n + 1)a+b

≤ b · (n + 1)a+b

n
= b · n + 1

n
· 1
(n + 1)1−(a+b)

→ 0 as n → ∞.
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Finally, using the fact that ρE(t) ≤ (p−1)
2 t2, 0 < b < a and αn = (n+1)−a ≤

βn = (n + 1)−b, we obtain:
ρE(αn)

αn
≤ (p − 1)

2αn
· α2

n

=
(p − 1)

2
αn =

(p − 1)
2

(n + 1)−a

≤ (p − 1)
2

(n + 1)−b = γ0βn,

where γ0 := (p−1)
2 . This completes the verification.

Similarly, for Lp spaces, 1 < p ≤ 2, let αn = (n + 1)−a and βn = (n + 1)−b,
n ≥ 1 with 0 < b < (p − 1)a, 1

p < a < 1 and a + b < 1, it can be shown that

the conditions (i)–(iii) and ρE(αn)
αn

≤ γ0βn of Theorem 3.4 are satisfied.

4. Application to Hammerstein equations

A nonlinear integral equation of Hammerstein type, in abstract setting, is
one of the form

u + KFu = 0, (4.1)

where, F : X → X∗ and K : X∗ → X are monotone operators. For more
on Hammerstein equation, the reader may consult Pascali and Sburlan [48],
and for precise results on the existence of solution to Eq. (4.1), the reader
may consult, for example, any of the following reference Brezis and Browder
[4,5], Browder and Gupta [6], Chepanovich [9], De Figueiredo and Gupta
[31], Reich, [52].

For recent results on the approximation solution(s) of the Hammerstein
Eq. (4.1), the reader may consult any of the following references: Chidume
and Zegeye [20–22], Chidume and Djitte [26–28], Chidume and Ofoedu [19],
Chidume and Shehu [16,17], Djitte and Sene [32], Chidume et al. [24,24]
Chidume and Bello [25], Chidume et al. [23], Ofoedu and Onyi [46], Ofoedu
and Malonza [47], Shehu [55], Minjibir and Mohammed [44], and the refer-
ences contained in them.
We shall apply Theorem 3.4 to approximate a solution of Eq. (4.1).

Lemma 4.1. (Barbu [1]). Let E be a real Banach space, A be m-accretive set
of E × E and let B : E → E be a continuous, m-accretive operator with
D(B) = E. Then A + B is m-accretive.

Lemma 4.2. Let E be a uniformly smooth real Banach space and X := E×E.
Let F,K : E → E be m-accretive mappings. Let A : X → X be defined by
A([u, v]) = [Fu − v,Kv + u]. Then, A is m-accretive.

Proof. Define S, T : E × E → E × E as

S[u, v] = [Fu,Kv], T [u, v] = [−v, u].

Then, A = S + T . It is easy to verify that S is m-accretive and that T is m-
accretive, continuous and D(T ) = E. Hence, by Lemma 4.1, A is m-accretive.

�
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We note that A[u, v] = 0 ⇔ u solves Eq. (4.1) and v = Fu.
We now prove the following theorem.

Theorem 4.3. Let X be a uniformly smooth real Banach space and let F,K :
X → X be m-accretive mappings. Define E := X × X and let A : E → E
be defined by A([u, v]) = [Fu − v,Kv + u]. For arbitrary u1 ∈ E, define
inductively a sequence {un} by

un+1 = (1 − αnβn)un − αnAun, n ≥ 1. (4.2)

Assume that the Hammerstein equation u + KFu = 0 has a solution. Then,
the sequence {un} converges strongly to (u∗, v∗), where u∗ is a solution of the
Hammerstein equation u + KFu = 0 with v∗ = Fu∗.

Proof. By Chidume and Idu [18] (Lemma 6.3) and Lemma 4.2, E is uniformly
smooth and A is m-accretive, respectively. Hence, the conclusion follows from
Theorem 3.4. �

Theorem 4.3 can also be stated as follows.

Theorem 4.4. Let X be a uniformly smooth real Banach space and let F, K :
X → X be m-accretive mappings. For (x1, y1), (u1, v1) ∈ X × X, define the
sequences {un} and {vn} in E, by

{
un+1 = (1 − αnβn)un − αn(Fun − vn), n ≥ 1,

vn+1 = (1 − αnβn)vn − αn(Kvn + un), n ≥ 1.
(4.3)

Assume that the equation u + KFu = 0 has a solution. Then, the sequences
{un} and {vn} converge strongly to u∗ and v∗, respectively, where u∗ is the
solution of u + KFu = 0 with v∗ = Fu∗.

5. Numerical illustration

In this section, we present numerical examples to compare the convergence
of the sequence generated by our algorithm: (Algorithm 3.2 of this paper),
with respect to CPU and number of iterations with the following algorithms,

(a) Algorithm 1.3 (Algorithm of Xu [58]),
(b) Algorithm 1.4 (Algorithm of Qin and Su [59]) and
(c) Algorithm 1.5 (Algorithm of Chidume [11]).

First, in Examples 1 and 2, we compare the convergence of the sequence of
the algorithm (3.2) and algorithm (1.5). In these examples, we take αn =

1

(n+1)
1
2
, βn = 1

(n+1)
1
4
, n = 1, 2, . . . , as our parameters. Clearly, these param-

eters satisfy the hypothesis of Theorems 1.3 and 3.4. Furthermore, we use a
tolerance of 10−8 and set maximum number of iterations n = 5000.

Example 1. In Theorems 1.3 and 3.4, set E = R
2. Consider the mapping

A : R2 → R
2 defined by A(u, v) = (u + v + sin u,−u + v + sin v). It is easy to

see that A is accretive and (0, 0) is a solution of the problem A(u, v) = (0, 0).
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Table of values choosing u1 = (1, 2)
n Algorithm (1.5) Algorithm (3.2)

‖un+1‖ ‖un+1‖
1 0.2236 0.2236
5 0.1156 0.1022
10 0.3843 0.1289
15 0.2213 6.297 × e−3

20 0.2002 1.685 × e−4

25 0.1817 3.191 × e−6

30 0.1675 4.978 × e−8

32 0.1627 9.127 × e−9

Example 2. Let f : R → R be monotone nondecreasing. It is well known that
the mapping Af : R → 2R defined by Afx :=

[
lim

t→x−
f(t), lim

t→x+
f(t)

]
is max-

imal monotone, (see, e.g., Pascali and Sburlan [48]). Now, in Theorems 1.3
and 3.4, set E = R. Consider the mapping f : R → R defined by

f(x) =

⎧
⎪⎨

⎪⎩

x2 + 1, x ≥ 0
1, −2 < x < 0
x + 1, x ≤ −2

then,

Afx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{x2 + 1}, x ≥ 0
{1}, −2 < x < 0
[ − 1, 1], x = −2
{x + 1}, x < −2.

It is easy to see that f is accretive (monotone) and thus A is accretive.
Furthermore, −2 is the unique solution of the inclusion 0 ∈ Au.
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Table of values choosing u1 = 1.
n Algorithm (1.5) Algorithm (3.2)

‖un+1 + 2‖ ‖un+1 + 2‖
1 3 3
5 1.5810 0.6841
10 1.3902 0.4209
100 1.1198 0.1199
500 0.9768 0.0231
1000 1.0059 0.0059
3000 0.9990 0.0009
4999 1.0124 0.0124

Next, in Example 3 we compare the convergence of the sequence of Algorithm
(3.2) and Algorithms (1.3) and (1.4), and in Example 4, we compare the
convergence of the sequence of Algorithms (3.2) and (1.4). In these examples,
we consider the Lp([0, 1]) spaces, 1 < p < ∞, with inner product and norm
defined by

〈x, y〉 :=
∫ 1

0

x(t)y(t)dt

‖x‖p :=
( ∫ 1

0

|x(t)|pdt
) 1

p ∀x, y ∈ Lp([0, 1])

and we choose the operator A such that the resolvent can be computed easily.

Example 3. In Theorems 1.1, 1.2 and 3.4, set E = L2([0, 1]). Consider the
mapping A : L2([0, 1]) → L2([0, 1]) defined by

(Au)(t) := (t + 1)u(t) then, Jλu(t) =
u(t)

1 + λ(t + 1)
.

It is easy to see that A is accretive and the function u(t) = 0, ∀ t ∈ [0, 1]
is the only solution of the equation Au(t) = 0. In algorithm (1.3), we take
αn = 1

n+1 , λn = n, in algorithm (1.4), we take αn = 1
n+1 , βn = 0.25,



Vol. 22 (2020) On the strong convergence of the proximal point algorithm Page 13 of 21 61

λn = 5, and in algorithm (3.2), we take αn = 1

(n+1)
1
2
, βn = 1

(n+1)
1
4
, n =

1, 2, . . . , as our parameters. Clearly, these parameters satisfy the hypothesis
of Theorems 1.1, 1.2 and 3.4. Furthermore, we use a tolerance of 10−8 and
set maximum number of iterations n = 20.

Table of values choosing u1(t) = sin t
n Algorithm (1.3) Algorithm (1.4) Algorithm (3.2)

Time= 0.041 Time=21.21 Time= 0.21s
‖un+1‖ ‖un+1‖ ‖un+1‖

1 0.3152 0.3061 0.4342
2 0.1945 0.2151 0.2103
3 0.1344 0.1641 0.06
5 0.0829 0.1102 5.21 × e−4

10 0.0429 0.0601 1.16 × e−7

14 0.0309 0.0441 9.27 × e−9

20 0.0219 0.0315 successful

Example 4. In Theorems 1.3 and 3.4, set E = L3([0, 1]). Consider the map-
ping A : L3([0, 1]) → L3([0, 1]) defined by

(Au)(t) := u(t) then Jλu(t) =
u(t)
1 + λ

.

It is easy to see that A is accretive and the function u(t) = 0, ∀ t ∈ [0, 1] is
the only solution of the equation Au(t) = 0. In algorithm (1.4), we take
αn = 1

n+1 , βn = 0.25, λn = 5, and in algorithm (3.2), we take αn =
1

(n+1)
1
2
, βn = 1

(n+1)
1
4
, n = 1, 2, . . . , as our parameters. Clearly, these parame-

ters satisfy the hypothesis of Theorems 1.2 and 3.4, respectively. Furthermore,
we use a tolerance of 10−8 and set maximum number of iterations n = 20.
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Table of values choosing u1(t) = t2 + 1
n Algorithm (1.4) Algorithm (3.2)

Time= 14.44 Time= 7.41s
‖un+1‖ ‖un+1‖

1 0.507 0.4223
2 0.2993 6.77 × e−3

3 0.2147 9.92 × e−4

5 0.1399 8.32 × e−5

10 0.076 1.81E × e−6

15 0.0522 1.31 × e−7

20 0.0398 1.64 × e−8

Remark 4. From the numerical comparisons above, we observe that the pro-
posed method (Algorithm (3.2)) converges faster in terms of number of it-
eration and CPU time in all the examples considered. Thus, the proposed
method which does not require the boundedness of the operator A or com-
putation of the resolvent of A, would, perhaps, be a preferable alternative to
the proximal and proximal type algorithms in any possible application.

5.1. Numerical experiments for solution of Hammerstein equation

Example 5. In Theorem 4.4, set E = R
2. Consider the mapping F,K : R2 →

R
2 defined by

F (u1, u2) = (u1 + u2 + sin u1,−u1 + u2 + sinu2),
K(v1, v2) = (v1 + v2, v1 + v2).

It is easy to see that F and K are accretive and the vector [u, v] = [0,0] is
the only solution of the equation u + KFu = 0 with v = Fu. In Algorithm
(4.3) we take αn = 1

(n+1)
1
2
, βn = 1

(n+1)
1
4
, n = 1, 2, . . . , as our parameters.

Clearly, these parameters satisfy the hypothesis of Theorem 4.4. Furthermore,
we use a tolerance of 10−8 and set maximum number of iterations n = 100.
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Table of values choosing u1 = (0, 5)T , v1 = (−1, 1)T

n Algorithm (4.3) Algorithm (4.3)
‖un+1‖ ‖vn+1‖

1 4.2426 3.1301
5 1.4027 1.6546
10 0.0687 0.0651
20 7.547×e−3 8.35×e−3

30 7.25320×e−5 1.1242×e−5

60 9.771×e−7 1.5105×e−6

90 4.4384×e−8 6.8612×e−8

100 1.8315×e−8 2.8312×e−8

Example 6. In Theorem 4.4, set E = L1.5([0, 1]). Consider the mapping
F,K : L1.5([0, 1]) → L1.5([0, 1]) defined by

(Fu)(t) = tu(t) and (Ku)(t) = u(t).

It is easy to see that F and K are accretive and the function [u(t), v(t)] =
[0, 0] ∀ t ∈ [0, 1] is the only solution of the equation u(t) + KFu(t) = 0
with v(t) = Fu(t). In Algorithm (4.3) αn = 1

(n+1)
1
2
, βn = 1

(n+1)
1
4
, n =

1, 2, . . . , as our parameters. Clearly, these parameters satisfy the hypothesis
of Theorem 4.4. Furthermore, we use a tolerance of 10−8 and set maximum
number of iterations n = 15.



61 Page 16 of 21 C. E. Chidume et al. JFPTA

Table of values choosing u1(t) = et, v1(t) = 4
n Algorithm (4.3) Algorithm (4.3)

‖un+1‖ ‖vn+1‖
1 2.8288 2.4342
4 0.4413 0.4391
6 0.1327 0.165
8 0.0598 0.0533
10 0.0325 0.0246
12 0.016 0.0157
14 0.0072 0.0093
15 0.0048 0.0069

Observations.

1. With respect to Example 1 in which A is an accretive (monotone) map
of R2 into itself, and Example 2 in which A is a set-valued map from R

to 2R, with a tolerance of 10−8 and maximum number of iterations n =
5000, the sequence generated by our Algorithm (3.2) converges strongly
to 0, a zero of the operator A in less than 15 iterations in Example 1,
whereas Algorithm (1.5) has not converged after 30 iterations.

2. With respect to Example 3, where E = L2([0, 1]) and A : L2([0, 1]) →
L2([0, 1]) is accretive, and with a tolerance of 10−8 and maximum num-
ber of iterations n = 20, the sequence generated by Algorithm (1.3) after
14 iterations in a time of 0.04 s has not converged to any zero of A; also
the sequence generated by algorithm (1.4) after 14 iterations; 21.21 s
has not converged to a zero of A. We remark that Algorithms (1.3) and
(1.4) both have resolvent operator. But, the sequence generated by our
algorithm, Algorithm (3.2) after 0.21 s, converged to a zero of A after
5 iterations. With respect to this example, our algorithm in this paper
which does not involve the resolvent operator is superior in terms of
CPU time and number of iterations to Algorithms (1.3) and (1.4), both
of which involve the resolvent operator. Consequently, the study of our
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algorithm in this paper for approximating zeros m-accretive operators
makes big sense.

3. In Example 4, E = L3([0, 1]) and A : L3([0, 1]) → L3([0, 1]) as defined is
accretive with the function u(t) = 0, ∀ t ∈ [0, 1] being the only solution
of Au(t) = 0. With a tolerance of 10−8 and maximum number of itera-
tions n = 20, the sequence generated by Algorithm (1.4), which involves
the resolvent after 20 iterations in 14.44 s has not converged to zero, the
only zero of A, whereas, the sequence of our algorithm in this paper,
Algorithm (3.2), after 7.41 s for the 20 iterations, already converged to
zero after 3 iterations. Here again, our Algorithm (3.2) which does not
involve the resolvent, for this example, is superior in terms of CPU time
and number of iterations, to Algorithm (1.4) which involves the resol-
vent operator. Consequently, the study o f our algorithm which does
not involve the resolvent operator for approximating zeros of accretive
operators makes big sense.

4. In Examples 5 and 6, we present numerical experiments for solutions of
Hammerstein Equations in R

2 and L1.5([0, 1]), respectively. In Example
5, with a tolerance of 10−8 and maximum number of iterations n = 100,
the sequence generated by our algorithm converged to a zero A in less
than 20 iterations. In Example 6, with a tolerance of 10−8 and maximum
number of iterations n = 15, the sequence generated by our algorithm
converges to a zero A after about 12 iterations. We observe that our
algorithms involve m-accretive operators but do not involve resolvent
operators.

Conclusion In this paper, a significant improvement of Theorem 1.3 is proved
by dispensing with the restriction that A be bounded imposed in the theo-
rem. This is achieved by first introducing a new notion of quasi-boundedness
for operators A : E → 2E and then proving a general theorem of independent
interest on accretive operators, that: an accretive operator with zero in the in-
terior of its domain is quasi-bounded. Using this result, a strong convergence
theorem for approximating a solution of 0 ∈ Au is proved. Furthermore, as an
application of our theorem, a strong convergence theorem for approximating
a solution a Hammerstein equation is proved. Finally, several numerical ex-
periments are presented to illustrate the strong convergence of the sequence
of our algorithm and the results obtained are compared with those obtained
using some recent important algorithm.
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[2] Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point
methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–
738 (2004)

[3] Browder, F.E.: Nonlinear elliptic boundary value problems. Bull. Am. Math.
Soc. 69, 862–874 (1963)

[4] Brezis, H., Browder, F.E.: Some new results about Hammerstein equations.
Bull. Am. Math. Soc. 80, 567–572 (1974)

[5] Brezis, H., Browder, F.E.: Existence theorems for nonlinear integral equations
of Hammerstein type. Bull. Am. Math. Soc. 81, 73–78 (1975)

[6] Browder, F.E., Gupta, P.: Monotone operators and nonlinear integral equations
of Hammerstein type. Bull. Am. Math. Soc. 75, 1347–1353 (1969)

[7] Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroups in
Hilbert spaces. J. Funct. Anal. 18, 15–26 (1975)

[8] Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive
operators in Banach spaces. Houston J. Math. 3, 459–470 (1977)

[9] Chepanovich, RSh: Nonlinear Hammerstein equations and fixed points. Publ.
Inst. Math. (Beograd) N. S. 35, 119–123 (1984)

[10] Chidume, C.E.: Geometric Properties of Banach Spaces and Nonlinear itera-
tions, vol. 1965 of Lectures Notes in Mathematics. Springer, London (2009)

[11] Chidume, C.E.: Strong convergence theorems for bounded accretive operators
in uniformly smooth Banach spaces. Contemp. Math. (Amer. Math. Soc.) 659,
31–41 (2016)

[12] Chidume, C.E.: Iterative solution of nonlinear equations of monotone-type in
Banach spaces. Bull. Aust. Math. Soc. 42(1), 21–31 (1990)

[13] Chidume, C.E.: An approximation method for monotone Lipschitzian operators
in Hilbert spaces. J. Aus. Math. Soc. Ser. A-Pure Math. Stat. 41:1, 59–63 (1986)

[14] Chidume, C.E., Chidume, C.O.: Convergence theorems for zeros of general-
ized Lipschitz generalized PHI-quasi-accretive operators. Proc. Am. Math. Soc.
134(1), 243–251 (2006)

[15] Chidume, C.E., Abbas, M., Bashir, A.: Convergence of the Mann iteration al-
gorithm for class of Pseudocontractive mappings. Appl. Math. Comput. 194(1),
1–6 (2007)

[16] Chidume, C.E., Shehu, Y.: Iterative approximation of solutions of equations
of Hammerstein type in certain Banach spaces. Appl. Math. Comput. 219,
5657–5667 (2013)

[17] Chidume, C.E., Shehu, Y.: Approximation of solutions of generalized equations
of Hammerstein type. Comput. Math. Appl. 63, 966–974 (2012)

[18] Chidume, C.E., Idu, K.O.: Approximation of zeros of bounded maximal mono-
tone maps, solutions of Hammerstein integral equations and convex mini-
mization problems. Fixed Point Theory Appl. (2016). https://doi.org/10.1186/
s13663-016-0582-8

[19] Chidume, C.E., Ofoedu, E.U.: Solution of nonlinear integral equations of Ham-
merstein type. Nonlinear Anal. 74, 4293–4299 (2011)

https://doi.org/10.1186/s13663-016-0582-8
https://doi.org/10.1186/s13663-016-0582-8


Vol. 22 (2020) On the strong convergence of the proximal point algorithm Page 19 of 21 61

[20] Chidume, C.E., Zegeye, H.: Approximation of solutions nonlinear equations of
Hammerstein type in Hilbert space. Proc. Am. Math. Soc. 133, 851–858 (2005)

[21] Chidume, C.E., Zegeye, H.: Iterative approximation of solutions of nonlinear
equation of Hammerstein-type. Abstr. Appl. Anal. 6, 353–367 (2003)

[22] Chidume, C.E., Zegeye, H.: Approximation os solutions of nonlinear equations
of monotone and Hammerstein-type. Appl. Anal. 82(8), 747–758 (2003)

[23] Chidume, C.E., Nnakwe, M.O., Adamu, A.A.: A strong convergence theorem
for generalized-Φ-strongly monotone maps, with applications. Fixed Point The-
ory Appl. (2019). https://doi.org/10.1186/s13663-019-0660-9

[24] Chidume, C.E., Adamu, A., Chinwendu, L.O.: Approximation of solutions
of Hammerstein equations with monotone mappings in real Banach spaces.
Carpathian J. Math. 35(3), 305–316 (2019)

[25] Chidume, C.E., Bello, A.U.: An iterative algorithm for approximating solutions
of Hammerstein equations with monotone maps in Banach spaces. Appl. Math.
Comput. 313, 408–417 (2017)

[26] Chidume, C.E., Djitte, N.: An iterative method for solving nonlinear integral
equations of Hammerstein type. Appl. Math. Comput. 219, 5613–5621 (2013)

[27] Chidume, C.E., Djitte, N.: Iterative approximation of solutions of nonlinear
equations of Hammerstein-type. Nonlinear Anal. 70, 4086–4092 (2009)

[28] Chidume, C.E., Djitte, N.: Approximation of solutions of Hammerstein equa-
tions with bounded strongly accretive nonlinear operator. Nonlinear Anal. 70,
4071–4078 (2009)

[29] Chidume, C.E., Adamu, A., Chinwendu, L.O.: Iterative algorithms for solutions
of Hammerstein equations in real Banach spaces. Fixed Point Theory Appl.
(2020). https://doi.org/10.1186/s13663-020-0670-7

[30] Cioranescu, I.: Geometry of Banach Spaces, Duality Mapping and nonlinear
problems. Kluwer Academic Publishers, Amsterdam (1990)

[31] De Figueiredo, D.G., Gupta, C.P.: On the variational methods for the existence
of solutions to nonlinear equations of Hammerstein type. Bull. Am. Math. Soc.
40, 470–476 (1973)

[32] Djitte, N., Sene, M.: An iterative algorithm for approximating solutions of
Hammerstein integral equations. Numer. Funct. Anal. Optim. 34(12), 1299–
1316 (2013)

[33] Fitzpatrick, P.M., Hess, P., Kato, T.: Local boundedness of monotone type
operators. Proc. Jpn. Acad. 48, 275–277 (1972)
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