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Abstract. We consider a strongly nonlinear differential equation of the
following general type:

(Φ(a(t, x(t)) x′(t)))′ = f(t, x(t), x′(t)), a.e. on [0, T ],

where f is a Carathédory function, Φ is a strictly increasing homeomor-
phism (the Φ-Laplacian operator), and the function a is continuous and
non-negative. We assume that a(t, x) is bounded from below by a non-
negative function h(t), independent of x and such that 1/h ∈ Lp(0, T )
for some p > 1, and we require a weak growth condition of Wintner–
Nagumo type. Under these assumptions, we prove existence results for
the Dirichlet problem associated with the above equation, as well as
for different boundary conditions. Our approach combines fixed point
techniques and the upper/lower solution method.
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1. Introduction

Recently, many papers have been devoted to the study of boundary value
problems (BVPs for short) associated with nonlinear ODEs involving the
so-called Φ-Laplace operator (see, e.g., [3–5,9]). Namely, ODEs of the type:

(
Φ(x′)

)′ = f(t, x, x′),

where f is a Carathédory function and Φ : R → R is a strictly increasing
homeomorphism such that Φ(0) = 0.

The class of Φ-Laplacian operators includes as a special case the classical
r-Laplacian Φ(y) := y|y|r−2, with r > 1. Such operators arise in some mo-
dels, e.g., in non-Newtonian fluid theory, diffusion of flows in porous media,
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nonlinear elasticity, and theory of capillary surfaces. Other models (for e-
xample reaction-diffusion equations with non-constant diffusivity and porous
media equations) lead to consider mixed differential operators, that is, diffe-
rential equations of the type:

(
a(x)Φ(x′)

)′ = f(t, x, x′), (1.1)

where a is a continuous positive function (see, e.g., [8]). Furthermore, several
papers have been devoted to the case of singular or non-surjective operators
(see [1,6,10]). Usually, these existence results stem from a combination of
fixed point techniques with the upper and lower solution method. In this
context, an important tool to get a priori bounds for the derivatives of the
solutions is a Nagumo-type growth condition on the function f . Let us observe
that, when in the differential operator is present the nonlinear term a, some
assumptions are required on the differential operator Φ, which in general is
assumed to be homogeneous, or having at most linear growth at infinity.

More recently, in collaboration with Cristina Marcelli, we considered
two different generalizations of Eq. (1.1). In the paper [15], we investigated
the case in which the function a may depend also on t. More precisely, we
obtained existence results for general boundary value problems associated
with the equation:

(
a(t, x(t))Φ(x′(t))

)′ = f(t, x(t), x′(t)), a.e. on I := [0, T ],

where a continuous and positive, and assuming a weak form of Wintner–
Nagumo growth condition. Namely:

∣
∣f(t, x, y)

∣
∣ ≤ ψ

(
a(t, x) |Φ(y)|

)
·
(
�(t) + ν(t) |y| s−1

s

)
, (1.2)

where ν ∈ Ls(I) (for some s > 1), � ∈ L1(I), and ψ : (0,∞) → (0,∞) is a
measurable function, such that 1/ψ ∈ L1

loc(0,∞) and:
∫ ∞

1

ds

ψ(s)
= ∞.

This assumption is weaker than other Nagumo-type conditions previously
considered, and allows to consider a very general operator Φ, which can be
only strictly increasing, not necessarily homogeneous, nor having polynomial
growth. Let us also observe that the same equation:

(
a(t, x)Φ(x′)

)′ = f(t, x, x′)

was studied in [13,14] to obtain heteroclinic solutions on the real line.
On the other hand, in [7], possibly singular equations are considered,

including a non-autonomous differential operator which has an explicit de-
pendence on t inside Φ. Namely:

(
Φ

(
k(t)x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I, (1.3)

where the function k is allowed to vanish in a set having null measure, so that
Eq. (1.3) can become singular. In [7], we assumed 1/k ∈ Lp(I) and we looked
for solutions in the space W 1,p(I), rather than C1(I, R). To the best of our
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knowledge, very few papers have been devoted to this type of equations, and
just for a restricted class of nonlinearities f (see [11,12]).

In this paper, we tackle a further generalization of equation (1.3), allow-
ing also a dependence on x inside Φ. More in detail, we consider the BVP:

⎧
⎨

⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

x(0) = ν1, x(T ) = ν2,
(1.4)

where ν1, ν2 ∈ R, Φ : R → R is a strictly increasing homeomorphism, f is
a Carathéodory function, and a : I × R → R is a continuous non-negative
function satisfying the following estimate from below:

a(t, x) ≥ h(t) for every t ∈ I and every x ∈ R, (1.5)

where h ∈ C(I, R) is non-negative and 1/h ∈ Lp(I) for some p > 1. Notice
that, differently to other papers quoted above, here, we do not require the
positivity of the function a, and thus, the equation in (1.4) may be singular.
Consequently, as in [7], we look for solutions in W 1,1(I).

For example, estimate (1.5) is verified when a(t, x) has a simpler struc-
ture of a product or of a sum, as in the following special cases:

(�) if a(t, x) = λ(t) · b(x), where λ is continuous, non-negative, such that
1/λ ∈ Lp(I), and b is continuous, such that infR b > 0;

(�) if a(t, x) = h(t) + b(x), where h is continuous, non-negative, such that
1/h ∈ Lp(I), and b is continuous and non-negative.

Our main result, Theorem 3.5 below yields the existence of a solution of the
Dirichlet problem (1.4) assuming a weak Wintner–Nagumo condition, similar
to the one in (1.2). Theorem 3.5 extends in a natural way the main result
in [7], in the case when a(t, x) = k(t) does not depend on x. The proof is
obtained by the method of lower/upper solutions, combined with a fixed point
technique applied to an auxiliary functional Dirichlet problem (see Sect. 2).
In Sect. 3, we provide some illustrating examples in which our main result
can be applied.

Finally, in Sect. 4, we consider different BVPs, such as the periodic
problem, Neumann-type problem, and Sturm–Liouville-type problem, and
with classical techniques, we derive existence results.

2. The abstract setting

Let T > 0 be fixed and let I := [0, T ]. Moreover, let ν1, ν2 ∈ R. Throughout
this section, we shall be concerned with BVPs of the type:

⎧
⎨

⎩

(
Φ

(
Ax(t)x′(t)

))′
= Fx(t), a.e. on I,

x(0) = ν1, x(T ) = ν2,
(2.1)

where Φ, A and F satisfy the following structural assumptions:

(H1) Φ : R → R is a strictly increasing homeomorphism;
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(H2) there exists p > 1, such that:

A : W 1,p(I) ⊆ C(I, R) → C(I, R)

is continuous when W 1,p(I) is endowed with the usual maximum norm
of C(I, R); moreover, there exist h1, h2 ∈ C(I, R), such that:

(H2)1 h1, h2 ≥ 0 on I and:

1/h1, 1/h2 ∈ Lp(I);

(H2)2 h1(t) ≤ Ax(t) ≤ h2(t) for every x ∈ W 1,p(I) and every t ∈ I;
(H3) F : W 1,p(I) → L1(I) is continuous (with respect to the usual norms)

and there exists a non-negative function ψ ∈ L1(I), such that:

|Fx(t)| ≤ ψ(t) for every x ∈ W 1,1(I) and a.e. t ∈ I. (2.2)

Here, p > 1 is the same as in assumption (H2).

Remark 2.1. In this remark, we highlight some consequences of assumption
(H2) which shall be repeatedly used in the sequel.

(i) For every x ∈ W 1,p(I), we have that Ax ≥ h1 ≥ 0 and:
∫ T

0

1
h2(t)

dt ≤
∫ T

0

1
Ax(t)

dt ≤
∫ T

0

1
h1(t)

dt.

Since 1/h1, 1/h2 ∈ Lp(I), then the same is true of 1/Ax.
(ii) Since W 1,p(I) is continuously embedded in C(I, R), it follows that A is

continuous with respect to the W 1,p-norm.

In the sequel, we shall indicate by F the integral operator associated
with F , that is, the operator F : W 1,p(I) → C(I, R) defined by:

Fx(t) :=
∫ t

0

Fx(s) ds.

Remark 2.2. We observe, for a future reference, that F is continuous from
W 1,p(I) to C(I, R): this follows from the continuity of F and from the esti-
mate (holding true for every x, y ∈ W 1,p(I)):

sup
t∈I

|Fx(t) − Fy(t)| ≤ ‖Fx − Fy‖L1 .

Furthermore, assumption (2.2) gives:

sup
t∈I

|Fx(t)| ≤ ‖ψ‖L1 , for every x ∈ W 1,p(I). (2.3)

Definition 2.3. We say that a continuous function x ∈ C(I, R) is a solution
of the boundary value problem (2.1) if it satisfies the following properties:

(1) x ∈ W 1,p(I) and t 	→ Φ
(
Ax(t)x′(t)

)
∈ W 1,1(I);

(2)
(
Φ

(
Ax(t)x′(t)

))′
= Fx(t) for a.e. t ∈ I;

(3) x(0) = ν1 and x(T ) = ν2.
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Remark 2.4. We point out that, if x ∈ W 1,p(I) is a solution of (2.1), by
condition (1) in Definition 2.3 (and the fact that Φ is a homeomorphism, see
assumption (H1)), there exists a unique Ax ∈ C(I, R), such that:

Ax(t) = Ax(t)x′(t) for a.e. t ∈ I.

We shall use this fact in the next Sect. 3.

The main result of this section is the following existence result.

Theorem 2.5. Under the structural assumptions (H1), (H2), and (H3), the
boundary value problem (2.1) admits at least one solution x ∈ W 1,p(I).

The proof of Theorem 2.5 requires some preliminary facts.

Lemma 2.6. For every x ∈ W 1,p(I), there exists a unique ξx ∈ R, such that:
∫ T

0

1
Ax(t)

Φ−1
(
ξx + Fx(t)

)
dt = ν2 − ν1. (2.4)

Furthermore, there exists a universal constant c0 > 0, such that:

|ξx| ≤ c0 for every x ∈ W 1,p(I). (2.5)

Proof. Let x ∈ W 1,p(I) be fixed and let:

fx : R −→ R, fx(ξ) :=
∫ T

0

1
Ax(t)

Φ−1
(
ξ + Fx(t)

)
dt.

Since Fx is continuous on I (see Remark 2.2) and since, by assumptions,
Φ is continuous on the whole of R, an application of Lebesgue’s Dominated
Convergence Theorem shows that fx ∈ C(R, R) (see also Remark 2.1); mo-
reover, since Φ is increasing, the same is true of fx and, by (2.3), we have:

Φ−1(ξ − ‖ψ‖L1) ·
(∫ T

0

1
Ax(t)

dt

)
≤ fx(ξ)

≤ Φ−1(ξ + ‖ψ‖L1) ·
( ∫ T

0

1
Ax(t)

dt

)
.

From this, we deduce that fx(ξ) → ±∞ as ξ → ±∞; thus, by Bolzano’s
Theorem (and the monotonicity of fx), there exists a unique ξx ∈ R, such
that:

fx(ξx) =
∫ T

0

1
Ax(t)

Φ−1
(
ξx + Fx(t)

)
dt = ν2 − ν1.

We now turn to prove estimate (2.5). To this end, we observe that, by (2.4)
and the Mean Value Theorem, there exists t∗ = t∗x ∈ I, such that:

Φ−1(ξx + Fx(t∗)) ·
(∫ T

0

1
Ax(t)

dt

)
= ν2 − ν1;

as a consequence, we obtain:

ξx + Fx(t∗) = Φ
(

(ν2 − ν1) ·
(∫ T

0

1
Ax(t)

dt

)−1)
.
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Now, by crucially exploiting Remark 2.1, we see that:
∣
∣
∣
∣(ν2 − ν1) ·

(∫ T

0

1
Ax(t)

dt

)−1∣∣
∣
∣ ≤ |ν2 − ν1| ·

(∫ T

0

1
h2(t)

dt

)−1

=: ρ,

for every x ∈ W 1,p(I); setting M := sup[−ρ,ρ] |Φ|, we get (see also (2.3)):

|ξx| ≤ |ξx + Fx(t∗)| + |Fx(t∗)|

≤
∣
∣
∣
∣Φ

(
(ν2 − ν1) ·

( ∫ T

0

1
Ax(t)

dt

)−1)∣
∣
∣
∣ + sup

t∈I
|Fx(t)|

≤ M + ‖ψ‖L1 =: c0.

Since c0 > 0 does not depend on x, this gives the desired (2.5). �

We now consider the operator P : W 1,p(I) → W 1,p(I) defined by:

Px(t) := ν1 +
∫ t

0

1
Ax(s)

Φ−1
(
ξx + Fx(s)

)
ds, (2.6)

where ξx is as in Lemma 2.6. We note that P is well defined, in the sense
that Px ∈ W 1,p(I) for every x ∈ W 1,p(I): indeed, assumption (H2)2 and
(2.3) give:

∣
∣
∣
∣

1
Ax(s)

Φ−1
(
ξx + Fx(s)

)
∣
∣
∣
∣ ≤ 1

h1(t)
Φ−1

(
ξx + ‖ψ‖L1

)
;

thus, since 1/h1 ∈ Lp(I), we conclude that Px ∈ W 1,p(I), as claimed. Fur-
thermore, it is not difficult to see that the solutions of (2.1) (according to
Definition 2.3) are precisely the fixed points (in W 1,p(I)) of P.

In view of this fact, we can prove Theorem 2.5 by showing that P
possesses at least one fixed point in W 1,p(I); in its turn, the existence of a
fixed point of P follows from Schauder’s Fixed Point Theorem if we are able
to demonstrate that P enjoys the following properties:

• P is bounded in W 1,p(I).
• P is continuous from W 1,p(I) into itself.
• P is compact.

These facts are proved in the next lemmas.

Lemma 2.7. The operator P defined in (2.6) is bounded in W 1,p(I); that is,
there exists a universal constant c1 > 0, such that:

‖Px‖W 1,p ≤ c1 for every x ∈ W 1,p(I).

Proof. For every x ∈ W 1,p(I), by combining (2.3) and (2.5), we have:

|ξx + Fx(s)| ≤ c0 + ‖ψ‖L1 =: η, for every s ∈ I;

thus, if we set M = max[−η,η] |Φ−1|, we obtain (see assumption (H2)2):
∣
∣
∣
∣

1
Ax(s)

Φ−1
(
ξx + Fx(s)

)
∣
∣
∣
∣ ≤ M

h1(s)
for every s ∈ I, (2.7)
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and the estimate holds for every x ∈ W 1,p(I). With such an estimate at
hand, we can easily prove the boundedness of P: indeed, by (2.7), we have:

‖P ′
x‖Lp =

(∫ T

0

∣
∣
∣
∣

1
Ax(s)

Φ−1
(
ξx + Fx(s)

)
∣
∣
∣
∣

p

ds

)1/p

≤ M ‖1/h1‖Lp

for every x ∈ W 1,p(I); moreover, one has:

‖Px‖Lp ≤
{ ∫ T

0

(
|ν1| +

∫ t

0

∣
∣
∣
∣

1
Ax(s)

Φ−1
(
ξx + Fx(s)

)
∣
∣
∣
∣ ds

)p

dt

}1/p

≤ T 1/p
(
|ν1| + M ‖1/h1‖LP

)
,

and again, the estimate holds for every x ∈ W 1,p(I). Summing up, if we
introduce the constant (which does not depend on x):

c1 := T 1/p (|ν1| + M ‖1/h1‖Lp) + M ‖1/h1‖Lp > 0,

we conclude that, for every x ∈ W 1,p(I), one has:

‖Px‖W 1,p = ‖Px‖Lp + ‖P ′
x‖Lp ≤ c1.

This ends the proof. �

Remark 2.8. It is contained in the proof of Lemma 2.7 the following fact,
which we shall repeatedly use in the sequel: there exists a constant M > 0,
such that, for every x ∈ W 1,p(I):

max
t∈I

∣
∣
∣Φ−1

(
ξx + Fx(t)

)∣∣
∣ ≤ M. (2.8)

We also highlight that, since the injection W 1,p(I) ⊆ C(I, R) is continuous,
the boundedness of P in W 1,p(I) implies the boundedness of P in C(I, R):
more precisely, there exists a real c′

1 > 0, such that:

sup
t∈I

|Px(t)| ≤ c′
1, for every x ∈ W 1,p(I). (2.9)

We now turn to prove the continuity of P.

Lemma 2.9. The operator P defined in (2.6) is continuous on W 1,p(I).

Proof. Let x0 ∈ W 1,p(I) be fixed and let {xn}n∈N ⊆ W 1,p(I) be a sequence
converging to x0 as n → ∞. We need to prove that Pxn

→ Px0 as n → ∞.
To this end, we arbitrarily choose a sub-sequence {xnj

}j∈N of {xn}n∈N

and we show that, by possibly choosing a further sub-sequence, we have:

lim
j→∞

Pxnj
= Px0 in W 1,p(I).

First of all, since (2.5) implies that the sequence {ξxnj
}j∈N is bounded in R,

there exists a real ξ0 ∈ R, such that (up to a sub-sequence):

ξj := ξxnj
→ ξ0 as j → ∞.

Moreover, since F is continuous from W 1,p(I) to C(I, R) (see Remark 2.2)
and A is continuous wrt the W 1,p-norm (see Remark 2.1-(ii)), we have:

Fj := Fxnj
→ Fx0 and Aj := Axnj

→ Ax0
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uniformly on I as j → ∞. Gathering together all these facts (and reminding
that, by assumption, Φ ∈ C(R, R)), we obtain:

lim
j→∞

1
Aj(t)

Φ−1
(
ξj + Fj(t)

)

=
1

Ax0(t)
Φ−1

(
ξ0 + Fx0(t)

)
for a.e. t ∈ I.

(2.10)

From this, owing to estimate (2.8) and Remark 2.1, we infer that:

lim
j→∞

∫ t

0

1
Aj(s)

Φ−1
(
ξj + Fj(s)

)
ds

=
∫ t

0

1
Ax0(s)

Φ−1
(
ξ0 + Fx0(s)

)
ds for every t ∈ I.

(2.11)

In particular, since we know from Lemma 2.6 that:
∫ T

0

1
Aj(s)

Φ−1
(
ξj + Fj(s)

)
ds = ν2 − ν1 for every j ∈ N,

identity (2.11) implies that:
∫ T

0

1
Ax0(s)

Φ−1
(
ξ0 + Fx0(s)

)
ds = ν2 − ν1;

thus, by the uniqueness property of ξx in Lemma 2.6, we get ξ0 = ξx0 . As a
consequence, by exploiting the very definition of P (see (2.6)), identity (2.11)
allows us to conclude that Pxnj

→ Px0 point-wise on I as j → ∞.
To complete the proof of the lemma, we need to show that the sequence

Pxnj
actually converges to Px0 in W 1,p(I) as j → ∞. To this end we first

observe that, by exploiting estimate (2.8), for almost every t ∈ I, one has:
∣
∣
∣
∣

1
Aj(t)

Φ−1
(
ξj + Fj(t)

)
− 1

Ax0(t)
Φ−1

(
ξx0 + Fx0(t)

)
∣
∣
∣
∣

p

≤ 2p Mp

hp
1(t)

;

as a consequence, since 1/h1 ∈ Lp(I) (by assumption (H2)), a standard appli-
cation of Lebesgue’s Dominated Convergence Theorem gives (see also (2.10)):

lim
j→∞

‖P ′
xnj

− P ′
x0

‖p
Lp

= lim
j→∞

∫ T

0

∣
∣
∣
∣

1
Aj(t)

Φ−1
(
ξj + Fj(t)

)
− 1

Ax0(t)
Φ−1

(
ξx0 + Fx0(t)

)
∣
∣
∣
∣

p

dt = 0.

On the other hand, since P is bounded in C(I, R) (see Remark 2.8), one has:

|Pxnj
(t) − Px0(t)|p ≤ 2p c′

1 for every t ∈ I;

thus, again by Lebesgue’s Dominated Convergence Theorem, we get:

lim
j→∞

‖Pxnj
− Px0‖

p
Lp

= lim
j→∞

∫ T

0

|Pxnj
(t) − Px0(t)|p dt = 0.

Gathering together these facts, we conclude that ‖Pxnj
− Px0‖W 1,p → 0 as

j → ∞, and this finally completes the demonstration. �
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Finally, we prove that P is compact.

Lemma 2.10. The operator P defined in (2.6) is compact on W 1,p(I).

Proof. Let {xn}n∈N ⊆ W 1,p(I) be bounded. We need to prove that the se-
quence {Pxn

}n∈N possesses a sub-sequence which is convergent (in the W 1,p-
norm) to some function y0 ∈ W 1,p(I).

Fist of all, since {ξxn
}n∈R is bounded in R (see (2.5)), there exist a real

ξ0 and a sub-sequence of {xn}n∈N, denoted again by {xn}n∈N, such that:

lim
n→∞ ξxn

= ξ0 and |ξ0| ≤ c0. (2.12)

Moreover, since {xn}n∈N is bounded in W 1,p(I) and p > 1, there exist a
suitable function x0 ∈ W 1,p(I) and another sub-sequence of {xn}n∈N, which
we still denote by {xn}n∈N, such that xn → x0 uniformly on I as n → ∞.

As a consequence, since the operator A is continuous with respect to
the uniform topology of C(I, R) (by assumption (H2)), we have:

Axn
→ Ax0 uniformly onI as j → ∞. (2.13)

We now observe that, by assumption (H3), we have the estimate:

Fxn
(t) ≤ ψ(t), holding true for a.e. t ∈ I and every n ∈ N;

thus, {Fxn
}n∈N is bounded and equi-integrable in L1. Owing to the Dunford–

Pettis Theorem, we infer the existence of a function g ∈ L1(I) and of another
sub-sequence of {xn}n∈N, denoted once again by {xn}n∈N, such that:

(�) lim
n→∞

∫ T

0

Fxn
(s) v(s) ds =

∫ T

0

g(s) v(s) ds for every v ∈ L∞(I);

(�) ‖g‖L1 ≤ ‖ψ‖L1 .

Choosing v as the indicator function of [0, t] (with t ∈ I), we get:

Fxn
(t) → G(t) :=

∫ t

0

g(s) ds for every t ∈ I

and sup
t∈I

|G(t)| ≤ ‖ψ‖L1 .
(2.14)

Gathering together (2.12), (2.13), and (2.14), we deduce that:

lim
n→∞

1
Axn

(t)
Φ−1

(
ξxn

+ Fxn
(t)

)

=
1

Ax0(t)
Φ−1

(
ξ0 + G(t)

)
for a.e. t ∈ I.

(2.15)

From this, owing to (2.12), (2.14), and Remark 2.1, we conclude that:
∣
∣
∣
∣

1
Ax0(t)

Φ−1
(
ξ0 + G(t)

)
∣
∣
∣
∣ ≤ M

h1(t)
∈ Lp(I) for a.e. t ∈ I, (2.16)

and that, for every t ∈ I, one has:

lim
n→∞ Pxn

(t) = lim
n→∞

{
ν1 +

∫ t

0

1
A(xn)(s)

Φ−1
(
ξxn

+ Fxn
(s)

)}

= ν1 +
∫ t

0

1
Ax0(s)

Φ−1
(
ξ0 + G(s)

)
=: y0(t) for every t ∈ I.
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To complete the proof of the lemma, we need to show that the sequence
{Pxn

}n actually converges to y0 in W 1,p(I) as n → ∞.
On one hand, using estimate (2.16) and by arguing exactly as in the

proof of Lemma 2.9, we easily recognize that:

lim
n→∞ ‖P ′

xn
− y′

0‖p
Lp

= lim
n→∞

∫ T

0

∣
∣
∣
∣

1
Axn

(t)
Φ−1

(
ξxn

+ Fxn
(t)

)
− 1

Ax0(t)
Φ−1

(
ξ0 + G(t)

)
∣
∣
∣
∣

p

dt = 0.

On the other hand, since Pxn
→ y0 point-wise on I, from (2.9), we get:

|y0(t)| ≤ c′
1 for every t ∈ I;

hence, by arguing once again as in the proof of Lemma 2.9, we conclude that:

lim
n→∞ ‖Pxn

− y0‖p
Lp

= lim
n→∞

∫ T

0

|Pxn
(t) − y0(t)|p dt = 0.

Summing up, Pxn
→ y0 in W 1,p(I) as n → ∞, and the proof is complete.

�

Gathering Lemmas 2.7, 2.9 and 2.10, we can prove Theorem 2.5.

Proof of Theorem 2.5. We have already recognized that a function x in the
space W 1,p(I) is a solution of the boundary-value problem (2.1) if and only
if x is a fixed point of the operator P defined in (2.6).

On the other hand, since P is bounded, continuous, and compact on
the Banach space W 1,p(I), the Schauder Fixed Point Theorem ensures the
existence of (at least) one x ∈ W 1,p(I), such that Px = x, and thus, the
problem (2.1) possesses at least one solution. �

3. The Dirichlet problem for singular ODEs

In this section, we exploit the existence result in Theorem 2.5 to prove the
solvability of boundary value problems of the following type:

⎧
⎨

⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

x(0) = ν1, x(T ) = ν2.
(3.1)

As in Sect. 2, I = [0, T ] (for some real T > 0) and ν1, ν2 ∈ R; furthermore,
the functions Φ, a and f satisfy the following structural assumptions:
(A1) Φ : R → R is a strictly increasing homeomorphism;
(A2) a ∈ C(I × R, R) and there exists h ∈ C(I, R), such that:

(A2)1 h ≥ 0 on I and there exists p > 1, such that:

1/h ∈ Lp(I);

(A2)2 a(t, x) ≥ h(t) for every t ∈ I and every x ∈ R;
(A3) f : I × R

2 → R is a Carathéodory function; that is:
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(∗) the map t 	→ f(t, x, y) is measurable on I, for every (x, y) ∈ R
2;

(∗) the map (x, y) 	→ f(t, x, y) is continuous on R
2, for a.e. t ∈ I.

Remark 3.1. As in Sect. 2, we point out that, as a consequence of (A2)1-
(A2)2, for every (t, x) ∈ I × R, one has a(t, x) ≥ h(t) ≥ 0 and:

0 ≤
∫ T

0

1
a(t, x(t))

dt ≤
∫ T

0

1
h(t)

dt,

for any measurable function x : I → R. Hence, t 	→ a(t, x(t)) ∈ Lp(I).

We now give the definition of solution of the problem (3.1).

Definition 3.2. We say that a continuous function x ∈ C(I, R) is a solution
of the Dirichlet problem (3.1) if it satisfies the following properties:
(1) x ∈ W 1,1(I) and t 	→ Φ

(
a(t, x(t))x′(t)

)
∈ W 1,1(I);

(2)
(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)) for almost every t ∈ I;

(3) x(0) = ν1 and x(T ) = ν2.
If x fulfills only (1) and (2), we say that x is a solution of the ODE

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)). (3.2)

To clearly state the main result of this section, we also need to introduce
the definition of upper/lower solution of the equation in (3.1).

Definition 3.3. We say that a continuous function α ∈ C(I, R) is a lower
[respectively upper] solution of the differential equation (3.2) if:
(1) α ∈ W 1,1(I) and t 	→ Φ

(
a(t, α(t))α′(t)

)
∈ W 1,1(I);

(2)
(
Φ

(
a(t, α(t))α′(t)

))′
≥ [≤] f(t, α(t), α′(t)) for almost every t ∈ I.

Remark 3.4. If x ∈ W 1,1(I) is a solution of the problem (3.1), we denote by
Ax the unique continuous function on I, such that (see also Remark 2.4):

Ax(t) = a(t, x(t))x′(t) for a.e. t ∈ I.

Notice that, as a consequence of condition (1) in Definition 3.2 (and again of
the fact that Φ is a homeomorphism, see (H1)), such a function exists.

Analogously, if α ∈ W 1,1(I) is a lower/upper solution of (3.2), we denote
by Aα the unique continuous function on I, such that:

Aα(t) = a(t, α(t))α′(t) for a.e. t ∈ I.

The existence of such a function follows from (1) in Definition 3.3.

We are ready to state our main existence result.

Theorem 3.5. Let us assume that, together with the structural assumptions
(A1)-to-(A3), the following additional hypotheses are satisfied:

(A1’) there exists a pair of lower and upper solutions α, β ∈ W 1,p(I) of the
differential equation (3.2), such that α(t) ≤ β(t) for every t ∈ I;
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(A2’) for every R > 0 and every non-negative function γ ∈ Lp(I), there exists
a non-negative function h = hR,γ ∈ L1(I), such that:

|f(t, x, y(t))| ≤ hR,γ(t) (3.3)

for a.e. t ∈ I, every x ∈ R with |x| ≤ R and every function y ∈ Lp(I)
satisfying |y(t)| ≤ γ(t) a.e. on I.

(A3’) there exist a constant H > 0, a non-negative function μ ∈ Lq(I) (for
some 1 < q ≤ ∞), a non-negative function l ∈ L1(I), and a non-
negative measurable function ψ : (0,∞) → (0,∞), such that:

(�) 1/ψ ∈ L1
loc(0,∞) and

∫ ∞

1

1
ψ(t)

dt = ∞; (3.4)

(�) |f(t, x, y)| ≤ ψ
(
|Φ(a(t, x) y)|

)
·
(
l(t) + μ(t) |y|

q−1
q

)
; (3.5)

for a.e. t ∈ I, every x ∈ [α(t), β(t)] and every y ∈ R with |y| ≥ H.
Then, for every choice of ν1 ∈ [α(0), β(0)] and ν2 ∈ [α(T ), β(T )], the Dirichlet
problem (3.1) possesses at least one solution x ∈ W 1,p(I) (where p > 1 as is
assumption (A2)), further satisfying that:

α(t) ≤ x(t) ≤ β(t) for every t ∈ I. (3.6)

Moreover, if M > 0 is any real number, such that supI |α|, supI |β| ≤ M , it
is possible to find a real LM > 0, only depending on M , such that:

max
t∈I

∣
∣x(t)

∣
∣ ≤ M and max

t∈I

∣
∣Ax(t)

∣
∣ ≤ LM . (3.7)

The main idea behind the proof of Theorem 3.5 is to think of the Dirich-
let problem (3.1) as a particular case of an abstract BVPs of the form (2.1),
and then to apply the existence result contained in Theorem 2.5.

Unfortunately, we cannot directly apply our Theorem 2.5 to the problem
(3.1): in fact, in general, we cannot expect the (well-defined) functional:

W 1,p(I) � x 	→ Fx := f(t, x(t), x′(t)) ∈ L1(I)

to satisfy assumption (H3) (or, more precisely, estimate (2.2)).
Thus, following an approach similar to that exploited by [10,15], we

introduce a suitable truncated version of problem (3.1), to which Theorem 3.5
can apply.

To this end, to simplify the notation, we first fix some relevant constants
that we shall need for the proof of Theorem 3.5; henceforth, we suppose that
all the assumption in the statement of Theorem 3.5 are satisfied.
Let M > 0 be any real number, such that supI |α|, supI |β| ≤ M and let
H > 0 be the constant appearing in assumption (A3’); moreover, we define:

a0 := max
{
a(t, x) : (t, x) ∈ I × [−M,M ]

}
. (3.8)

Now, since Φ is increasing, we choose N > 0, such that:

Φ(N) > 0, Φ(−N) < 0 and

N > max
{

H,
2M

T

}
· a0;

(3.9)
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accordingly, we fix LM > 0 in such a way that (see (3.4)):

min
{ ∫ Φ(LM )

Φ(N)

1
ψ(s)

ds,

∫ −Φ(−LM )

−Φ(−N)

1
ψ(s)

ds

}
> ‖l‖L1 + ‖μ‖Lq (2M)

q−1
q .(3.10)

Notice that LM depends on M (and also on l and μ), but not on α, β nor on
ν1 and ν2.

We then consider the function:

γM := LM/h + |α′| + |β′| ∈ Lp(I),

and we introduce the following truncating operators:

T : W 1,p(I) −→ W 1,p(I), T (x)(t) :=

⎧
⎪⎨

⎪⎩

α(t), if x(t) < α(t);
x(t), if x(t) ∈ [α(t), β(t)];
β(t), if x(t) > β(t);

D : Lp(I) −→ L1(I), D(z)(t) :=

⎧
⎪⎨

⎪⎩

−γM (t), if z(t) < −γM (t);
z(t), if |z(t)| ≤ γM (t);
γM (t), if z(t) > γM (t).

We also consider the truncated function f∗ : I × R
2 → R defined by:

f∗(t, x, y) :=

⎧
⎪⎨

⎪⎩

f
(
t, β(t), β′(t)

)
+ arctan

(
x − β(t)

)
, if x > β(t);

f(t, x, y), if x ∈ [α(t), β(t)];
f
(
t, α(t), α′(t)

)
+ arctan

(
x − α(t)

)
, if x < α(t).

By means of the function f∗ and of the operators T and D, we are finally in
a position to introduce a “truncated version” of the Dirichlet problem: (3.1):

⎧
⎨

⎩

(
Φ

(
a
(
t, T (x)(t)

)
x′(t)

))′
= f∗

(
t, x(t),D

(
T (x)′(t)

))
, a.e. on I,

x(0) = ν1, x(T ) = ν2.

(3.11)

The next proposition shows that the “abstract” existence result in Theo-
rem 2.5 does apply to the “truncated” Dirichlet problem (3.11).

Proposition 3.6. Let the above assumptions and notation apply. Then, there
exists (at least) one solution x ∈ W 1,p(I) of the Dirichlet problem (3.11).

Proof. We consider the operators A and F defined as follows:

A : W 1,p(I) −→ C(I, R), Ax(t) := a
(
t, T (x)(t)

)
,

F : W 1,p(I) −→ L1(I), Fx(t) := f∗
(
t, x(t),D

(
T (x)′(t)

))
.

By means of these operators, the problem (3.11) can be re-written as:
⎧
⎨

⎩

(
Φ

(
Ax(t)x′(t)

))′
= Fx(t), a.e. on I,

x(0) = ν1, x(T ) = ν2.

We claim that A and F satisfy assumptions (H2) and (H3) in Theorem 2.5.
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First of all, since T is continuous with respect to the uniform topology
of C(I, R) (as is very easy to see) and since, by the choice of M , we have:

−M ≤ α(t) ≤ T (x)(t) ≤ β(t) ≤ M for every t ∈ I,

the uniform continuity of a on I × [−M,M ] implies that A is continuous from
W 1,p(I) (as a subspace of C(I, R)) to C(I, R). Moreover, by (3.8), one has:

Ax(t) = a
(
t, T (x)(t)

)
≤ a0 for every x ∈ W 1,p(I) and every t ∈ I.

Finally, by assumption (A2), there exists h ∈ C(I, R), such that:

(�) h ≥ 0 and 1/h ∈ Lp(I);

(�) Ax(t) ≥ h(t) for every x ∈ W 1,p(I) and every t ∈ I.
Thus, the operator A satisfies assumption (H2) in Theorem 2.5 (with the
choice h1 := h and h2(t) ≡ a0).

As for the functional F , by arguing exactly as in [7, Theorem 3.1] (and
by making crucial use of assumption (A2’)), one can recognize that F is
continuous from W 1,p(I) to L1(I) and that:

|Fx(t)| ≤ Θ(t) := hM,γM
(t) +

π

2
for every x ∈ W 1,p(I) and almost every t ∈ I (here, hM,γM

is the function
appearing in assumption (A2’) and corresponding to M and γM ∈ Lp(I)).
Since Θ ∈ L1(I) (as it follows from assumption (A2)′), we conclude that F
satisfies assumption (H3) in Theorem 2.5.

Gathering together all these facts, we are allowed to apply Theorem 2.5
to problem (3.11), which, therefore, admits a solution x ∈ W 1,p(I). �

We now turn to prove that any solution of (3.11) actually solves (3.1).

Proposition 3.7. Let the above assumptions and notation do apply, and let
x ∈ W 1,p(I) be any solution of the truncated problem (3.11). Then, the fol-
lowing facts hold:

(i) α(t) ≤ x(t) ≤ β(t) for every t ∈ I;
(ii) supI |x| ≤ M ;
(iii) |Ax(t)| ≤ LM for every t ∈ I;
(iv) |x′(t)| ≤ LM/h(t) ≤ γM (t) for a.e. t ∈ I.

Proof. Let x ∈ W 1,p(I) be any solution of (3.11). According to Remark 2.4,
we denote by Ax the unique continuous function on I, such that:

Ax(t) = a
(
x, T (x)(t)

)
x′(t) for a.e. t ∈ I.

Once we have proved that x(t) ∈ [α(t), β(t)] for all t ∈ I, we shall obtain:

Ax(t) = a(t, x(t))x′(t) for a.e. t ∈ I.

Let us then turn to prove statements (i)-to-(iii).
(i) Let us assume, by contradiction, that x(t) /∈ [α(t), β(t)] for some

t ∈ I; moreover, to fix ideas, let us suppose that x(t) < α(t).
Since, by assumptions, ν1 = x(0) ≥ α(0) and ν2 = x(T ) ≥ α(T ), it is

possible to find suitable points t1, t2, θ ∈ I, with t1 < θ < t2, such that:
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(a) x(θ) − α(θ) = min
t∈I

(
x(t) − α(t)

)
< 0;

(b) x(t1) − α(t1) = x(t2) − α(t2) = 0 and x < α on (t1, t2).
In particular, from (b), we infer that T (x) ≡ α on (t1, t2) and that:

f∗
(
t, x(t),D

(
T (x)′(t)

))
= f(t, α(t), α′(t)) + arctan

(
x(t) − α(t)

)

< f(t, α(t), α′(t)), for a.e. t ∈ (t1, t2).

As a consequence, since x solves the Dirichlet problem (3.11) and α is a lower
solution of the ODE (3.2), for almost every t ∈ (t1, t2), we obtain:

(
Φ

(
Ax(t)

))′
=

(
Φ

(
a
(
t, T (x)(t)

)
x′(t)

))′

= f∗
(
t, x(t),D

(
T (x)′(t)

))
< f(t, α(t), α′(t))

≤
(

Φ
(
a
(
t, α(t)

)
α′(t)

))′
=

(
Φ

(
Aα(t)

))′
.

(3.12)

We now introduce the subsets I1, I2 of I defined as follows:

I1 := {t ∈ (t1, θ) : x′(t) < α′(t)} and I2 := {t ∈ (θ, t2) : x′(t) > α′(t)}.

Since x < α on (t1, t2), it is readily seen that both I1 and I2 must have
positive measure; thus, it is possible to find τ1 ∈ I1 and τ2 ∈ I2, such that:

(�) 0 < h1(τi) ≤ a(τi, α(τi)) for i = 1, 2;

(�) Aα(τi) = a(τi, α(τi))α′(τi) for i = 1, 2 (see Remark 3.4);

(�) Ax(τi) = a(τi, T (x)(τi))x′(τi) = a(τi, α(τi))x′(τi) for i = 1, 2.
From this, by integrating both sides of inequality (3.12) on [τ1, θ], we get:

Φ
(
Ax(θ)

)
− Φ

(
a
(
τ1, α(τ1)

)
x′(τ1)

)
≤ Φ

(
Aα(θ)

)
− Φ

(
a
(
τ1, α(τ1)

)
α′(τ1)

)
;

hence, by the choice of τ1 and the fact that Φ is strictly increasing, one has:

Φ
(
Ax(θ)

)
− Φ

(
Aα(θ)

)
< 0. (3.13)

On the other hand, if we integrate both sides of (3.12) on [θ, τ2], we get:

Φ
(
a
(
τ2, α(τ2)

)
x′(τ2)

)
− Φ

(
Ax(θ)

)
≤ Φ

(
a
(
τ2, α(τ2)

)
α′(τ2)

)
− Φ

(
Aα(θ)

)
,

and thus, by the choice of τ2 and again the monotonicity of Φ, we obtain:

Φ
(
Ax(θ)

)
− Φ

(
Aα(θ)

)
> 0.

This is clearly in contradiction with (3.13), hence, x ≥ α on I. By arguing
analogously, one can prove that x ≤ β on I, and statement (i) is established.
(ii) By statement (i) and the choice of M , we immediately get:

−M ≤ α(t) ≤ x(t) ≤ β(t) ≤ M for every t ∈ I.

(iii) We split the proof of this statement into two steps.
Step I: We begin by showing that, if N > 0 is as in (3.9), then:

min
t∈I

∣
∣Ax(t)

∣
∣ ≤ N. (3.14)
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We argue again by contradiction and, to fix ideas, we assume that:

Ax(t) = a
(
t, x(t)

)
x′(t) > N for a.e. t ∈ I.

By integrating both sides of this inequality on [0, T ], we get:
∫ T

0

Ax(t) dt =
∫ T

0

a(t, x(t))x′(t) dt > NT ;

from this, by statement (ii), (3.8) and the choice of N (see (3.9)), we obtain:

NT <

∫ T

0

a(t, x(t))x′(t) dt ≤ a0 ·
∫ T

0

x′(t) dt

=
(
x(T ) − x(0)

)
· a0 ≤ (2M) · a0 < NT.

This is clearly a contradiction, and hence, Ax ≤ N on I. By arguing analo-
gously, one can also prove that Ax ≥ −N on I, and (3.14) is established.

Step II: We now turn to prove statement (iii). To this end, arguing
once again by contradiction, we assume that there exists t ∈ I, such that:

∣
∣Ax(t)

∣
∣ > LM ;

moreover, to fix ideas, we suppose that Ax(t) > LM .
Since, by definition, LM > N , from Step I and Remark 3.4, we infer the

existence of two points t1, t2 ∈ I, with t1 < t2, such that (for example):

(∗) Ax(t1) = N and Ax(t2) = LM ;

(∗∗) 0 < N < Ax(t) < LM for every t ∈ (t1, t2);

from this, by statement (ii), (3.8) and the choice of N (see (3.9)), we obtain:

0 < H <
N

a0
< x′(t) <

LM

h(t)
≤ γM (t) for a.e. t ∈ (t1, t2). (3.15)

We explicitly notice that, since Φ is increasing and Φ(N) > 0 (by the choice
of N , see (3.9)), from (∗∗), we also infer that:

Φ
(
Ax(t)

)
> Φ(N) > 0 for all t ∈ (t1, t2). (3.16)

Now, by definition of D, we deduce from (3.15) that D(x′) = x′ a.e. on (t1, t2);
moreover, by statement (i) and the definition of f∗, we have:

f∗
(
t, x(t),D

(
T (x)′(t)

))
= f(t, x(t), x′(t)) for a.e. t ∈ (t1, t2).

Thus, since x(t) ∈ [α(t), β(t)] for every t ∈ I (by statement (i)) and

x′(t) > H > 0 for a.e. t ∈ (t1, t2)

(again by (3.15)), we are entitled to apply estimate (3.5), obtaining (remind
that x solves (3.11), and see (∗∗) and (3.16))
∣
∣
∣
∣
(
Φ

(
Ax(t)

))′∣∣
∣
∣ =

∣
∣
∣
∣
(
Φ

(
a(t, x(t))x′(t)

))′∣∣
∣
∣ =

∣
∣f(t, x(t), x′(t))

∣
∣

= ψ
(
Φ

(
Ax(t)

))
·
(
l(t) + μ(t) (x′(t))

q−1
q

) (
a.e. on (t1, t2)

)
.
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In particular, by exploiting this inequality, we obtain:
∫ Φ(LM )

Φ(N)

1
ψ(s)

ds =
∫ Φ(Ax(t2))

Φ(Ax(t1))

1
ψ(s)

ds

≤
∫ t1

t0

(
Φ

(
Ax(t)

))′

ψ
(
Φ

(
Ax(t)

)) dt ≤
∫ t1

t0

(
l(t) + μ(t) (x′(t))

q−1
q

)
dt

(
by Hölder′s inequality

)

≤ ‖l‖L1 + ‖μ‖Lq ·
( ∫ t1

t0

x′(t) dt

) q−1
q

≤ ‖l‖L1 + ‖μ‖Lq ·
(
x(t1) − x(t0)

) q−1
q

(
by statement (ii)

)

≤ ‖l‖L1 + ‖μ‖Lq · (2M)
q−1

q .

This is in contradiction with the choice of LM (see (3.10)), and hence, Ax ≤
LM on I. Analogously, one can prove that Ax ≥ −LM on I and statement
(iii) is completely proved.
(iv) From statement (iii) and assumption (A2), we immediately infer that:

|x′(t)| ≤ LM

a(t, x(t))
≤ LM

h(t)
≤ γM (t) for almost every t ∈ I,

and the proof is finally complete. �
By combining Propositions 3.6 and 3.7, we can prove Theorem 3.5.

Proof of Theorem 3.5. First of all, by Proposition 3.6, there exists (at least)
one solution x ∈ W 1,p(I) of the “truncated” Dirichlet problem (3.11); more-
over, by statements (i) and (iv) of Proposition 3.7 (and the very definitions
of the operators T and D), for almost every t ∈ I, we obtain:

(
Φ

(
a
(
t, x(t)

)
x′(t)

))′
=

(
Φ

(
a
(
t, T (x)(t)

)
x′(t)

))′

= f∗
(
t, x(t),D

(
T (x)′(t)

))
= f(t, x(t), x′(t)).

Thus, x is actually a solution of the Dirichlet problem (3.1).
To complete the demonstration of the theorem, we show that x satisfies

(3.6) and (3.7).
As for (3.6), it is precisely statement (i) of Proposition 3.7; estimate (3.7),
instead, follows from statements (ii) and (iii) of the same proposition. �
Some examples. We close the section with a few illustrating examples, in
which we consider a generic function a(t, x) satisfying assumption (A2). We
explicitly point out that (A2) is verified, e.g., in the following special cases:
(1) when a(t, x) has a product structure:

a(t, x) = λ(t) · b(x),

where λ : I → R is a continuous non-negative function on I, such that
1/λ is in Lp(I) (for some p > 1) and b ∈ C(R) is such that infR b > 0;
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(2) when a(t, x) is a sum:

a(t, x) = h(t) + b(x),

where h : I → R is a continuous non-negative function on I, such that
1/h is in Lp(I) (for some p > 1) and b ∈ C(R, R) is non-negative.

In the next Example 3.8, the growth of the right-hand side f with respect
to the variable y is linear, and this allows the choice ψ ≡ 1 in the Wintner–
Nagumo condition (3.5). Thus, condition (3.5) does not require any relation
among the differential operator Φ, the function a appearing inside Φ, and f .

Example 3.8. Let us consider the Dirichlet problem:
⎧
⎨

⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= σ(t)(x(t) + ρ(t)) + g(x(t))x′(t)

x(0) = ν1, x(T ) = ν2,
(3.17)

where ϕ, a, σ, ρ and g satisfy the following assumptions:

(�) Φ : R → R is a generic strictly increasing homeomorphism;

(�) a ∈ C(I × R, R) satisfies assumption (A2);

(�) σ ∈ L1(I) and σ ≥ 0 a.e. on I;

(�) ρ ∈ C(I) and g ∈ C(R, R) are generic.
We aim to show that our Theorem 3.5 can be applied to problem (3.17). To
this end, we consider the function f defined as follows:

f : I × R
2 → R, f(t, x, y) := σ(t)(x + ρ(t)) + g(x)y.

Obviously, f is a Carathéodory function; moreover, it is very easy to recognize
that f satisfies assumption (A2)′. Indeed, let R > 0 be arbitrarily fixed and
let γ be a non-negative function in Lp(I); setting:

MR := max
[−R,R]

|g|,

we then have:
∣
∣f(t, x, y(t))

∣
∣ ≤ σ(t)

(
R + |ρ(t)|

)
+ MR · γ(t) =: hR,γ(t),

for every x ∈ R with |x| ≤ R and every y ∈ L1(I) satisfying |y(t)| ≤ γ(t) for
almost every t ∈ I. Since the function hR,γ is non-negative and belongs to
∈ L1(I) (by the assumptions on σ, ρ and γ), we conclude that f fulfills (3.3)
in assumption (A2)′, as claimed.

We now observe that, setting N := maxI |ρ|, the constant functions:

α(t) := −N β(t) := N
(

for t ∈ I
)

are, respectively, a lower and a upper solution of (3.2), such that α ≤ β on
I; hence, assumption (A1)′ is satisfied. Furthermore, since we have:

|f(t, x, y)| ≤ (2N)σ(t) +
(

max
x∈[−N,N ]

|g(x)|
)

· |y|

for every t ∈ I, every |x| ≤ N , and every y ∈ R, we conclude that f also
satisfies assumption (A3)′ with the choice (here, MN := max[−N,N ] |g|):

H := 1, ψ ≡ 1, l(t) := 2N σ(t), μ(t) := MN and q = ∞.
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We are then entitled to apply Theorem 3.5, which ensures that there exists
(at least) one solution of problem (3.17) for every fixed ν1, ν2 ∈ [−N,N ].

In the next Example 3.9, we give an application of Theorem 3.5 for a rather
general right-hand side, with possible superlinear growth with respect to u′.

Example 3.9. Let us consider the following Dirichlet problem:
⎧
⎨

⎩

(
Φr

(
a(t, x(t))x′(t)

))′
= σ(t) · g(x(t)) · |x′(t)|δ

u(0) = ν1, u(T ) = ν2,
(3.18)

where Φr, a, σ, g and the exponent δ satisfy the following assumptions:

(�) Φr : R → R is the standard r-Laplacian, that is:

Φr(ξ) := |ξ|r−2 · ξ
(
for a suitable r > 1

)
;

(�) a ∈ C(I × R, R) and there exists h ∈ C(I, R), such that:
1. h ≥ 0 on I and 1/h ∈ Lp(I) (for some p > 1);

2. a(t, x) ≥ h(t) for every t ∈ I and every x ∈ R.

(�) σ ∈ Lτ (I) for a suitable τ > 1 satisfying the relation:
1
τ

+
r − 1

p
< 1; (3.19)

(�) g ∈ C(R, R) is a generic function;

(�) δ is a positive real constant satisfying the relation:

δ ≤ 1 − 1
τ

+ (r − 1)
(

1 − 1
p

)
. (3.20)

We aim to show that our Theorem 3.5 can be applied to problem (3.9). To
this end, we consider the function f defined as follows:

f : I × R
2 → R, f(t, x, y) := σ(t) · g(x) · |y|δ.

Obviously, f is a Carathéodory function; moreover, it is not difficult to recog-
nize that f satisfies assumption (A2)′. Indeed, let R > 0 be arbitrarily fixed
and let γ be a non-negative function in Lp(I); setting

MR := max
[−R,R]

|g|,

we then have:
∣
∣f(t, x, y(t))

∣
∣ ≤ MR · |σ(t)| · (γ(t))δ =: hR,γ(t)

for every |x| ≤ R and every y ∈ L1(I), such that |y(t)| ≤ γ(t) a.e. on I. Now,
by combining (3.19) with (3.20), we readily see that:

δ <

(
1 − 1

τ

)
p;

from this, by Hölder’s inequality (and the assumptions on σ and γ), we infer
that hR,γ (which is non-negative on I) belongs to L1(I), whence f satisfies



53 Page 20 of 34 S. Biagi et al. JFPTA

(A2)′. To prove that also assumptions (A1)′ and (A3)′ are satisfied, we first
notice that, if N > 0 is arbitrary, the constant functions:

α(t) := −N β(t) := N
(
for t ∈ I

)

are, respectively, a lower and a upper solution of (3.2) such that α ≤ β on I;
hence, assumption (A1)′ is fulfilled. Moreover, by (3.20), we have:

δ ≤ (r − 1) +
q − 1

q
, where q :=

τ p

p + τ (r − 1)
> 1.

From this, setting MN := max[−N,N ] |g|, we obtain:
∣
∣f(t, x, y)

∣
∣ ≤ MN · |σ(t)| · |y|δ ≤ MN · |σ(t)| · |y|r−1 · |y|

q−1
q

=
∣
∣Φ(a(t, x)y)

∣
∣ ·

(
MN · |σ(t)|
(a(t, x))r−1

)
|y|

q−1
q

(
since a(t, x) ≥ h(t) for every (t, x) ∈ I × R

)

≤
∣
∣Φ(a(t, x)y)

∣
∣ ·

(
MN · |σ(t)|
(h(t))r−1

)
|y|

q−1
q

for a.e. t ∈ I, every x ∈ R with |x| ≤ N and every y ∈ R satisfying |y| ≥ 1.
Thus, if we are able to prove that

t 	→ |σ(t)|
(h(t))r−1

∈ Lq(I), (3.21)

we can conclude that f satisfies assumption (A3)′ with the choice

H := 1, ψ(s) := s, l(t) := 0, μ(t) :=
MN · |σ(t)|
(h(t))r−1

and q as above. On the other hand, the needed (3.21) is an easy consequence
of Hölder’s inequality, assumption (3.19) and of the fact that 1/h ∈ Lp(I).

We are then entitled to apply Theorem 3.5, which ensures the existence
of (at least) one solution of the Dirichlet problem (3.18) for every ν1 ν2 ∈ R.

4. General nonlinear boundary conditions

The main aim of this last section is to prove the solvability of general boundary
value problems associated with the (possibly singular) differential equation:

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I. (4.1)

(here, Φ, a and f satisfy assumptions (A1)-to-(A3) in Sect. 3).
As a particular case, we shall obtain existence results for periodic BVPs

and for Sturm–Liouville-type problems (associated with (4.1)).
To be more precise, taking for fixed all the notation introduced so far,

we aim to study the following general BVPs (associated with (4.1)):
⎧
⎪⎪⎨

⎪⎪⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

g(x(0), x(T ),Ax(0),Ax(T )) = 0,
x(T ) = ρ(x(0)).

(4.2)
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Here, ρ : R → R and g : R
4 → R satisfy the following general assumptions:

(G1) ρ ∈ C(R, R) and is increasing on R;
(G2) g ∈ C(R4, R) and, for every fixed u, v ∈ R, it holds that:

(G2)1 g(u, v, ·, z) is increasing for every fixed z ∈ R;
(G2)2 g(u, v, w, ·) is decreasing for every fixed w ∈ R.

We now state one of the main existence results of this section.

Theorem 4.1. Let us assume that all the hypotheses of Theorem 3.5 are sat-
isfied, and that g and ρ fulfill the assumptions (G1)–(G2) introduced above.
Moreover, if α, β ∈ W 1,p(I) are as in assumption (A1′), we suppose that:
{

g(α(0), α(T ),Aα(0),Aα(T )) ≥ 0,

α(T ) = ρ(α(0))

{
g(β(0), β(T ),Aβ(0),Aβ(T )) ≤ 0,

β(T ) = ρ(β(0)).
(4.3)

Finally, let us assume that the function a satisfies the following condition:

a(0, x) = 0 and a(T, x) = 0 for every x ∈ R.

Then, the problem (4.2) possesses a solution x ∈ W 1,p(I), such that:

α(t) ≤ x(t) ≤ β(t) for every t ∈ I. (4.4)

Furthermore, if M > 0 is any real number, such that supI |α|, supI |β| ≤ M
and LM > 0 is as in Theorem 3.5 (see (3.10)), one has:

max
t∈I

∣
∣x(t)

∣
∣ ≤ M and max

t∈I

∣
∣Ax(t)

∣
∣ ≤ LM . (4.5)

The basic idea behind the proof of Theorem 4.1, inspired by [3] and
already exploited in [15], is to think of the boundary value problem (4.2)
as a “superposition” of Dirichlet problems to which our existence result in
Theorem 3.5 apply. Following this approach, we first establish a compactness-
type result for the solutions of the ODE (4.1).

Proposition 4.2. For every n ∈ N, let xn ∈ W 1,p(I) be a solution of
(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I. (4.6)

We assume that, together with (A1)–(A3), f satisfies assumption (A2′) of
Theorem 3.5; moreover, we suppose that there exist M,L > 0, such that:

sup
I

|xn| ≤ M and sup
I

|Axn
| ≤ L for every n ∈ N. (4.7)

It is then possible to find a sub-sequence {xnk
}k∈N of {xn}n∈N and a solution

x0 ∈ W 1,p(I) of Eq. (4.1) with the following properties:

(1) xnk
(t) → x0(t) for every t ∈ I as n → ∞;

(2) Axnk
(t) → Ax0(t) for every t ∈ I as n → ∞.

Proof. For every natural n, we set zn :=
(
Φ(Axn

)
)′. Since xn is a solution of

(4.6), by (4.7) and the fact that f satisfies (A2′), we have (see also (3.3)):
∣
∣zn(t)

∣
∣ =

∣
∣f(t, xn(t), x′

n(t))
∣
∣ ≤ hM,γ(t) for a.e. t ∈ I, (4.8)
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where γ = L/h and hM,γ ∈ L1(I) is the function appearing in assumption
(A2′) and corresponding to M and γ. Moreover, again by (4.7), one has:

|x′
n(t)| ≤ L

h(t)
= γ(t) for a.e. t ∈ I. (4.9)

As a consequence, both {zn}n and {x′
n}n are uniformly integrable in L1(I).

Then, by Dunford–Pettis Theorem (see, e.g., [2]), there exist v, w ∈ L1(I),
such that, up to a sub-sequence, x′

n ⇀ v and zn ⇀ w in L1(I) as n → ∞.
Now, since the sequence {xn(0)}n is bounded in R (again by (4.7)),

we can assume that xn(0) converges to some ν0 ∈ R as n → ∞; from this,
reminding that x′

n ⇀ v in L1(I), we get:

xn(t) = xn(0) +
∫ t

0

x′
n(s) ds −→

n→∞ ν0 +
∫ t

0

v(s) ds =: x0(t) ∀ t ∈ I.(4.10)

Notice that, by its very definition, x0 satisfies the following properties:

(a) x0 is absolutely continuous on I and x′
0 = v ∈ L1(I);

(b) supI |x0| ≤ M (this follows also from (4.7)) .
Thus, to complete the demonstration, we need to prove that x0 is a solution
of the equation (4.6) and that Axn

→ Ax0 point-wise on I as n → ∞.
First of all, since also the sequence {Axn

(0)}n is bounded in R (again
by (4.7)), we can suppose that Axn

(0) → ν′
0 as n → ∞ for some ν′

0 ∈ R;
thus, since zn ⇀ w in L1(I), we have:

Φ
(
Axn

(t)
)

= Φ
(
Axn

(0)
)

+
∫ t

0

z′
n(s) ds −→

n→∞ Φ(ν′
0) +

∫ t

0

w(s) ds.

As a consequence, by the continuity of Φ−1, we obtain:

Axn
(t) −→

n→∞ Φ−1

(
Φ(ν′

0) +
∫ t

0

w(s) ds

)
=: U(t) for every t ∈ I. (4.11)

Notice that, by definition, U ∈ C(I, R) and it satisfies:

(a)1 Φ ◦ U is absolutely continuous on I and (Φ ◦ U)′ = w ∈ L1(I);

(b)1 supI |U| ≤ L (this follows also from (4.7)) .
Now, since a is continuous on I × R, we derive from (4.10) that a(t, xn(t))
converges to a(t, x0(t)) for every t ∈ I as n → ∞; thus, the above (4.11)
(together with the fact that a(t, x) ≥ h(t) > 0 for a.e. t ∈ I) gives:

x′
n(t) −→

n→∞
1

a(t, x0(t))
U(t) for a.e. t ∈ I. (4.12)

Taking into account (4.9) and the fact that 1/h ∈ Lp(I) (see assumption
(A2)), it is easy to recognize that:

x′
n → U

a(·, x0(·))
also in L1(I);

on the other hand, since we already know that x′
n ⇀ v in L1(I) as n → ∞,

we necessarily have:

v(t) =
1

a(t, x0(t))
U(t) a.e. on I. (4.13)
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From this, by reminding that v = x′
0 (see (a)), we infer that:

(�) x′
0 = v ∈ Lp(I), whence x0 ∈ W 1,p(I) (as |U/a(·, x0(·))| ≤ L/h);

(�) a(t, x0)x′
0 = U a.e. on I;

(�) Φ ◦
(
a(t, x0)x′

0

)
= Φ ◦ U ∈ W 1,1(I) and (see (a)1):

(
Φ(a(t, x0)x′

0)
)′ = w.

We now turn to prove that x0 solves the ODE (4.6). To this end, we
observe that, by (4.12) and (4.13), we have x′

n(t) → v(t) = x′
0(t) for a.e.

t ∈ I; as a consequence, since xn is a solution of (4.6) for every n and f
is a Carathéodory function (see (A3)), we obtain (remind that xn → x0

point-wise on I):

zn =
(
Φ

(
Axn

))′
= f(t, xn(t), x′

n(t)) −→
n→∞ f(t, x0(t), x′

0(t)) for a.e. t ∈ I.

On the other hand, by (4.8), we have that zn → f(t, x0(t), x′
0(t) also in L1(I);

since we already know that zn ⇀ w in L1(I), we conclude that:
(
Φ(a(t, x0(t))x′

0(t))
)′ = w(t) = f(t, x0(t), x′

0(t)) for a.e. t ∈ I,

that is, x0 is a solution of (4.6). Finally, since U is a continuous function on
I, such that U = a(t, x0)x′

0 a.e. on I, we have U = Ax on I and, by (4.11):

Axn
(t) −→

n→∞ Ax(t) for every t ∈ I.

This ends the proof. �

We also need the following technical lemma.

Lemma 4.3. Let α, β ∈ W 1,p(I) be, respectively, a lower and a upper solution
of Eq. (4.1), such that α ≤ β. Moreover, let us assume that:

a(0, x) = 0 and a(T, x) = 0 for every x ∈ R.

Then, the following facts hold true:

(i) if α(0) = β(0), then Aα(0) ≤ Aβ(0);
(ii) if α(T ) = β(T ), then Aα(T ) ≥ Aβ(T ).

Proof. We only prove statement (i), since (ii) is analogous.
First of all, since both a(0, α(0)) and a(0, β(0)) are different from 0 (by

assumption), it is possible to find δ > 0, such that, for a.e. t ∈ [0, δ], we have:

α′(t) =
Aα(t)

a(t, α(t))
=: u1(t) and β′(t) =

Aβ(t)
a(t, β(t))

=: u2(t);

moreover, both u1 and u2 are continuous on [0, δ]. Let us now assume, by
contradiction, that Aα(0) > Aβ(0). Since, by assumption, α(0) = β(0) (and
a is non-negative on I × R), there exists δ′ < δ, such that:

α′(t) = u1(t) > u2(t) = β′(t) for a.e. t ∈ [0, δ′];
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thus, by integrating this inequality on [0, δ′], we get:

α(t) = α(0) +
∫ t

0

α′(s) ds = β(0) +
∫ t

0

α′(s) ds

> β(0) +
∫ t

0

β′(s) ds = β(t) ( for every t ∈ [0, δ′],

which contradicts the fact that α ≤ β on I. This ends the proof. �

We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let ν ∈ [α(0), β(0)] be fixed. Since, by assumption, ρ
is increasing on R and α, β satisfy (4.3), we have ρ(ν) ∈ [α(T ), β(T )]; as a
consequence, by the existence result in Theorem 3.5, the Dirichlet problem

(Dν)

⎧
⎨

⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

x(0) = ν, x(T ) = ρ(ν)

admits a solution xν , such that α ≤ xν ≤ β on I. Moreover, if M > 0 is such
that supI |α|, supI |β| ≤ M and LM > 0 is as in Theorem 3.5, we have:

(∗) sup
t∈I

|xν(t)| ≤ M and sup
t∈I

|Axν
(t)| ≤ LM .

We then consider the following set:

V :=
{

ν ∈ [α(0), β(0)] : ∃ a solution xν ∈ W 1,p(I) of (Dν) s.t. α ≤ xν ≤ β,

xν satisfies (∗) and g(xν(0), xν(T ),Axν
(0),Axν

(T )) ≥ 0
}

.

Claim 1. We have ν := α(0) ∈ V . In fact, by Theorem 3.5, there exists a
solution xν ∈ W 1,p(I) of (Dν), such that:

α ≤ xν ≤ β onI,

and satisfying (∗); in particular, we have:

xν(0) = ν = α(0).

From this, by applying Lemma 4.3 with xν in place of β (notice that, xν

being a solution of (Dν), it is also a upper solution of (4.1)), we get:

Aα(0) ≤ Axν
(0).

Analogously, since we have (remind that α satisfies (4.3)):

xν(T ) = ρ(ν) = ρ(α(0)) = α(T ),

again by Lemma 4.3 (with β replaced by xν), we have:

Aα(T ) ≥ Axν
(T ).

Thus, by (4.3) and assumption (G2), we obtain:

g(xν(0), xν(T ),Axν
(0),Axν

(T )) ≥ g(α(0), α(T ),Aα(0),Aα(T )) ≥ 0.

This proves that ν ∈ V , as claimed. In particular, V = ∅.
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Claim 2. If ν := supV , we have ν ∈ V . In fact, if ν = α(0), we have already
proved in Claim I that ν ∈ V ; if, instead, ν > α(0), we choose a sequence
{νn}n ⊆ V such that νn → ν as n → ∞ and νn ≤ ν for every n. Since
{νn}n ⊆ V , there exists a solution xn ∈ W 1,p(I) of (Dνn), show that:

(a) α ≤ xn ≤ β on I;

(b) xn satisfies (∗);

(c) g(xn(0), xn(T ),Axn
(0),Axn

(T )) ≥ 0.

On account of (b), we can apply Proposition 4.2, which provides us with
a solution x0 ∈ W 1,p(I) of (4.1), such that (up to a sub-sequence):

xn(t) → x0(t) and Axn
(t) → Ax0(t) for every t ∈ I.

Now, since νn → ν and ρ is continuous, it is readily seen that x0 is a solution
of (Dν); moreover, since xn satisfies (∗) and α ≤ xn ≤ β on I for every n ∈ N,
then the same is true of x0. Finally, by (c) and the continuity of the function
g on whole of R

4 [see assumption (G2)], we conclude that:

g(x0(0), x0(T ),Ax0(0),Ax0(T ))

= lim
n→∞ g(xn(0), xn(T ),Axn

(0),Axn
(T )) ≥ 0,

and this proves that ν ∈ V .
With Claims I and II at hand, we now prove the existence of a solution
for (4.2). In fact, let ν = supV ∈ [α(0), β(0)] and let xν ∈ W 1,p(I) be a
corresponding solution of (Dν) satisfying (�) and such that:

(i) α ≤ xν ≤ β on I;
(ii) g(xν(0), xν(T ),Axν (0),Axν (T )) ≥ 0.

If ν = β(0), we have xν(0) = β(0) and (by (4.3)):

xν(T ) = ρ(β(0)) = β(T );

on the other hand, since we also know that x0 ≤ β on I, from Lemma 4.3
(with α replaced by xν , which is a solution of (Dν)), we infer that:

Axν
(0) ≤ Aβ(0) and Axν

(T ) ≥ Aβ(T ).

Hence, by (ii), the monotonicity of g [see (G2)], and (4.3), we obtain:

0 ≤ g(xν(0), xν(T ),Axν
(0),Axν

(T )) = g(β(0), β(T ),Axν
(0),Axν

(T ))

≤ g(β(0), β(T ),Aβ(0),Aβ(T )) ≤ 0,

and this proves that xν is a solution of (4.2) satisfying (4.4) and (4.5).
If, instead ν < β(0), we choose a sequence {μm}m ⊆ [α(0), β(0)], such

that μm → ν as m → ∞ and μm > ν for every m. Since xν is a solution
of (Dν) satisfying (i)–(ii) above, we can think of xν and β as, respectively, a
lower and a upper solution of (4.1) satisfying (A1′) in Theorem 3.5; moreover,
by the very choice of M > 0, we also have that:

sup
t∈I

|xν(t)|, sup
t∈I

|β(t)| ≤ M.

Hence, for every m, there exists a solution um of (Dμm), such that:

• α ≤ xν ≤ um ≤ β on I;
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• supI |um| ≤ M and supI |Aum
| ≤ LM .

In particular, um satisfies (∗) for any m. We can then apply Proposition 4.2,
which provides us with a solution u0 of (4.1), such that (up to a sub-
sequence):

um(t) → u0(t) and Aum
(t) → Au0(t) for every t ∈ I.

Since μm → ν and ρ is continuous, u0 solves (Dν); hence:

u0(T ) = ρ(u0(0)).

We now observe that, since μm > ν = supV , then μm /∈ V ; as a consequence,
since α ≤ um ≤ β on I and um satisfies (∗) for every m, we necessarily have:

g(um(0), um(T ),Aum
(0),Aum

(T )) < 0.

From this, by the continuity of g (see assumption (G1)), we get:

g(u0(0), u0(T ),Au0(0),Au0(T )) ≤ 0. (4.14)

On the other hand, since both xν and u0 solve (Dν), we have:

u0(0) = xν(0) = ν and u0(T ) = xν(T ) = ρ(ν);

moreover, since um ≥ xν on I for every m, then the same is true of u0. From
this, by exploiting once again Lemma 4.3 (with α = xν and β = um, which
are solutions of (Dν)), we infer that:

Au0(0) ≥ Ax0(0) and Au0(T ) ≤ Ax0(T ).

By (4.14), and by monotonicity of g and (ii) above, we then obtain:

0 ≥ g(u0(0), u0(T ),Au0(0),Au0(T )) = g(xν(0), xν(T ),Au0(0),Au0(T ))

≥ g(xν(0), xν(T ),Axν
(0),Axν

(T )) ≥ 0,

and this shows that u0 solves (4.2). Finally, since α ≤ um ≤ β on I and um

satisfies (∗) for every m, we conclude that u0 satisfies (4.4)-(4.5). �
As a particular case of Theorem 4.1, we have the following result.

Corollary 4.4. Let us assume that all the hypotheses of Theorem 3.5 are sat-
isfied; moreover, if α, β ∈ W 1,p(I) are as in assumption (A1′), we suppose
that the following inequality hold:

{
Aα(0) ≥ Aα(T ),
α(T ) = α(0),

{
Aβ(0) ≤ Aβ(T ),
β(T ) = β(0).

Finally, let us assume that the function a satisfies the condition:

a(0, x) = 0 and a(T, x) = 0 for every x ∈ R.

Then, there exists (at least) one solution x ∈ W 1,p(I) of:
⎧
⎪⎪⎨

⎪⎪⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

Ax(0) = Ax(T ),
x(0) = x(T ).
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Proof. It is a straightforward consequence of Theorem 4.1 applied to:

ρ(r) = r and g(u, v, w, z) = w − z,

which trivially satisfy assumptions (G1) and (G2). This ends the proof. �

We conclude the present section by turning our attention to Sturm–Lio-
uville-type and Neumann-type problems associated with the ODE (4.1).
To be more precise, we consider the following boundary value problems:

⎧
⎨

⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

p(x(0),Ax(0)) = 0, q(x(T ),Ax(T )) = 0.
(4.15)

Here, the functions p, q : R
2 −→ R satisfy the following general assumptions:

(S1) p ∈ C(R2, R) and, for every s ∈ R, the map p(s, ·) is increasing on R;
(S2) q ∈ C(R2, R) and, for every s ∈ R, the map q(s, ·) is decreasing on R.
The following theorem is the second main result of this section.

Theorem 4.5. Let us assume that all the hypotheses of Theorem 3.5 are sat-
isfied, and that the functions p and q fulfill the assumptions (S1)–(S2) in-
troduced above. Moreover, if α, β ∈ W 1,p(I) are as in assumption (A1′), we
suppose that the following inequality holds:

{
p(α(0),Aα(0)) ≥ 0,

q(α(T ),Aα(T )) ≥ 0;

{
p(β(0),Aβ(0)) ≤ 0,

q(β(T ),Aβ(T )) ≤ 0.
(4.16)

Finally, let us assume that a satisfies the “compatibility” condition:

a(0, x) = 0 and a(T, x) = 0 for every x ∈ R.

Then, the problem (4.15) possesses one solution x ∈ W 1,p(I), such that:

α(t) ≤ x(t) ≤ β(t) for every t ∈ I. (4.17)

Furthermore, if M > 0 is any real number, such that supI |α|, supI |β| ≤ M
and LM > 0 is as in Theorem 3.5 (see (3.10)), then:

max
t∈I

∣
∣x(t)

∣
∣ ≤ M and max

t∈I

∣
∣Ax(t)

∣
∣ ≤ L. (4.18)

The proof of Theorem 4.5 relies on the following lemma.

Lemma 4.6. Let the assumptions and the notation of Theorem 4.5 apply.
Then, for every fixed ν ∈ [α(T ), β(T )], the boundary value problem

(Dν)

⎧
⎪⎪⎨

⎪⎪⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

p(x(0),Ax(0)) = 0,
x(T ) = ν.

possesses at least one solution x ∈ W 1,p(I), such that α ≤ x ≤ β on I.
Furthermore, if M and LM are as in the statement of Theorem 4.5, then:

sup
t∈I

|x(t)| ≤ M and sup
t∈I

|Ax(t)| ≤ LM . (4.19)

Proof. We fix ν ∈ [α(T ), β(T )] and we consider the following functions:
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(�) ρ : R → R, ρ(r) := ν;

(�) g : R
4 → R, g(u, v, w, z) := p(u,w).

Then, by means of these functions, we can re-write the problem (Dν) as:
⎧
⎪⎪⎨

⎪⎪⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

g(x(0), x(T ),Ax(0),Ax(T )) = 0,
x(T ) = ρ(x(0)).

Now, taking into account (S1), it is readily seen that ρ and g satisfy, respec-
tively, (G1) and (G2) in the statement of Theorem 4.1; thus, to prove the
lemma, it suffices to show the existence of a lower and a upper solution for
(4.1) satisfying (A1′) and (4.3) (with the above choices of ρ and g).

To this end, we first observe that, by assumption, α and β are, respec-
tively, a lower and a upper solution for (4.1) satisfying (A1′) (that is, α ≤ β
on I); as a consequence, by Theorem 3.5, the Dirichlet problem

(D)1

⎧
⎨

⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

x(0) = α(0), x(T ) = ν

possesses (at least) one solution x1 ∈ W 1,p(I), such that α ≤ x1 ≤ β on I.
Moreover, if M and LM are as in the statement of Theorem 4.1, we have:

sup
t∈I

|x1(t)| ≤ M and sup
t∈I

|Ax1(t)| ≤ LM . (4.20)

We claim that the function x1, which is obviously a lower solution of (4.1),
satisfies the first assumption in (4.3) (with g as above). In fact, since:

x1(0) = α(0) and x1 ≥ α on I,

from Lemma 4.3 (with x1 in place of β), we infer that:

Ax1(0) ≥ Aα(0);

as a consequence, by assumption (S1) and (4.16), we obtain:

g(x1(0), x1(T ),Ax1(0),Ax1(T )) = p(x1(0),Ax1(0))

= p(α(0),Ax1(0)) ≥ p(α(0),Aα(0)) ≥ 0.

Furthermore, since x1 solves (D)1, we have x1(T ) = ν = ρ(x1(0)), and this
proves that x1 satisfies the first assumption in (4.3).

We now turn to prove the existence of a upper solution x2 of (4.1), such
that x2 ≥ x1 on I and satisfying the second assumption in (4.3).

First of all, we notice that x1 and β are, respectively, a lower and a
upper solution for (4.1) such that x1 ≤ β on I; moreover:

ν = x1(T ) ∈ [x1(T ), β(T )].

Finally, by (4.20) and the choice of M , we have:

sup
t∈I

|x1(t)|, sup
t∈I

|β(t)| ≤ M.
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As a consequence, by Theorem 3.5, the Dirichlet problem

(D)2

⎧
⎨

⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

x(0) = β(0), x(T ) = ν

has a solution x2 ∈ W 1,p(I), such that x1 ≤ x2 ≤ β on I, further satisfying:

sup
t∈I

|x2(t)| ≤ M and sup
t∈I

|Ax2(t)| ≤ LM , (4.21)

for the same M > 0 fixed at beginning (and LM as in Theorem 3.5). We
claim that x2, which is obviously a upper solution of (4.1), satisfies the second
assumption in (4.3). In fact, since

x2(0) = β(0) andx2 ≤ β on I,

by exploiting Lemma 4.3 (with x2 in place of α), we get:

Ax2(0) ≤ Aβ(0);

thus, by assumption (G2) and again (4.16), we have:

g(x2(0), x2(T ),Ax2(0),Ax2(T )) = p(x2(0),Ax2(0))

= p(β(0),Ax2(0)) ≤ p(β(0),Aβ(0)) ≤ 0.

Furthermore, since x2 solves (D2), one has x2(T ) = ν = ρ(x2(0)), and this
proves that x2 ≥ x1 satisfies the second assumption in (4.16).

Gathering together all these facts, we can conclude that all the assum-
ptions in Theorem 4.1 are fulfilled (with the above choice of g and ρ); thus,
there exists (at least) one solution x ∈ W 1,p(I) of (Dν), such that:

α ≤ x1 ≤ x ≤ x2 ≤ β on I.

In particular, by the choice of M and LM (according to (3.10)) and the fact
that x1, x2 fulfill, respectively, (4.20) and (4.21), we deduce that:

sup
t∈I

|x(t)| ≤ M and sup
t∈I

|Ax(t)| ≤ LM ,

with the very same M,LM > 0 fixed at the beginning. This ends the proof.
�

Remark 4.7. Let the assumptions and the notation of Lemma 4.6 apply.
By giving a closer inspection to the proof of this lemma, we see that the

only property of α and β that we have used is the following (see (4.16)):
(
�

)
p(α(0),Aα(0)) ≥ 0 and p(β(0),Aβ(0)) ≤ 0.

Hence, Lemma 4.6 still holds if we replace (4.16) with the weaker
(
�

)
.

Thanks to Lemma 4.6, we are able to prove Theorem 4.5.

Proof of Theorem 4.5. Let ν ∈ [α(T ), β(T )] be fixed. By Lemma 4.6, there
exists (at least) one solution xν ∈ W 1,p(I) of the BVP:

(Dν)

⎧
⎪⎪⎨

⎪⎪⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

p(x(0),Ax(0)) = 0,
x(T ) = ν,
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such that α ≤ xν ≤ β on I; moreover, if M,LM > 0 are as in the statement
of the theorem (that is, LM is as in (3.10)), we have (see Lemma 4.6):

(
∗) sup

t∈I
|xν(t)| ≤ M and sup

t∈I
|Axν

(t)| ≤ LM .

We then consider the following set:

V :=
{

ν ∈ [α(T ), β(T )] : ∃ a solution xν ∈ W 1,p(I) of (Dν) s.t. α ≤ xν ≤ β,

xν satisfies (∗) and q(xν(T ),Axν
(T )) ≥ 0

}
.

Step I: We have ν = α(T ) ∈ V . In fact, by Lemma 4.6, there exists a
solution xν ∈ W 1,p(I) of (Dν), such that α ≤ xν ≤ β and satisfying (∗); in
particular, we have xν(T ) = α(T ). Hence, by Lemma 4.3, we get:

Axν
(T ) ≤ Aα(T ).

From this, by assumption (S2) and (4.16), we obtain:

q(xν(T ),Axν
(T )) = q(α(T ),Axν

(T )) ≥ q(α(T ),Aα(T )) ≥ 0.

This proves that ν ∈ V , as claimed. In particular, V = ∅.
Step II: Setting ν := supV , we have ν ∈ V . In fact, if ν = α(T ), by

Step I, we know that ν ∈ V ; if, instead, ν > α(T ), we can choose a sequence
{νn}n ⊆ V , such that νn → ν as n → ∞ and νn ≤ ν for every n.

Then, for every natural n, there exists a solution xn ∈ W 1,p(I) of (Dνn
),

such that:

(a) α ≤ xn ≤ β on I;

(b) xn satisfies (∗);

(c) q(xn(T ),Axn
(T )) ≥ 0.

On account of (b) we can apply Proposition 4.2, which provides us with a
solution x0 ∈ W 1,p(I) of (4.1), such that, up to a sub-sequence:

xn(t) → x0(t) and Axn
(t) → Ax0(t) for every t ∈ I.

Now, since νn → ν and p is continuous, we see that x0 solves (Dν); hence:

p(x0(0),Ax0(0)) = 0.

Moreover, since xn satisfies (∗) and α ≤ xn ≤ β on I for every natural n,
then the same is true of x0. Finally, by (c) and the continuity of q, one has:

q(x0(T ),Ax0(T )) = lim
n→∞ q(xn(T ),Axn

(T )) ≥ 0.

This proves that ν ∈ V , as claimed.
Now, we have established Claims I and II, we can finally prove the

existence of a solution to (4.15). In fact, let ν = supV ∈ [α(T ), β(T )], and
let xν ∈ W 1,p(I) be a solution of (Dν) satisfying (�) and such that:

(i) α ≤ xν ≤ β on I;
(ii) q(xν(T ),Axν

(T )) ≥ 0.
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If ν = β(T ), we have:

xν(T ) = ν = β(T ) and p(xν(0),Axν
(0)) = 0;

moreover, since xν ≤ β on I, Lemma 4.3 implies that Axν
(T ) ≥ Aβ(T ); from

this, by (ii), the monotonicity of q (see (S2)) and (4.16), we obtain:

0 ≤ q(xν(T ),Axν
(T )) = q(β(T ),Axν

(T )) ≤ q(β(T ),Aβ(T )) ≤ 0,

and this proves that xν is a solution of (4.15) satisfying (4.17) and (4.18).
If, instead, ν < β(T ), we choose a sequence {μm}m ⊆ [α(T ), β(T )], such

that μm → ν as m → ∞ and μm > ν for any m. Since xν solves (Dν) and
xν ≤ β on I, we can think of xν and β as, respectively, a lower and a upper
solution of (4.1) satisfying (A1′) in Theorem 3.5 and

(
�

)
in Remark 4.7 (see

indeed (4.16)); moreover, by (∗) and the choice of M , we have:

sup
t∈I

|xν(t)|, sup
t∈I

|β(t)| ≤ M.

As a consequence, by Remark 4.7, for every m ∈ N, there exists a solution
um ∈ W 1,p(I) of (Dμm), such that:

• α ≤ xν ≤ um ≤ β on I;
• supI |um| ≤ M and supI |Aum

| ≤ LM .

In particular, um satisfies (∗) for every m. We can then apply Proposi-
tion 4.2, which provides us with a solution u0 of (4.1), such that (up to
a sub-sequence):

um(t) → u0(t) and Aum
(t) → Au0(t) for every t ∈ I.

Thus, since μm → ν and p is continuous, we see that u0 solves (Dν); hence:

p(u0(0),Au0(0)) = 0.

We now observe that, since μm > ν = supV , then μm /∈ V ; as a consequence,
since α ≤ um ≤ β on I and um satisfies (∗) for every m, we necessarily have:

q(um(T ),Aum
(T )) < 0 for every m ∈ N.

From this, by the continuity of q (see assumption (S2)), we get:

q(u0(T ),Au0(T )) = lim
m→∞ q(um(T ),Aum

(T )) ≤ 0. (4.22)

On the other hand, since both xν and u0 solve (Dν), we have:

xν(T ) = ν = u0(T );

moreover, since um ≥ xν for every natural m (by the construction of um),
then the same is true of u0. From this, by using Lemma 4.3, we infer that:

Au0(T ) ≤ Axν
(T ).

By (4.22), the monotonicity of q [see (S2)] and (ii) above, we then get:

0 ≥ q(u0(T ),Au0(T )) = q(xν(T ),Au0(T )) ≥ q(xν(T ),Axν
(T )) ≥ 0,

and this shows that u0 solves (4.18). Finally, since α ≤ um ≤ β and um

satisfies (∗) for every m, we conclude that u0 fulfills (4.17)–(4.18). �

From Theorem 4.5, we easily deduce the following results.
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Corollary 4.8. Let us assume that all the hypotheses of Theorem 3.5 are sat-
isfied. Moreover, let �1, �2, ν1, ν2 ∈ R and let m1, m2 ∈ [0,∞). If α and β
are as in assumption (A1)′, we suppose that:

{
�1 α(0) + m1 Aα(0) ≥ ν1,

�2 α(T ) − m2 Aα(T ) ≥ ν2;

{
�1 β(0) + m1 Aβ(0) ≤ ν1,

�2 β(T ) − m2 Aβ(T ) ≤ ν2.

Finally, we assume that the function a fulfills the following assumption:

a(0, x) = 0 and a(T, x) = 0 for every x ∈ R.

Then, there exists a solution x ∈ W 1,p(I) of the Sturm–Liouville problem:
⎧
⎪⎪⎨

⎪⎪⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

�1 x(0) + m1 Ax(0) = ν1,

�2 x(T ) − m2 Ax(T ) = ν2.

Proof. It is a direct consequence of Theorem 4.5 applied to the functions:

p(s, t) := �1 s + m1 t − ν1 and q(s, t) := �2 s − m2 t − ν2,

which satisfy (S1)–(S2) (since m1,m2 ≥ 0). This ends the proof. �

Corollary 4.9. Let us assume that all the hypotheses of Theorem 3.5 are sat-
isfied. Moreover, let ν1, ν2 ∈ R be arbitrarily fixed. If α and β are as in
assumption (A1)′, we suppose that the following conditions are satisfied:

{
Aα(0) ≥ ν1,

Aα(T ) ≤ ν2;

{
Aβ(0) ≤ ν1,

Aβ(T ) ≥ ν2.

Finally, we assume that the function a fulfills the following assumption:

a(0, x) = 0 and a(T, x) = 0 for every x ∈ R.

Then, there exists a solution x ∈ W 1,p(I) of the Neumann problem:
⎧
⎪⎪⎨

⎪⎪⎩

(
Φ

(
a(t, x(t))x′(t)

))′
= f(t, x(t), x′(t)), a.e. on I,

Ax(0) = ν1,

Ax(T ) = ν2.

Proof. It is another direct consequence of Theorem 4.5 applied to:

p(s, t) := t − ν1 and q(s, t) := ν2 − t,

which obviously satisfy assumptions (S1)–(S2). This ends the proof. �
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