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Abstract. Let T be a bounded linear operator acting on a Banach space
X. We obtain some results on Ulam stability for the linear difference
equation xn+1 = Txn + an associated with an iterative process for the
linear equation x−Tx = y. As applications, we get some stability results
for the case when X is a finite-dimensional space and for the case when
T is a Fredholm operator.
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1. Introduction

One of the most important methods of determining solutions of an equation
is the successive approximation method. It is connected with the existence
of a fixed point of an operator and with a recurrent sequence converging to
the fixed point. In this paper, we deal with Ulam stability of the difference
equation which defines the sequence of successive approximations. In what
follows, let K be one of the fields R of real numbers or C of complex numbers,
X a Banach space over K, and T : X → X a bounded linear operator. By
N = {0, 1, 2, . . .}, we denote the set of all nonnegative integers.

Consider the equation:

x − Tx = y, (1)

where y is a given element in X. Under appropriate conditions on T , Eq. (1)
admits a solution x∗ which is the limit of the sequence (xn)n≥0 defined by
the difference equation:

xn+1 = Txn + y, n ∈ N (2)

for some x0 ∈ X, called the sequence of successive approximations. In this
connection, see also the early paper [24] by S. Reich.
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In what follows, we consider the linear difference equation:

xn+1 = Txn + an, n ∈ N, (3)

where (an)n≥0 is a given sequence in X. We study its Ulam stability which
concerns the behavior of the solutions of the equation (3) under perturbations.
For various results on difference equations, we refer the reader to [12,13].

Definition 1.1. Equation (3) is called Ulam stable if there exists L ≥ 0, such
that for every ε > 0 and any (xn)n≥0 in X satisfying the relation:

‖xn+1 − Txn − an‖ ≤ ε, n ∈ N, (4)

there exists a sequence (yn)n≥0 in X, such that:

yn+1 = Tyn + an, n ∈ N, (5)
‖xn − yn‖ ≤ Lε, n ∈ N. (6)

A sequence (xn)n≥0 which satisfies (4) for some ε > 0 is called approx-
imate solution of Eq. (3).

In other words, we say that Eq. (3) is Ulam stable if, for every approx-
imate solution of it, there exists an exact solution close to it. The number L
from (6) is called an Ulam constant of Eq. (3). In what follows, we will denote
by LR the infimum of all Ulam constants of (3). If LR is an Ulam constant for
(3), then we call it the best Ulam constant or the Ulam constant of Eq. (3).
In general, the infimum of all Ulam constants of an equation is not an Ulam
constant of that equation (see [7,22]). If, in the above definition, the number
ε is replaced by a sequence of positive numbers (εn)n≥0, we get the notion
of generalized stability in Ulam sense. Let S+ be the set of all sequences of
nonnegative numbers, E ⊆ S+, and U : E → S+ an operator.

Definition 1.2. We say that Eq. (3) is (E , U)-stable or generalized stable
in Ulam sense, if for every sequence ε = (εn)n≥0 in E and every sequence
(xn)n≥0 in X satisfying:

‖xn+1 − Txn − an‖ ≤ εn, n ∈ N,

there exists a sequence (yn)n≥0 in X, such that:

yn+1 = Tyn + an, n ∈ N,

‖xn − yn‖ ≤ (Uε)n, n ∈ N.

The problem of stability of functional equations was formulated by Ulam
[25] in 1940 for the equation of the homomorphism of a metric group. The
first answer to Ulam’s problem was given, a year later, by Hyers [14] for the
Cauchy functional equation in Banach spaces. Since then, the topic was in-
tensively studied by many authors, we can merely mention here a few papers
on Ulam stability of functional equations as [2,7,15,19]. Recall also the re-
sults obtained in [6,16,18] on Ulam stability of some second-order functional
equations connected with Fibonacci and Lucas sequences.

Some results on Ulam stability for the linear difference equations in
Banach spaces were obtained by Brzdek, Popa, and Xu in [8–10,20]. Buse et
al. [5,11] proved that a discrete system Xn+1 = AXn, n ∈ N, where A is a
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m × m complex matrix, is Ulam stable if and only if A possesses a discrete
dichotomy. Recently, Baias and Popa obtained results on Ulam stability of
linear difference equations of order one and two, and determined the best
Ulam constant in [3,4]. Popa and Rasa obtained an explicit representation of
the best Ulam constant of some classical operators in approximation theory
in [21,23].

2. Main results

Recall first some classical results which will be used in the sequel. Let T :
X → X be a linear and bounded operator and consider the geometric series:

∞∑

n=0

Tn = I + T + T 2 + . . . (7)

Theorem 2.1 [17, Théorèm 1, Section 4.2]. For any linear and bounded oper-
ator T : X → X, there exists:

lim n
√

‖Tn‖ = ρ. (8)

Moreover, the series (7) is absolutely convergent for ρ < 1 and divergent for
ρ > 1.

Theorem 2.2 [17, Corollaire, Section 4.2]. The series (7) is absolutely con-
vergent if and only if there exists p ∈ N, such that:

‖T p‖ < 1. (9)

In what follows, we present some results on Ulam stability and general-
ized Ulam stability for Eq. (3). The following lemma is useful in the sequel.

Lemma 2.3. If (xn)n≥0 satisfies Eq. (3), then:

xn = Tnx0 +
n∑

k=1

Tn−kak−1, n ≥ 1. (10)

Proof. Induction on n. �

The first result on generalized Ulam stability of (3) is contained in the
next theorem.

Theorem 2.4. Suppose that T is an invertible operator and let (εn)n≥0 be a
sequence of positive numbers, such that the series:

∞∑

n=1

‖T−n‖εn−1 (11)

is convergent. Then, for every sequence (xn)n≥0 in X satisfying:

‖xn+1 − Txn − an‖ ≤ εn, n ∈ N, (12)
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there exists a sequence (yn)n≥0 in X with the properties:

yn+1 = Tyn + an, n ∈ N, (13)

‖xn − yn‖ ≤
∞∑

k=0

‖T−k−1‖εn+k, n ∈ N. (14)

Moreover, if

sup
n≥1

1
εn−1

∞∑

k=0

‖T−k−1‖εn+k < ∞, (15)

then the sequence (yn)n≥1 satisfying (13), (14) is unique.

Proof. Existence. Suppose that (xn)n≥0 satisfies relation (12) and let:

xn+1 − Txn − an = bn, n ≥ 0.

Then, ‖bn‖ ≤ εn, n ≥ 0, and taking into account (10), we get:

xn = Tn(x0 +
n∑

k=1

T−k(ak−1 + bk−1)), n ≥ 1.

Since:

‖T−nbn−1‖ ≤ ‖T−n‖ · ‖bn−1‖ ≤ εn−1‖T−n‖, n ≥ 1,

it follows that the series:
∞∑

n=1

T−nbn−1

is convergent, according to the comparison test for series with positive terms.
Let

∞∑

n=1

T−nbn−1 = s, s ∈ X.

Define the sequence (yn)n≥0 by the relation:

yn+1 = Tyn + an, n ≥ 0, y0 = x0 + s.

Then, in view of Lemma 2.3, it follows:

yn = Tn

(
y0 +

n∑

k=1

T−kak−1

)
, n ≥ 1.

Consequently:

xn − yn = Tn

(
x0 − y0 +

n∑

k=1

T−kbk−1

)
= Tn

(
−s +

n∑

k=1

T−kbk−1

)

= −Tn

( ∞∑

k=0

T−n−k−1bn+k

)
= −

∞∑

k=0

T−k−1bn+k, n ≥ 1.
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Hence:

‖xn − yn‖ ≤
∞∑

k=0

‖T−k−1bn+k‖ ≤
∞∑

k=0

‖T−k−1‖‖bn+k‖

≤
∞∑

k=0

‖T−k−1‖εn+k, n ∈ N.

Uniqueness. Suppose that for a sequence (xn)n≥0 satisfying (12), there exist
two sequences (yn)n≥0, (zn)n≥0 satisfying (13) and (14). Then:

‖yn − zn‖ ≤ ‖yn − xn‖ + ‖xn − zn‖ ≤ 2
∞∑

k=0

‖T−k−1‖εn+k, n ≥ 0.

On the other hand, taking account of Lemma 2.3, it follows:

yn − zn = Tn(y0 − z0) or equivalently y0 − z0 = T−n(yn − zn).

Hence:

‖y0 − z0‖ ≤ ‖T−n(yn − zn)‖ ≤ ‖T−n‖‖yn − zn‖

≤ 2‖T−n‖
∞∑

k=0

‖T−k−1‖εn+k

= 2‖T−n‖εn−1 · 1
εn−1

∞∑

k=0

‖T−k−1‖εn+k, n ≥ 1. (16)

The convergence of the series (11) implies that:

lim
n→∞ ‖T−n‖εn−1 = 0.

Therefore, according to (15) and (16), we get y0 = z0, and so yn = zn, for all
n ∈ N. �

Corollary 2.5. Suppose that T is an invertible operator and (εn)n≥0 is a se-
quence of positive numbers, such that there exists q ∈ (0, 1) with the property:

‖T−1‖ ≤ q
εn

εn+1
, n ∈ N. (17)

Then, for every sequence (xn)n≥0 in X satisfying the relation (12), there
exists a sequence (yn)n≥0 in X with the properties (13) and:

‖xn − yn‖ ≤ q

1 − q
εn−1, n ≥ 1.

Proof. The series
∞∑

n=1
‖T−n‖εn−1 is convergent. Indeed:

lim sup
‖T−n−1‖εn

‖T−n‖εn−1
≤ lim sup

‖T−n‖‖T−1‖εn

‖T−n‖εn−1

= lim sup
εn

εn−1
‖T−1‖ ≤ q < 1.
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Then, according to Theorem 2.4, for every sequence (xn)n≥0 satisfying (12),
there exists a sequence (yn)n≥0:

yn+1 = Tyn + an, n ∈ N, y0 = x0 + s,

such that

‖xn − yn‖ ≤
∞∑

k=0

‖T−k−1‖εn+k, n ∈ N.

Taking account of (17), we get:

εn‖T−1‖ ≤ qεn−1

εn+1‖T−2‖ ≤ εn+1‖T−1‖‖T−1‖ ≤ qεn‖T−1‖ ≤ q2εn−1

. . .

εn+k‖T−k−1‖ ≤ qk+1εn−1.

Hence:
∞∑

k=0

‖T−k−1‖εn+k ≤
( ∞∑

k=0

qk+1

)
εn−1

=
q

1 − q
εn−1, n ≥ 1.

The corollary is proved. �

Corollary 2.6. Let T be an invertible operator with ‖T−p‖ < 1 for some p ∈
N. Then, Eq. (3) is Ulam stable with the Ulam constant:

L =
∞∑

n=1

‖T−n‖.

Proof. The condition ‖T−p‖ < 1, leads to the convergence of the series
∞∑

n=1
‖T−n‖, in view of Theorem 2.2. The conclusion of the corollary follows

letting εn = ε, n ∈ N and
∑∞

n=1 ‖T−n‖ = L in Theorem 2.4.
Uniqueness holds since for εn = ε, n ≥ 0, the condition (15) is satisfied.

�

Remark 2.7. If, in Corollary 2.6, we take p = 1, i.e., ‖T−1‖ < 1, the conclu-
sion holds with:

L =
‖T−1‖

1 − ‖T−1‖ .

Indeed:
∑∞

n=1 ‖T−n‖ ≤ ∑∞
n=1 ‖T−1‖n = ‖T−1‖

1−‖T−1‖ .

Similar results can be obtained replacing the condition on the operator
T−1 with conditions on T in the previous theorems and corollaries.

Theorem 2.8. Let (εn)n≥0 be a sequence of positive numbers and suppose that
there exists q ∈ (0, 1), such that:

‖T‖ ≤ q
εn+1

εn
, n ∈ N. (18)
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Then, for every sequence (xn)n≥0 in X satisfying:

‖xn+1 − Txn − an‖ ≤ εn, n ∈ N, (19)

there exists a sequence (yn)n≥0 in X with the properties:

yn+1 = Tyn + an, n ∈ N,

‖xn − yn‖ ≤ 1
1 − q

εn−1, n ≥ 1. (20)

Proof. Let

xn+1 − Txn − an = bn, n ∈ N,

for some sequence (xn)n≥0 satisfying (19). Then, ‖bn‖ ≤ εn, n ∈ N, and
according to Lemma 2.3, we get:

xn = Tnx0 +
n∑

k=1

Tn−k(ak−1 + bk−1), n ≥ 1.

Consider the sequence (yn)n≥0 given by (20) with y0 = x0, and then:

yn = Tnx0 +
n∑

k=1

Tn−kak−1. (21)

Consequently:

‖xn − yn‖ = ‖
n∑

k=1

Tn−kbk−1‖ ≤
n∑

k=1

‖Tn−kbk−1‖

≤
n∑

k=1

‖T‖n−k‖bk−1‖ ≤
n∑

k=1

‖T‖n−kεk−1, n ≥ 1.

On the other hand, in view of (18), it follows:

εn−1

εk−1
=

εn−1

εn−2
· εn−2

εn−3
· . . . · εk

εk−1
≥ 1

qn−k
‖T‖n−k, n ≥ k ≥ 1,

and

‖xn − yn‖ ≤
n∑

k=1

qn−kεn−1

= (1 + q + . . . + qn−1)εn−1

≤ 1
1 − q

εn−1, n ≥ 1.

�

Theorem 2.9. Suppose ‖T p‖ < 1 for some p ∈ N. Then, Eq. (3) is Ulam
stable with the Ulam constant:

L =
∞∑

n=0

‖Tn‖.
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Proof. Let ε > 0 and let (xn)n≥0 be a sequence in X satisfying:

xn+1 − Txn − an = bn, n ∈ N,

with ‖bn‖ < ε, n ∈ N. Then, in view of Lemma 2.3, we get:

xn = Tnx0 +
n∑

k=1

Tn−k(ak−1 + bk−1), n ≥ 1.

Define the sequence (yn)n≥0 by yn+1 = Tyn + an, n ∈ N, y0 = x0. Then:

yn = Tny0 +
n∑

k=1

Tn−kak−1, n ≥ 1,

and

‖xn − yn‖ = ‖
n∑

k=1

Tn−kbk−1‖ ≤
n∑

k=1

‖Tn−k‖‖bk−1‖

≤ ε

n∑

k=1

‖Tn−k‖ ≤ ε

∞∑

k=0

‖T k‖ = Lε, n ≥ 1.

�

Remark 2.10. If, in Corollary 2.9, we take p = 1, i.e., ‖T‖ < 1, then the
conclusion holds with:

L =
1

1 − ‖T‖ .

Proof. Indeed, according to Corollary 2.9, we obtain:
∞∑

n=0

‖Tn‖ ≤
∞∑

n=0

‖T‖n =
1

1 − ‖T‖ .

�

Finally, we present a nonstability result for Eq. (3). Taking into account
that the stability results hold in general for ‖T‖ < 1 or ‖T−1‖ < 1, we will
consider for nonstability results the case ‖T‖ = 1.

Theorem 2.11. Suppose that ‖T‖ = 1 and there exists u0 ∈ X, such that:

lim
n→∞ ‖Tnu0‖ > 0. (22)

Then, for every ε > 0, there exists a sequence (xn)n≥0 in X satisfying:

‖xn+1 − Txn − an‖ ≤ ε, n ∈ N,

such that for every sequence (yn)n≥0 given by the recurrence:

yn+1 = Tyn + an, n ∈ N, y0 ∈ X,

we have:

sup
n∈N

‖xn − yn‖ = +∞,

i.e., Eq. (3) is not Ulam stable.
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Proof. The sequence (‖Tnu0‖)n≥0 is decreasing (see Remark 2.14) and (22)
shows that ‖Tnu0‖ > 0, n ∈ N. Let ε > 0 and consider the sequence (xn)n≥0

defined by the relation:

xn+1 = Txn + an +
Tn+1u0

‖Tn+1u0‖ε, n ∈ N.

Then, in view of Lemma 2.3, we get:

xn = Tnx0 +
n∑

k=1

Tn−kak−1 + ε

(
n∑

k=1

1
‖T ku0‖

)
Tnu0, n ≥ 1.

On the other hand:

‖xn+1 − Txn − an‖ = ε, n ∈ N,

and hence, (xn)n≥0 is an approximate solution of Eq. (3). Let (yn)n≥0 be an
arbitrary sequence in X, yn+1 = Tyn + an, n ≥ 0, y0 ∈ X. Then:

yn = Tny0 +
n∑

k=1

Tn−kak−1, n ≥ 1;

therefore:

xn − yn = Tn(x0 − y0) + ε

(
n∑

k=1

1
‖T ku0‖

)
Tnu0, n ∈ N.

The sequence (Tn(x0 − y0))n≥0 is bounded, since:

‖Tn(x0 − y0)‖ ≤ ‖Tn‖‖x0 − y0‖ ≤ ‖T‖n‖x0 − y0‖ = ‖x0 − y0‖, n ∈ N.

Taking account of

limk→∞
1

‖T ku0‖ > 0,

we get
∞∑

k=1

1
‖Tku0‖ = ∞.

It follows:

lim
n→∞ ‖xn − yn‖ = lim

n→∞ ‖Tn(x0 − y0) + ε

(
n∑

k=1

1
‖T ku0‖

)
Tnu0‖

≥ lim
n→∞

∣∣∣∣∣‖Tn(x0 − y0)‖ − ε

(
n∑

k=1

1
‖T ku0‖

)
‖Tnu0‖

∣∣∣∣∣
= +∞.

�

Remark 2.12. Every linear and bounded operator T, which has an eigenvalue
λ, |λ| = 1, satisfies the condition (22).

Indeed, there exists u0 	= 0, such that Tu0 = λu0. Then, it is easy to
check that Tnu0 = λnu0, for all n ∈ N, and the condition (22) is satisfied.

Remark 2.13. There exist operators T which do not satisfy condition (22).
Indeed, if T is nilpotent, there exists p ≥ 1, such that T p = 0; therefore,
Tnu0 = 0 for all n ≥ p.
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Remark 2.14. Let ‖T‖ = 1, u0 ∈ X. Then:

‖Tn+1u0‖ = ‖T (Tnu0)‖ ≤ ‖Tnu0‖,

i.e., the sequence (‖Tnu0‖)n≥0 is decreasing and convergent. Suppose that
there exists p ∈ N, such that ‖T p‖ < 1. Then:

‖Tnpu0‖ = ‖(T p)nu0‖ ≤ ‖T p‖n‖u0‖,

and so lim
n→∞ Tnpu0 = 0. This implies lim

n→∞ Tnu0 = 0.

Briefly, if lim
n→∞ Tnu0 	= 0, as in Theorem 2.11, then ‖Tn‖ = 1, for all

n ∈ N. An example is presented below.

Example 1. Let C[0, 1] be the Banach space of continuous, real-valued func-
tions defined on [0,1], endowed with the supremum norm. Consider the Bern-
stein operator:

Bm : C[0, 1] → C[0, 1], Bmf(x) =
m∑

k=0

(
m

k

)
xk(1 − x)m−kf(

k

m
).

Then, for a fixed m, each operator Bn
m is linear, positive, and reproduces the

constant function 1. Therefore, ‖Bn
m‖ = 1, n ∈ N. Moreover:

lim
n→∞ Bn

mf(x) = (1 − x)f(0) + xf(1), f ∈ C[0, 1]

uniformly on [0, 1]; see, e.g, Example 3.2.7, with b = 0, in [1]. Hence lim
n→∞ Bn

mf =

0 if and only if f(0) = f(1) = 0.

Consequently, for T = Bm, Eq. (3) is not Ulam stable.
On the other hand, the following result shows the stability of the equa-

tion (3) when T is a nilpotent operator.

Theorem 2.15. Let T : X → X be a nilpotent operator, i.e., there exists
p ≥ 1, such that T p = 0. Then, for every ε > 0 and every sequence (xn)n≥0

in X satisfying:

‖xn+1 − Txn − an‖ ≤ ε, n ∈ N, (23)

there exists a sequence (yn)n≥0 in X with the properties:

yn+1 = Tyn + an

‖xn − yn‖ ≤ Lε, n ≥ p,

where L = 1 + ‖T‖ + · · · + ‖T‖p−1.

Proof. Let

xn+1 − Txn − an = bn, n ∈ N

for some sequence (xn)n≥0 satisfying (23). Then, in view of Lemma 2.3, we
get:

xn = Tnx0 +
n∑

k=1

Tn−k(ak−1 + bk−1), n ≥ 1.
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Since T is a nilpotent operator, we have:

xn =
p∑

k=1

T p−k(an−p+k−1 + bn−p+k−1), n ≥ p.

Define (yn)n≥0 by yn+1 = Tyn + an, n ∈ N, y0 = x0. Then:

yn = Tnx0 +
n∑

k=1

Tn−kak−1, n ≥ 1,

or equivalently:

yn =
p∑

k=1

T p−kan−p+k−1, n ≥ p.

Therefore:

xn − yn =
p∑

k=1

T p−kbn−p+k−1 = bn−1 + bn−2T + · · · + bn−pT
p−1, n ≥ p,

and

‖xn − yn‖ ≤ ‖bn‖ + ‖bn−1‖‖T‖ + . . . + ‖bn−p‖‖T p−1‖
≤ ε(1 + ‖T‖ + ‖T‖2 + · · · + ‖T‖p−1)
= εL, n ≥ p.

�

3. Applications

Let X = K
p be endowed with the Euclidean norm (‖x‖ =

√|x1|2 + · · · + |xp|2,
x = (x1, x2, . . . , xp) ∈ K

p) and T : Kp → K
p, Tx = Ax, where A is a square

matrix of order p with entries in K. Suppose that A is normal, denote by
λ1, . . . , λp and Λ1, . . . ,Λp the eigenvalues of A and A∗A, respectively. Recall
that A∗ denotes the conjugate transposed of A. Suppose that:

|λ1| ≤ |λ2| ≤ · · · ≤ |λp| and Λ1 ≤ Λ2 ≤ · · · ≤ Λp.

Then (see [17]) ‖T‖ =
√

Λp, and, if A is an invertible matrix, ‖T−1‖ = 1√
Λ1

.

Moreover, if A is a self-adjoint, invertible matrix, we obtain ‖T‖ = |λp|,
‖T−1‖ = 1

|λ1| . Consequently, we get the following result on Ulam stability.

Theorem 3.1. Let ε > 0 and (xn)n≥0 be a sequence in K
p satisfying:

‖xn+1 − Axn − an‖ ≤ ε, n ∈ N.

i) If Λp < 1, then there exists a sequence (yn)n≥0 in K
p, such that:

yn+1 = Ayn + an,

‖xn − yn‖ ≤ ε

1 − √
Λp

, n ∈ N.
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ii) If A is an invertible matrix and Λ1 > 1, then there exists a sequence
(yn)n≥0 in K

p, such that:

yn+1 = Ayn + an,

‖xn − yn‖ ≤ ε√
Λ1 − 1

, n ∈ N.

Proof. The result follows from Remark 2.7 and Remark 2.10. �

Remark 3.2. If A is a self-adjoint, invertible matrix Theorem 3.1 holds with
|λ1|, |λp| instead of

√
Λ1,

√
Λp, respectively.

Consider the linear operator T : L2[a, b] → L2[a, b] defined by:

(Tx)(s) =
∫ b

a

K(s, t)x(t)dt,

where K : [a, b] × [a, b] → R is symmetric, square-measurable and:
∫ b

a

∫ b

a

|K(s, t)|2dsdt = L2 < ∞.

Then, T is a continuous operator and ‖T‖ = 1
|λ1| , where λ1 is the eigenvalue of

K of least absolute value (see [17]). Then, for the linear difference equation:

xn+1 = Txn + an, x0 ∈ L2[a, b], n ∈ N,

where (an)n≥0 is a sequence in L2[a, b]; we get the following stability result.

Theorem 3.3. Suppose that |λ1| > 1. Then, for every ε > 0 and every (xn)n≥0

in L2[a, b] satisfying

‖xn+1 − Txn − an‖ ≤ ε, n ∈ N,

there exists a sequence (yn)n≥0, such that:

yn+1 = Tyn + an, y0 ∈ L2[a, b], n ∈ N,

‖xn − yn‖ ≤ ε|λ1|
|λ1| − 1

, n ∈ N.

Proof. The result is a simple consequence of Remark 2.10 �

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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