Journal of Fixed Point Theory and Applications

Ulam stability of a successive approximation equation

Alina Ramona Baias, Dorian Popa and Ioan Rasa

Abstract. Let *T* be a bounded linear operator acting on a Banach space *X*. We obtain some results on Ulam stability for the linear difference equation $x_{n+1} = Tx_n + a_n$ associated with an iterative process for the linear equation $x-Tx = y$. As applications, we get some stability results for the case when *X* is a finite-dimensional space and for the case when *T* is a Fredholm operator.

Mathematics Subject Classification. Primary 39B12; Secondary 39B82, 47B39.

Keywords. Ulam stability, successive approximations, bounded linear operator, difference equation.

1. Introduction

One of the most important methods of determining solutions of an equation is the successive approximation method. It is connected with the existence of a fixed point of an operator and with a recurrent sequence converging to the fixed point. In this paper, we deal with Ulam stability of the difference equation which defines the sequence of successive approximations. In what follows, let K be one of the fields $\mathbb R$ of real numbers or $\mathbb C$ of complex numbers, X a Banach space over K, and $T: X \to X$ a bounded linear operator. By $\mathbb{N} = \{0, 1, 2, \ldots\}$, we denote the set of all nonnegative integers.

Consider the equation:

$$
x - Tx = y,\tag{1}
$$

where y is a given element in X. Under appropriate conditions on T, Eq. (1) admits a solution x^* which is the limit of the sequence $(x_n)_{n>0}$ defined by the difference equation:

$$
x_{n+1} = Tx_n + y, \quad n \in \mathbb{N}
$$
 (2)

for some $x_0 \in X$, called the sequence of successive approximations. In this connection, see also the early paper [\[24\]](#page-12-0) by S. Reich.

In what follows, we consider the linear difference equation:

$$
x_{n+1} = Tx_n + a_n, \quad n \in \mathbb{N},\tag{3}
$$

where $(a_n)_{n>0}$ is a given sequence in X. We study its Ulam stability which concerns the behavior of the solutions of the equation [\(3\)](#page-1-0) under perturbations. For various results on difference equations, we refer the reader to [\[12](#page-12-1)[,13](#page-12-2)].

Definition 1.1. Equation [\(3\)](#page-1-0) is called Ulam stable if there exists $L \geq 0$, such that for every $\varepsilon > 0$ and any $(x_n)_{n>0}$ in X satisfying the relation:

$$
||x_{n+1} - Tx_n - a_n|| \le \varepsilon, \quad n \in \mathbb{N},
$$
\n(4)

there exists a sequence $(y_n)_{n>0}$ in X, such that:

$$
y_{n+1} = Ty_n + a_n, \quad n \in \mathbb{N},\tag{5}
$$

$$
||x_n - y_n|| \le L\varepsilon, \quad n \in \mathbb{N}.
$$
 (6)

A sequence $(x_n)_{n>0}$ which satisfies [\(4\)](#page-1-1) for some $\varepsilon > 0$ is called approximate solution of Eq. [\(3\)](#page-1-0).

In other words, we say that Eq. (3) is Ulam stable if, for every approximate solution of it, there exists an exact solution close to it. The number L from [\(6\)](#page-1-2) is called an Ulam constant of Eq. [\(3\)](#page-1-0). In what follows, we will denote by L_R the infimum of all Ulam constants of [\(3\)](#page-1-0). If L_R is an Ulam constant for [\(3\)](#page-1-0), then we call it *the best Ulam constant* or *the Ulam constant* of Eq. [\(3\)](#page-1-0). In general, the infimum of all Ulam constants of an equation is not an Ulam constant of that equation (see $[7,22]$ $[7,22]$). If, in the above definition, the number ε is replaced by a sequence of positive numbers $(\varepsilon_n)_{n\geq 0}$, we get the notion of *generalized stability* in Ulam sense. Let S^+ be the set of all sequences of nonnegative numbers, $\mathcal{E} \subseteq S^+$, and $U : \mathcal{E} \to S^+$ an operator.

Definition 1.2. We say that Eq. [\(3\)](#page-1-0) is (\mathcal{E}, U) -stable or generalized stable in Ulam sense, if for every sequence $\varepsilon = (\varepsilon_n)_{n>0}$ in $\mathcal E$ and every sequence $(x_n)_{n>0}$ in X satisfying:

$$
||x_{n+1} - Tx_n - a_n|| \le \varepsilon_n, n \in \mathbb{N},
$$

there exists a sequence $(y_n)_{n\geq 0}$ in X, such that:

$$
y_{n+1} = Ty_n + a_n, \quad n \in \mathbb{N},
$$

$$
||x_n - y_n|| \le (U\varepsilon)_n, \quad n \in \mathbb{N}.
$$

The problem of stability of functional equations was formulated by Ulam [\[25](#page-12-5)] in 1940 for the equation of the homomorphism of a metric group. The first answer to Ulam's problem was given, a year later, by Hyers [\[14](#page-12-6)] for the Cauchy functional equation in Banach spaces. Since then, the topic was intensively studied by many authors, we can merely mention here a few papers on Ulam stability of functional equations as [\[2](#page-11-1)[,7](#page-12-3),[15,](#page-12-7)[19\]](#page-12-8). Recall also the results obtained in [\[6](#page-12-9)[,16](#page-12-10),[18\]](#page-12-11) on Ulam stability of some second-order functional equations connected with Fibonacci and Lucas sequences.

Some results on Ulam stability for the linear difference equations in Banach spaces were obtained by Brzdek, Popa, and Xu in $[8-10,20]$ $[8-10,20]$ $[8-10,20]$ $[8-10,20]$. Buse et al. [\[5,](#page-12-15)[11](#page-12-16)] proved that a discrete system $X_{n+1} = AX_n$, $n \in \mathbb{N}$, where A is a $m \times m$ complex matrix, is Ulam stable if and only if A possesses a discrete dichotomy. Recently, Baias and Popa obtained results on Ulam stability of linear difference equations of order one and two, and determined the best Ulam constant in [\[3,](#page-11-2)[4\]](#page-12-17). Popa and Rasa obtained an explicit representation of the best Ulam constant of some classical operators in approximation theory in [\[21](#page-12-18),[23\]](#page-12-19).

2. Main results

Recall first some classical results which will be used in the sequel. Let T : $X \to X$ be a linear and bounded operator and consider the geometric series:

$$
\sum_{n=0}^{\infty} T^n = I + T + T^2 + \dots \tag{7}
$$

Theorem 2.1 [\[17,](#page-12-20) Théorèm 1, Section 4.2]*. For any linear and bounded operator* $T: X \rightarrow X$ *, there exists:*

$$
\lim \sqrt[n]{\|T^n\|} = \rho. \tag{8}
$$

Moreover, the series [\(7\)](#page-2-0) is absolutely convergent for $\rho < 1$ *and divergent for* $\rho > 1$.

Theorem 2.2 [\[17,](#page-12-20) Corollaire, Section 4.2]*. The series [\(7\)](#page-2-0) is absolutely convergent if and only if there exists* $p \in \mathbb{N}$ *, such that:*

$$
||T^p|| < 1.
$$
\n⁽⁹⁾

In what follows, we present some results on Ulam stability and generalized Ulam stability for Eq. [\(3\)](#page-1-0). The following lemma is useful in the sequel.

Lemma 2.3. *If* $(x_n)_{n>0}$ *satisfies Eq.* [\(3\)](#page-1-0)*, then:*

$$
x_n = T^n x_0 + \sum_{k=1}^n T^{n-k} a_{k-1}, \quad n \ge 1.
$$
 (10)

Proof. Induction on n. \Box

The first result on generalized Ulam stability of [\(3\)](#page-1-0) is contained in the next theorem.

Theorem 2.4. *Suppose that* T *is an invertible operator and let* $(\varepsilon_n)_{n>0}$ *be a sequence of positive numbers, such that the series:*

$$
\sum_{n=1}^{\infty} \|T^{-n}\| \varepsilon_{n-1} \tag{11}
$$

is convergent. Then, for every sequence $(x_n)_{n\geq 0}$ *in* X *satisfying*:

$$
||x_{n+1} - Tx_n - a_n|| \le \varepsilon_n, \quad n \in \mathbb{N},
$$
\n(12)

there exists a sequence $(y_n)_{n\geq 0}$ *in* X *with the properties:*

$$
y_{n+1} = Ty_n + a_n, \quad n \in \mathbb{N},\tag{13}
$$

$$
||x_n - y_n|| \le \sum_{k=0}^{\infty} ||T^{-k-1}||\varepsilon_{n+k}, \quad n \in \mathbb{N}.
$$
 (14)

Moreover, if

$$
\sup_{n\geq 1} \frac{1}{\varepsilon_{n-1}} \sum_{k=0}^{\infty} \|T^{-k-1}\| \varepsilon_{n+k} < \infty,\tag{15}
$$

then the sequence $(y_n)_{n>1}$ *satisfying [\(13\)](#page-3-0), [\(14\)](#page-3-0) is unique.*

Proof. **Existence.** Suppose that $(x_n)_{n\geq 0}$ satisfies relation [\(12\)](#page-2-1) and let:

$$
x_{n+1} - Tx_n - a_n = b_n, \quad n \ge 0.
$$

Then, $||b_n|| \leq \varepsilon_n$, $n \geq 0$, and taking into account [\(10\)](#page-2-2), we get:

$$
x_n = T^n(x_0 + \sum_{k=1}^n T^{-k}(a_{k-1} + b_{k-1})), \quad n \ge 1.
$$

Since:

$$
||T^{-n}b_{n-1}|| \le ||T^{-n}|| \cdot ||b_{n-1}|| \le \varepsilon_{n-1}||T^{-n}||, \quad n \ge 1,
$$

it follows that the series:

$$
\sum_{n=1}^{\infty} T^{-n} b_{n-1}
$$

is convergent, according to the comparison test for series with positive terms. Let

$$
\sum_{n=1}^{\infty} T^{-n} b_{n-1} = s, \quad s \in X.
$$

Define the sequence $(y_n)_{n\geq 0}$ by the relation:

$$
y_{n+1} = Ty_n + a_n
$$
, $n \ge 0$, $y_0 = x_0 + s$.

Then, in view of Lemma [2.3,](#page-2-3) it follows:

$$
y_n = T^n \left(y_0 + \sum_{k=1}^n T^{-k} a_{k-1} \right), \quad n \ge 1.
$$

Consequently:

$$
x_n - y_n = T^n \left(x_0 - y_0 + \sum_{k=1}^n T^{-k} b_{k-1} \right) = T^n \left(-s + \sum_{k=1}^n T^{-k} b_{k-1} \right)
$$

=
$$
-T^n \left(\sum_{k=0}^\infty T^{-n-k-1} b_{n+k} \right) = -\sum_{k=0}^\infty T^{-k-1} b_{n+k}, \quad n \ge 1.
$$

Hence:

$$
||x_n - y_n|| \le \sum_{k=0}^{\infty} ||T^{-k-1}b_{n+k}|| \le \sum_{k=0}^{\infty} ||T^{-k-1}|| ||b_{n+k}||
$$

$$
\le \sum_{k=0}^{\infty} ||T^{-k-1}|| \varepsilon_{n+k}, \quad n \in \mathbb{N}.
$$

Uniqueness. Suppose that for a sequence $(x_n)_{n>0}$ satisfying [\(12\)](#page-2-1), there exist two sequences $(y_n)_{n\geq 0}$, $(z_n)_{n\geq 0}$ satisfying [\(13\)](#page-3-0) and [\(14\)](#page-3-0). Then:

$$
||y_n - z_n|| \le ||y_n - x_n|| + ||x_n - z_n|| \le 2 \sum_{k=0}^{\infty} ||T^{-k-1}||\varepsilon_{n+k}, \quad n \ge 0.
$$

On the other hand, taking account of Lemma [2.3,](#page-2-3) it follows:

$$
y_n - z_n = T^n(y_0 - z_0)
$$
 or equivalently $y_0 - z_0 = T^{-n}(y_n - z_n)$.

Hence:

$$
||y_0 - z_0|| \le ||T^{-n}(y_n - z_n)|| \le ||T^{-n}|| ||y_n - z_n||
$$

\n
$$
\le 2||T^{-n}|| \sum_{k=0}^{\infty} ||T^{-k-1}|| \varepsilon_{n+k}
$$

\n
$$
= 2||T^{-n}|| \varepsilon_{n-1} \cdot \frac{1}{\varepsilon_{n-1}} \sum_{k=0}^{\infty} ||T^{-k-1}|| \varepsilon_{n+k}, \quad n \ge 1.
$$
 (16)

The convergence of the series (11) implies that:

$$
\lim_{n \to \infty} ||T^{-n}|| \varepsilon_{n-1} = 0.
$$

Therefore, according to [\(15\)](#page-3-1) and [\(16\)](#page-4-0), we get $y_0 = z_0$, and so $y_n = z_n$, for all $n \in \mathbb{N}$. $n \in \mathbb{N}$.

Corollary 2.5. *Suppose that* T *is an invertible operator and* $(\varepsilon_n)_{n>0}$ *is a sequence of positive numbers, such that there exists* $q \in (0,1)$ *with the property:*

$$
||T^{-1}|| \le q \frac{\varepsilon_n}{\varepsilon_{n+1}}, \quad n \in \mathbb{N}.
$$
 (17)

Then, for every sequence $(x_n)_{n>0}$ *in* X *satisfying the relation [\(12\)](#page-2-1), there exists a sequence* $(y_n)_{n>0}$ *in* X *with the properties* [\(13\)](#page-3-0) *and:*

$$
||x_n - y_n|| \le \frac{q}{1 - q} \varepsilon_{n-1}, \quad n \ge 1.
$$

Proof. The series $\sum_{n=1}^{\infty}$ $\sum_{n=1}^{\infty} ||T^{-n}|| \varepsilon_{n-1}$ is convergent. Indeed:

$$
\limsup \frac{\|T^{-n-1}\| \varepsilon_n}{\|T^{-n}\| \varepsilon_{n-1}} \le \limsup \frac{\|T^{-n}\| \|T^{-1}\| \varepsilon_n}{\|T^{-n}\| \varepsilon_{n-1}} \n= \limsup \frac{\varepsilon_n}{\varepsilon_{n-1}} \|T^{-1}\| \le q < 1.
$$

Then, according to Theorem [2.4,](#page-2-5) for every sequence $(x_n)_{n>0}$ satisfying [\(12\)](#page-2-1), there exists a sequence $(y_n)_{n\geq 0}$:

$$
y_{n+1} = Ty_n + a_n, \ n \in \mathbb{N}, y_0 = x_0 + s,
$$

such that

$$
||x_n - y_n|| \le \sum_{k=0}^{\infty} ||T^{-k-1}||\varepsilon_{n+k}, \quad n \in \mathbb{N}.
$$

Taking account of [\(17\)](#page-4-1), we get:

$$
\varepsilon_n \|T^{-1}\| \le q \varepsilon_{n-1}
$$

$$
\varepsilon_{n+1} \|T^{-2}\| \le \varepsilon_{n+1} \|T^{-1}\| \|T^{-1}\| \le q \varepsilon_n \|T^{-1}\| \le q^2 \varepsilon_{n-1}
$$

...

$$
\varepsilon_{n+k} \|T^{-k-1}\| \le q^{k+1} \varepsilon_{n-1}.
$$

Hence:

$$
\sum_{k=0}^{\infty} ||T^{-k-1}||\varepsilon_{n+k} \le \left(\sum_{k=0}^{\infty} q^{k+1}\right) \varepsilon_{n-1}
$$

$$
= \frac{q}{1-q} \varepsilon_{n-1}, \quad n \ge 1.
$$

The corollary is proved. \Box

Corollary 2.6. *Let* T *be an invertible operator with* $||T^{-p}|| < 1$ *for some* $p \in$ N. *Then, Eq. [\(3\)](#page-1-0) is Ulam stable with the Ulam constant:*

$$
L = \sum_{n=1}^{\infty} ||T^{-n}||.
$$

Proof. The condition $||T^{-p}|| < 1$, leads to the convergence of the series $\sum_{n=1}^{\infty} ||T^{-n}||$, in view of Theorem [2.2.](#page-2-6) The conclusion of the corollary follows here $n=1$

letting $\varepsilon_n = \varepsilon$, $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} ||T^{-n}|| = L$ in Theorem [2.4.](#page-2-5)

Uniqueness holds since for $\varepsilon_n = \varepsilon$, $n \geq 0$, the condition [\(15\)](#page-3-1) is satisfied. \Box

Remark 2.7. If, in Corollary [2.6,](#page-5-0) we take $p = 1$, i.e., $||T^{-1}|| < 1$, the conclusion holds with:

$$
L = \frac{\|T^{-1}\|}{1 - \|T^{-1}\|}.
$$

Indeed: $\sum_{n=1}^{\infty} ||T^{-n}|| \le \sum_{n=1}^{\infty} ||T^{-1}||^n = \frac{||T^{-1}||}{1-||T^{-1}||}.$

Similar results can be obtained replacing the condition on the operator T^{-1} with conditions on T in the previous theorems and corollaries.

Theorem 2.8. Let $(\varepsilon_n)_{n>0}$ be a sequence of positive numbers and suppose that *there exists* $q \in (0,1)$ *, such that:*

$$
||T|| \le q \frac{\varepsilon_{n+1}}{\varepsilon_n}, \quad n \in \mathbb{N}.
$$
 (18)

Then, for every sequence $(x_n)_{n\geq 0}$ *in* X *satisfying*:

$$
||x_{n+1} - Tx_n - a_n|| \le \varepsilon_n, \quad n \in \mathbb{N},
$$
\n(19)

there exists a sequence $(y_n)_{n\geq 0}$ *in* X *with the properties:*

$$
y_{n+1} = Ty_n + a_n, \quad n \in \mathbb{N},
$$

$$
||x_n - y_n|| \le \frac{1}{1 - q} \varepsilon_{n-1}, \quad n \ge 1.
$$
 (20)

Proof. Let

$$
x_{n+1} - Tx_n - a_n = b_n, \quad n \in \mathbb{N},
$$

for some sequence $(x_n)_{n\geq 0}$ satisfying [\(19\)](#page-6-0). Then, $||b_n|| \leq \varepsilon_n$, $n \in \mathbb{N}$, and according to Lemma [2.3,](#page-2-3) we get:

$$
x_n = T^n x_0 + \sum_{k=1}^n T^{n-k} (a_{k-1} + b_{k-1}), \quad n \ge 1.
$$

Consider the sequence $(y_n)_{n\geq 0}$ given by (20) with $y_0 = x_0$, and then:

$$
y_n = T^n x_0 + \sum_{k=1}^n T^{n-k} a_{k-1}.
$$
 (21)

Consequently:

$$
||x_n - y_n|| = ||\sum_{k=1}^n T^{n-k} b_{k-1}|| \le \sum_{k=1}^n ||T^{n-k} b_{k-1}||
$$

$$
\le \sum_{k=1}^n ||T||^{n-k} ||b_{k-1}|| \le \sum_{k=1}^n ||T||^{n-k} \varepsilon_{k-1}, \quad n \ge 1.
$$

On the other hand, in view of [\(18\)](#page-5-1), it follows:

$$
\frac{\varepsilon_{n-1}}{\varepsilon_{k-1}} = \frac{\varepsilon_{n-1}}{\varepsilon_{n-2}} \cdot \frac{\varepsilon_{n-2}}{\varepsilon_{n-3}} \cdot \ldots \cdot \frac{\varepsilon_k}{\varepsilon_{k-1}} \ge \frac{1}{q^{n-k}} ||T||^{n-k}, \quad n \ge k \ge 1,
$$

and

$$
||x_n - y_n|| \le \sum_{k=1}^n q^{n-k} \varepsilon_{n-1}
$$

= $(1 + q + ... + q^{n-1}) \varepsilon_{n-1}$
 $\le \frac{1}{1-q} \varepsilon_{n-1}, \quad n \ge 1.$

 \Box

Theorem 2.9. *Suppose* $||T^p|| < 1$ *for some* $p \in \mathbb{N}$ *. Then, Eq. [\(3\)](#page-1-0) is Ulam stable with the Ulam constant:*

$$
L = \sum_{n=0}^{\infty} ||T^n||.
$$

Proof. Let $\varepsilon > 0$ and let $(x_n)_{n>0}$ be a sequence in X satisfying:

$$
x_{n+1} - Tx_n - a_n = b_n, \quad n \in \mathbb{N},
$$

with $||b_n|| < \varepsilon$, $n \in \mathbb{N}$. Then, in view of Lemma [2.3,](#page-2-3) we get:

$$
x_n = T^n x_0 + \sum_{k=1}^n T^{n-k} (a_{k-1} + b_{k-1}), \quad n \ge 1.
$$

Define the sequence $(y_n)_{n>0}$ by $y_{n+1} = Ty_n + a_n$, $n \in \mathbb{N}$, $y_0 = x_0$. Then:

$$
y_n = T^n y_0 + \sum_{k=1}^n T^{n-k} a_{k-1}, \quad n \ge 1,
$$

and

$$
||x_n - y_n|| = ||\sum_{k=1}^n T^{n-k} b_{k-1}|| \le \sum_{k=1}^n ||T^{n-k}|| ||b_{k-1}||
$$

$$
\le \varepsilon \sum_{k=1}^n ||T^{n-k}|| \le \varepsilon \sum_{k=0}^\infty ||T^k|| = L\varepsilon, \quad n \ge 1.
$$

Remark 2.10. If, in Corollary [2.9,](#page-6-2) we take $p = 1$, i.e., $||T|| < 1$, then the conclusion holds with:

$$
L = \frac{1}{1 - ||T||}.
$$

Proof. Indeed, according to Corollary [2.9,](#page-6-2) we obtain:

$$
\sum_{n=0}^{\infty} ||T^n|| \le \sum_{n=0}^{\infty} ||T||^n = \frac{1}{1 - ||T||}.
$$

Finally, we present a nonstability result for Eq. (3) . Taking into account that the stability results hold in general for $||T|| < 1$ or $||T^{-1}|| < 1$, we will consider for nonstability results the case $||T|| = 1$.

Theorem 2.11. Suppose that
$$
||T|| = 1
$$
 and there exists $u_0 \in X$, such that:

$$
\lim_{n \to \infty} ||T^n u_0|| > 0. \tag{22}
$$

Then, for every $\varepsilon > 0$ *, there exists a sequence* $(x_n)_{n\geq 0}$ *in* X *satisfying*:

$$
||x_{n+1} - Tx_n - a_n|| \le \varepsilon, \quad n \in \mathbb{N},
$$

such that for every sequence $(y_n)_{n>0}$ *given by the recurrence:*

$$
y_{n+1} = Ty_n + a_n, \quad n \in \mathbb{N}, y_0 \in X,
$$

we have:

sup $\sup_{n\in\mathbb{N}}||x_n-y_n||=+\infty,$

i.e., Eq. [\(3\)](#page-1-0) *is not Ulam stable.*

Proof. The sequence $(||T^n u_0||)_{n>0}$ is decreasing (see Remark [2.14\)](#page-8-0) and [\(22\)](#page-7-0) shows that $||T^n u_0|| > 0$, $n \in \mathbb{N}$. Let $\varepsilon > 0$ and consider the sequence $(x_n)_{n \geq 0}$ defined by the relation:

$$
x_{n+1} = Tx_n + a_n + \frac{T^{n+1}u_0}{\|T^{n+1}u_0\|}\varepsilon, \quad n \in \mathbb{N}.
$$

Then, in view of Lemma [2.3,](#page-2-3) we get:

$$
x_n = T^n x_0 + \sum_{k=1}^n T^{n-k} a_{k-1} + \varepsilon \left(\sum_{k=1}^n \frac{1}{\|T^k u_0\|} \right) T^n u_0, \quad n \ge 1.
$$

On the other hand:

$$
||x_{n+1} - Tx_n - a_n|| = \varepsilon, \quad n \in \mathbb{N},
$$

and hence, $(x_n)_{n>0}$ is an approximate solution of Eq. [\(3\)](#page-1-0). Let $(y_n)_{n>0}$ be an arbitrary sequence in X, $y_{n+1} = Ty_n + a_n$, $n \geq 0$, $y_0 \in X$. Then:

$$
y_n = T^n y_0 + \sum_{k=1}^n T^{n-k} a_{k-1}, \quad n \ge 1;
$$

therefore:

$$
x_n - y_n = T^n(x_0 - y_0) + \varepsilon \left(\sum_{k=1}^n \frac{1}{\|T^k u_0\|} \right) T^n u_0, \quad n \in \mathbb{N}.
$$

The sequence $(T^n(x_0 - y_0))_{n \geq 0}$ is bounded, since:

 $||T^n(x_0 - y_0)|| \le ||T^n|| ||x_0 - y_0|| \le ||T||^n ||x_0 - y_0|| = ||x_0 - y_0||, n \in \mathbb{N}.$ Taking account of

$$
\lim_{k \to \infty} \frac{1}{\|T^k u_0\|} > 0,
$$

we get
$$
\sum_{k=1}^{\infty} \frac{1}{||T^k u_0||} = \infty.
$$

It follows:

$$
\lim_{n \to \infty} ||x_n - y_n|| = \lim_{n \to \infty} ||T^n(x_0 - y_0) + \varepsilon \left(\sum_{k=1}^n \frac{1}{||T^k u_0||} \right) T^n u_0||
$$

$$
\geq \lim_{n \to \infty} \left| ||T^n(x_0 - y_0)|| - \varepsilon \left(\sum_{k=1}^n \frac{1}{||T^k u_0||} \right) ||T^n u_0|| \right|
$$

$$
= +\infty.
$$

Remark 2.12. Every linear and bounded operator T, which has an eigenvalue λ , $|\lambda| = 1$, satisfies the condition [\(22\)](#page-7-0).

Indeed, there exists $u_0 \neq 0$, such that $Tu_0 = \lambda u_0$. Then, it is easy to check that $T^n u_0 = \lambda^n u_0$, for all $n \in \mathbb{N}$, and the condition [\(22\)](#page-7-0) is satisfied.

Remark 2.13. There exist operators T which do not satisfy condition [\(22\)](#page-7-0). Indeed, if T is nilpotent, there exists $p \geq 1$, such that $T^p = 0$; therefore, $T^n u_0 = 0$ for all $n \geq p$.

Remark 2.14. Let $||T|| = 1$, $u_0 \in X$. Then:

$$
||T^{n+1}u_0|| = ||T(T^n u_0)|| \le ||T^n u_0||,
$$

i.e., the sequence $(||T^n u_0||)_{n>0}$ is decreasing and convergent. Suppose that there exists $p \in \mathbb{N}$, such that $||T^p|| < 1$. Then:

$$
||T^{np}u_0|| = ||(T^p)^n u_0|| \le ||T^p||^n ||u_0||,
$$

and so $\lim_{n\to\infty}T^{np}u_0=0$. This implies $\lim_{n\to\infty}T^n u_0=0$.

Briefly, if $\lim T^n u_0 \neq 0$, as in Theorem [2.11,](#page-7-1) then $||T^n|| = 1$, for all $n \in \mathbb{N}$. An example is presented below.

Example 1. Let $C[0, 1]$ be the Banach space of continuous, real-valued functions defined on [0,1], endowed with the supremum norm. Consider the Bernstein operator:

$$
B_m: \mathcal{C}[0,1] \to \mathcal{C}[0,1], \quad B_m f(x) = \sum_{k=0}^m \binom{m}{k} x^k (1-x)^{m-k} f(\frac{k}{m}).
$$

Then, for a fixed m , each operator B_m^n is linear, positive, and reproduces the constant function 1. Therefore, $||B_m^n|| = 1$, $n \in \mathbb{N}$. Moreover:

$$
\lim_{n \to \infty} B_m^n f(x) = (1 - x) f(0) + x f(1), \quad f \in \mathcal{C}[0, 1]
$$

uniformly on [0, 1]; see, e.g, Example 3.2.7, with $b = 0$, in [\[1\]](#page-11-3). Hence $\lim_{n \to \infty} B_m^n f =$ 0 if and only if $f(0) = f(1) = 0$.

Consequently, for $T = B_m$, Eq. [\(3\)](#page-1-0) is not Ulam stable.

On the other hand, the following result shows the stability of the equation [\(3\)](#page-1-0) when T is a nilpotent operator.

Theorem 2.15. Let $T : X \rightarrow X$ be a nilpotent operator, i.e., there exists $p \geq 1$, such that $T^p = 0$. Then, for every $\varepsilon > 0$ and every sequence $(x_n)_{n \geq 0}$ *in* X *satisfying:*

$$
||x_{n+1} - Tx_n - a_n|| \le \varepsilon, \quad n \in \mathbb{N},
$$
\n(23)

there exists a sequence $(y_n)_{n>0}$ *in* X *with the properties:*

$$
y_{n+1} = Ty_n + a_n
$$

$$
||x_n - y_n|| \le L\varepsilon, \quad n \ge p,
$$

where $L = 1 + ||T|| + \cdots + ||T||^{p-1}$.

Proof. Let

$$
x_{n+1} - Tx_n - a_n = b_n, \quad n \in \mathbb{N}
$$

for some sequence $(x_n)_{n>0}$ satisfying [\(23\)](#page-9-0). Then, in view of Lemma [2.3,](#page-2-3) we get:

$$
x_n = T^n x_0 + \sum_{k=1}^n T^{n-k} (a_{k-1} + b_{k-1}), \quad n \ge 1.
$$

Since T is a nilpotent operator, we have:

$$
x_n = \sum_{k=1}^p T^{p-k} (a_{n-p+k-1} + b_{n-p+k-1}), \quad n \ge p.
$$

Define $(y_n)_{n>0}$ by $y_{n+1} = Ty_n + a_n, n \in \mathbb{N}, y_0 = x_0$. Then:

$$
y_n = T^n x_0 + \sum_{k=1}^n T^{n-k} a_{k-1}, \quad n \ge 1,
$$

or equivalently:

$$
y_n = \sum_{k=1}^p T^{p-k} a_{n-p+k-1}, \quad n \ge p.
$$

Therefore:

$$
x_n - y_n = \sum_{k=1}^p T^{p-k} b_{n-p+k-1} = b_{n-1} + b_{n-2} T + \dots + b_{n-p} T^{p-1}, \quad n \ge p,
$$

and

$$
||x_n - y_n|| \le ||b_n|| + ||b_{n-1}|| ||T|| + \dots + ||b_{n-p}|| ||T^{p-1}||
$$

\n
$$
\le \varepsilon (1 + ||T|| + ||T||^2 + \dots + ||T||^{p-1})
$$

\n
$$
= \varepsilon L, \quad n \ge p.
$$

3. Applications

Let $X = \mathbb{K}^p$ be endowed with the Euclidean norm $(\|x\| = \sqrt{|x_1|^2 + \cdots + |x_p|^2})$ $x = (x_1, x_2, \ldots, x_p) \in \mathbb{K}^p$ and $T : \mathbb{K}^p \to \mathbb{K}^p$, $Tx = Ax$, where A is a square matrix of order p with entries in K. Suppose that A is normal, denote by $\lambda_1, \ldots, \lambda_p$ and $\Lambda_1, \ldots, \Lambda_p$ the eigenvalues of A and A^*A , respectively. Recall that A^* denotes the conjugate transposed of A . Suppose that:

$$
|\lambda_1| \leq |\lambda_2| \leq \cdots \leq |\lambda_p|
$$
 and $\Lambda_1 \leq \Lambda_2 \leq \cdots \leq \Lambda_p$.

Then (see [\[17](#page-12-20)]) $||T|| = \sqrt{\Lambda_p}$, and, if A is an invertible matrix, $||T^{-1}|| = \frac{1}{\sqrt{\Lambda_1}}$. Moreover, if A is a self-adjoint, invertible matrix, we obtain $||T|| = \begin{bmatrix} \lambda_1 \\ \lambda_p \end{bmatrix}$ $||T^{-1}|| = \frac{1}{|\lambda_1|}$. Consequently, we get the following result on Ulam stability.

Theorem 3.1. *Let* $\varepsilon > 0$ *and* $(x_n)_{n>0}$ *be a sequence in* \mathbb{K}^p *satisfying:*

$$
||x_{n+1} - Ax_n - a_n|| \le \varepsilon, \quad n \in \mathbb{N}.
$$

i) If $\Lambda_p < 1$, then there exists a sequence $(y_n)_{n>0}$ in \mathbb{K}^p , such that:

$$
y_{n+1} = Ay_n + a_n,
$$

$$
||x_n - y_n|| \le \frac{\varepsilon}{1 - \sqrt{\Lambda_p}}, \quad n \in \mathbb{N}.
$$

ii) If A *is an invertible matrix and* $\Lambda_1 > 1$, *then there exists a sequence* $(y_n)_{n>0}$ *in* \mathbb{K}^p *, such that:*

$$
y_{n+1} = Ay_n + a_n,
$$

$$
||x_n - y_n|| \le \frac{\varepsilon}{\sqrt{\Lambda_1} - 1}, \quad n \in \mathbb{N}.
$$

Proof. The result follows from Remark [2.7](#page-5-2) and Remark [2.10.](#page-7-2) \Box

Remark 3.2. If A is a self-adjoint, invertible matrix Theorem [3.1](#page-10-0) holds with $|\lambda_1|, |\lambda_p|$ instead of $\sqrt{\Lambda_1}$, $\sqrt{\Lambda_p}$, respectively.

Consider the linear operator $T : L^2[a, b] \to L^2[a, b]$ defined by:

$$
(Tx)(s) = \int_a^b K(s,t)x(t)dt,
$$

where $K : [a, b] \times [a, b] \rightarrow \mathbb{R}$ is symmetric, square-measurable and:

$$
\int_{a}^{b} \int_{a}^{b} |K(s,t)|^2 ds dt = L^2 < \infty.
$$

Then, T is a continuous operator and $||T|| = \frac{1}{|\lambda_1|}$, where λ_1 is the eigenvalue of K of least absolute value (see [\[17](#page-12-20)]). Then, for the linear difference equation:

$$
x_{n+1} = Tx_n + a_n, x_0 \in L^2[a, b], \quad n \in \mathbb{N},
$$

where $(a_n)_{n>0}$ is a sequence in $L^2[a, b]$; we get the following stability result.

Theorem 3.3. *Suppose that* $|\lambda_1| > 1$ *. Then, for every* $\varepsilon > 0$ *and every* $(x_n)_{n \geq 0}$ *in* $L^2[a, b]$ *satisfying*

$$
||x_{n+1} - Tx_n - a_n|| \le \varepsilon, \quad n \in \mathbb{N},
$$

there exists a sequence $(y_n)_{n\geq 0}$ *, such that:*

$$
y_{n+1} = Ty_n + a_n, y_0 \in L^2[a, b], \quad n \in \mathbb{N},
$$

$$
||x_n - y_n|| \le \frac{\varepsilon |\lambda_1|}{|\lambda_1| - 1}, \quad n \in \mathbb{N}.
$$

Proof. The result is a simple consequence of Remark [2.10](#page-7-2) \Box

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Altomare, F., Cappelletti, M., Leonessa, V., Rasa, I.: Markov Operators, Positive Semigroups and Approximation Processes, de Gruyter Studies in Mathematics 61. Walter de Gruyter GmbH, Berlin/Boston (2014)
- [2] Agarwal, R.P., Xu, B., Zhang, W.: Stability of functional equations in single variable. J. Math. Anal. Appl. **288**(2), 852–869 (2003)
- [3] Baias, A.R., Blaga, F., Popa, D.: Best Ulam constant for a linear difference equation. Carpathian J. Math. **35**, 13–22 (2019)

- [4] Baias, A.R., Popa, D.: On Ulam stability of a linear difference equation in Banach spaces. Bull. Malays. Math. Sci. Soc. **43**, 1357–1371 (2020)
- [5] Barbu, D., Buse, C., Tabassum, A.: Hyers-Ulam stability and discrete dichotomy. J. Math. Anal. Appl. **423**, 1738–1752 (2015)
- [6] Brzdek, J., Jung, S.M.: Note on stability of a linear functional equation of second order connected with the Fibonacci numbers and Lucas sequences. J. Inequal. Appl. **2010**, 10 (2010)
- [7] Brzdek, J., Popa, D., Rasa, I., Xu, B.: Ulam Stability of Operators. Academic Press (2018)
- [8] Brzdek, J., Popa, D., Xu, B.: Remarks on stability of linear recurrence of higher order. Appl. Math. Lett. **23**(12), 1459–1463 (2010)
- [9] Brzdek, J., Popa, D., Xu, B.: On nonstability of the linear recurrence of order one. J. Math. Anal. Appl. **367**, 146–153 (2010)
- [10] Brzdek, J., Popa, D., Xu, B.: Note on nonstability of the linear recurrence. Abh. Math. Sem. Univ. Hamburg **76**, 183–189 (2006)
- [11] Bu¸se, C., O'Regan, D., Saierli, O., Tabassum, A.: Hyers-Ulam stability and discrete dichotomy for difference periodic systems. Bull. Sci. Math. **140**, 908– 934 (2016)
- [12] Elaydi, S.: An Introduction to Difference Equations. Springer, New York (2005)
- [13] Gil, M.: Difference Equations in Normed Spaces. Stability and Oscilations. North-Holland Mathematics Studies, New York (2007)
- [14] Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA **27**(4), 222–224 (1941)
- [15] Hyers, D.H., Isac, G., Rassias, T.M.: Stability of Functional Equations in Several Variables. Progress in Nonlinear Differential Equations and Their Applications. Birkh¨auser, Basel (1998)
- [16] Jung, S.M.: Functional equation $f(x) = pf(x - 1) - af(x - 2)$ and its Hyers-Ulam stability. J. Inequal Appl **2009**, 181678 (2009)
- [17] Kantorovich, L.V., Akilov, G.P.: Analyse Functionelle. Edition MIR, Moscou (1981)
- [18] Mortici, C., Rassias, M.T., Jung, S.M.: On the stability of a functional equation associated with the Fibonacci numbers. Abstr. Appl. Anal. **2014**, 546046 (2014)
- [19] Onitsuka, M.: Influence of the stepsize on hyers-ulam stability of first-order homogeneous linear difference equations. Int. J. Difference Equ. **12**(2), 281– 302 (2017)
- [20] Popa, D.: Hyers-Ulam stability of the linear recurrence with constant coefficients. Adv. Differ. Equ. **2**, 101–107 (2005)
- [21] Popa, D., Rasa, I.: On the stability of some classical operators from approximation theory. Expo. Math. **31**, 205–214 (2013)
- [22] Popa, D., Rasa, I.: Best constant in stability of some positive linear operators. Aequat. Math. **90**, 719–726 (2016)
- [23] Popa, D., Rasa, I.: On the best constant in Hyers-Ulam stability of some positive linear operators. J. Math. Anal. Appl. **412**, 103–108 (2014)
- [24] Reich, S.: Iterative solution of linear operator equations in Banach spaces. Atti Accad. Naz. Lincei **54**, 551–554 (1973)
- [25] Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1960)

Alina Ramona Baias, Dorian Popa and Ioan Raşa Department of Mathematics Technical University of Cluj-Napoca G. Barițiu No.25 400027 Cluj-Napoca Romania e-mail: Popa.Dorian@math.utcluj.ro

Alina Ramona e-mail: Baias.Alina@math.utcluj.ro

Ioan Raşa e-mail: Ioan.Rasa@math.utcluj.ro