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Abstract. We introduce two types of mappings, namely Reich type non-
expansive and Chatterjea type nonexpansive mappings, and derive some
sufficient conditions under which these two types of mappings possess an
approximate fixed point sequence (AFPS). We obtain the desired AFPS
using the well-known Schäefer iteration method. Along with these, we
check some special properties of the fixed point sets of these mappings,
such as closedness, convexity, remotality, unique remotality, etc. We also
derive a nice interrelation between AFPS and maximizing sequence for
both types of mappings. Finally, we will get some sufficient conditions
under which the class of Reich type nonexpansive mappings reduces to
that of nonexpansive maps.
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1. Introduction

It is well known that various nonlinear generalizations of the contraction
mapping are of great significance in the literature. Nonexpansive mappings,
asymptotically nonexpansive mappings are some examples of such general-
izations. Let X be a normed linear space. A mapping T : X → X is said to
be nonexpansive if the condition ‖Tx−Ty‖ ≤ ‖x− y‖ holds for all x, y ∈ X.
A mapping T : X → X is said to be asymptotically nonexpansive if for all
x, y ∈ X and for all n ∈ N, the condition ‖Tnx − Tny‖ ≤ αn‖x − y‖ holds
for some sequence (αn) with αn ≥ 1 and limn→∞ αn = 1. We know that
every nonexpansive mapping or asymptotically nonexpansive mapping on a
non-empty closed, bounded, convex subset of a uniformly convex Banach
space has at least one fixed point, see [1,6,23]. Subsequently, many authors
have introduced several kinds of nonlinear mappings generalizing the class of
nonexpansive mappings such as asymptotically pseudocontractive mappings,
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uniformly asymptotically regular mappings, uniformly asymptotically regular
mappings with sequence, uniformly L-Lipschitzian mappings, etc.

In proving the existence of fixed point of the above mentioned mappings,
many authors took the help of approximate fixed point sequence (AFPS). A
sequence (xn) in a normed linear space is said to be an AFPS if limn→∞ ‖xn−
Txn‖ = 0. The importance of AFPS lies in the fact that, for the above classes
of mappings, if a sequence is constructed and shown to be an AFPS by taking
some sufficient conditions, then the limit of that sequence can be shown (by
taking some additional mild condition or sometimes by taking no condition)
to be a fixed point of that mappings. So, it turns out that the fixed point
problem reduces to a problem of obtaining AFPS. Many authors have studied
a number of methods for iterative AFPS, see [2,4,17,21]. Here we mention
some of those iterative AFPS.
(a) The Mann iteration method: Here the sequence (xn) is defined by

xn+1 = (1 − λn)xn + λnTxn,

where (λn) is a sequence of real numbers satisfying 0 ≤ λn < 1 for all
n ∈ N.

(b) The Krasnoselskij iteration method: Here the sequence (xn) is defined
by

xn+1 =
1
2
(xn + Txn).

(c) The Schäefer iteration method: Here the sequence (xn) is defined by

xn+1 = (1 − λ)xn + λTxn,

where λ ∈ (0, 1).
(d) The Halpern iteration method: Here the sequence (xn) is defined by

xn+1 = (1 − λn)Txn + λnu,

where (λn) is a sequence in [0, 1] and u ∈ X.
(e) The modified Mann iteration method: Here the sequence (xn) is defined

by

xn+1 = (1 − λn)xn + λnTnxn,

where (λn) is a sequence in [0, 1].
With the help of the above iterative sequences, many authors obtained dif-
ferent types of interesting results showing the existence of AFPS for various
kinds of generalized nonexpansive mappings. In [16], Reinermann proved the
following result in a Hilbert space:

Theorem 1.1. Let H be a Hilbert space, K ⊂ H be non-empty closed, bounded
and convex. Let T be an asymptotically nonexpansive mapping on K with
(kn) ⊂ (0,∞),

∑∞
n=1(k

2
n − 1) < ∞, ε ≤ λn ≤ 1 − ε for all n ∈ N and some

ε > 0; pick x0 ∈ K, and define xn+1 = (1 − λn)xn + λnTnxn for all n ≥ 0.
Then (xn) is an AFPS for T .

Later on, Rhoades extended Theorem 1.1 in uniformly convex Banach
spaces and proved the following result:
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Theorem 1.2 [17]. Let X be a uniformly convex Banach space, φ 	= A ⊂ X,
and A be closed, convex and bounded. Let T be an asymptotically self-map of
A with (kn) ≥ 1,

∑∞
n=1(k

r
n−1) < ∞ for some r > 1, ε ≤ 1−αn ≤ 1−ε for all

n > 0 and some ε > 0. Pick x0 ∈ A and define xn+1 = (1 − αn)xn + αnTnxn

for n ≥ 0. Then (xn) is an AFPS for T .

Subsequently, many mathematicians have studied the AFPS for different
types of nonexpansive mappings by considering several iterative sequences,
(see [5,10,20] and the references therein). It is very interesting to notice that
the most of the results of such kinds have been established in Hilbert spaces,
uniformly convex Banach space, smooth reflexive Banach space, etc. In this
connection see [11,14,22]. So, it is an appropriate question to ask whether it is
possible to derive some results concerning AFPS in some more general spaces,
more specifically in Banach spaces. One of the main purposes of this paper is
to give an affirmative answer to this problem, i.e., by taking the underlying
structure as Banach space. We proceed to our purpose by considering two
new types of nonexpansive mappings, namely Reich type nonexpansive and
Chatterjea type nonexpansive mappings. We show that if these two types of
mappings satisfy some additional mild conditions, then there exist AFPS for
the mappings. Further, we show that the respective approximate fixed point
sequences converge strongly to a fixed point of the respective mappings. For
more considerations on Reich contractions and Chatterjea contractions see
[13,15], respectively [3]. For Hardy–Rogers contractions see [8].

Another purpose of this paper was to study some important properties
regarding the farthest points of the domains of the mappings under consid-
eration. In this context, we present some results showing that the set of fixed
points of these types of mappings are closed, convex and remotal. We also
show, by suitable examples, that the fixed point set of the mappings need not
to be uniquely remotal. Alongside these, we obtain some interesting results
related to maximizing sequence, farthest point map for these two types of
mappings. In addition, we will derive some sufficient conditions for which the
class of Reich type nonexpansive mappings reduces to the class of nonexpan-
sive mappings. Finally, we pose an open problem requiring some sufficient
conditions for which the class of Chatterjea type nonexpansive mappings
reduces to that of nonexpansive mappings.

2. Preliminaries

Let X be a normed linear space, C a non-empty subset of X and T : C → C
be a mapping. The mapping T is said to be a Reich type nonexpansive
mapping if there exists non-negative real numbers a, b, c with a + b + c = 1,
such that the condition

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Tx‖ + c‖y − Ty‖
holds for all x, y ∈ C. The mapping T is said to be a Chatterjea type
nonexpansive mapping if there exists non-negative real numbers a, b, c with
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a + b + c = 1, such that the condition

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Ty‖ + c‖y − Tx‖
holds for all x, y ∈ C. In both cases, we say that T is a Reich type nonex-
pansive (Chatterjea type nonexpansive) mapping with coefficients (a, b, c).

In what follows, the following lemma will be necessary in our main
results:

Lemma 2.1 [7]. Let (zn) and (wn) be two bounded sequences in a Banach
space X and let λ ∈ (0, 1). Let zn+1 = λwn +(1−λ)zn and suppose ‖wn+1 −
wn‖ ≤ ‖zn+1 − zn‖ for all n ∈ N. Then limn→∞ ‖wn − zn‖ = 0.

Next, we will recall some notions about remotal and uniquely remotal
sets from [18] in a normed linear space. Let X be a real normed linear space
and A a non-empty, bounded subset of X and x ∈ X. The farthest distance
from x to A is defined by

δ(x,A) = sup{‖x − a‖ : a ∈ A}.

The farthest distance from x to A may or may not attend at some elements
of A. Let F (x,A) = {e ∈ A : ‖x − e‖ = δ(x,A)}. The set A is said to be
remotal if F (x,A) 	= φ for all x ∈ X and is said to be uniquely remotal
if F (x,A) is singleton for each x ∈ A. A sequence (xn) ⊂ A is said to be
maximizing in A if there exists x ∈ X such that ‖xn − x‖ → δ(x,A) as n →
∞. A non-empty set K is said to be M -compact [12] if every maximizing
sequence (xn) in K is compact. The Chebyshev radius of A [19] is defined
by r(A) = inf{δ(x,A) : x ∈ X}. An element c ∈ X is said to be Chebyshev
center of A if δ(c,A) = r(A). A non-empty, bounded subset A of X is said to
be centerable [19] if diam(A) = 2r(A), where diam(A) denotes the diameter
of the set A.

3. Main results

In this section, we will give first some sufficient conditions under which a
Reich nonexpansive mapping possesses AFPS.

Theorem 3.1. Let X be a Banach space and C be a non-empty closed, convex,
bounded subset of X. Let T : C → C be a Reich type nonexpansive mapping
with coefficients (a, b, c) such that c < 1. Also, assume that for x, y ∈ C

1 − c

6
‖x − Tx‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

Then T has an AFPS in C. Moreover, the AFPS is asymptotically regular.

Proof. Since T is Reich type nonexpansive mapping with coefficients (a, b, c),
it follows that a, b, c are non-negative real numbers with a + b + c = 1, such
that

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Tx‖ + c‖y − Ty‖ (3.1)
holds for all x, y ∈ C. Let x0 ∈ C be arbitrary but fixed. We consider the
sequence (xn) in X defined by xn+1 = λTxn + (1 − λ)xn for all n ≥ 2 where
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1
2 ≤ λ < 1. Since C is bounded and convex, it follows that (xn) is a bounded
sequence in C. Next, putting x = xn, y = xn+1 in (3.1), we get

‖Txn − Txn+1‖ ≤ a‖xn − xn+1‖ + b‖xn − Txn‖ + c‖xn+1 − Txn+1‖.

Thus

λ‖Txn − Txn+1‖ ≤ aλ‖xn − xn+1‖ + bλ‖xn − Txn‖ + cλ‖xn+1 − Txn+1‖
(3.2)

We have xn+1 = λTxn +(1−λ)xn, so λ‖Txn −xn‖ = ‖xn+1 −xn‖. Similarly
we have λ‖Txn+1 − xn+1‖ = ‖xn+2 − xn+1‖.

Using the above relations in (3.2), we get

λ‖Txn −Txn+1‖ ≤ aλ‖xn −xn+1‖+ b‖xn −xn+1‖+ c‖xn+1 −xn+2‖. (3.3)

Again we have

xn+1 − xn+2 = λ(Txn − Txn+1) + (1 − λ)(xn − xn+1)

⇒ ‖xn+1 − xn+2‖ ≤ λ‖Txn − Txn+1‖ + (1 − λ)‖xn − xn+1‖. (3.4)

Using (3.4) in (3.3), we get that

λ‖Txn − Txn+1‖ ≤ aλ‖xn − xn+1‖ + b‖xn − xn+1‖ + cλ‖Txn − Txn+1‖
+c(1 − λ)‖xn − xn+1‖.

Thus

(λ − cλ)‖Txn − Txn+1‖ ≤ aλ‖xn − xn+1‖ + b‖xn − xn+1‖
+ c(1 − λ)‖xn − xn+1‖

< a‖xn − xn+1‖ + b‖xn − xn+1‖ + c‖xn − xn+1‖
= ‖xn − xn+1‖.

Therefore, (λ − cλ)‖Txn − Txn+1‖ < ‖xn − xn+1‖. Then we have

‖xn − Txn+1‖ ≤ ‖xn − Txn‖ + ‖Txn − Txn+1‖
=

1

λ
‖xn − xn+1‖ + ‖Txn − Txn+1‖

⇒ (λ − cλ)‖xn − Txn+1‖ ≤ λ − cλ

λ
‖xn − xn+1‖ + (λ − cλ)‖Txn − Txn+1‖

<
λ − cλ

λ
‖xn − xn+1‖ + ‖xn − xn+1‖

=
2λ − cλ

λ
‖xn − xn+1‖.

Hence
λ(λ − cλ)
2λ − cλ

‖xn − Txn+1‖ < ‖xn − xn+1‖. (3.5)

Now since 1
2 ≤ λ < 1 and 0 ≤ c < 1, we have 1−c

4 < λ(λ−cλ)
2λ−cλ . Then, from

(3.5), we get

1 − c

4
‖xn − Txn+1‖ < ‖xn − xn+1‖.
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Therefore,
1 − c

4
‖xn − Txn‖ ≤ 1 − c

4
‖xn − Txn+1‖ +

1 − c

4
‖Txn − Txn+1‖

< ‖xn − xn+1‖ +
1 − c

4(λ − cλ)
‖xn − xn+1‖

≤ ‖xn − xn+1‖ +
1
4λ

‖xn − xn+1‖

≤ 3
2
‖xn − xn+1‖,

which implies that 1−c
6 ‖xn−Txn‖ < ‖xn−xn+1‖. Thus by given assumption,

we get

‖Txn − Txn+1‖ < ‖xn − xn+1‖.

Hence using Lemma 2.1, we get limn→∞ ‖xn − Txn‖ = 0, i.e., (xn) is an
AFPS of T . Further, we have

‖xn − xn+1‖ = λ‖xn − Txn‖ → 0 as n → ∞.

Therefore, the AFPS (xn) is asymptotically regular also. �

In the next theorem, we show the existence of fixed point for Reich type
nonexpansive mappings with the help of Theorem 3.1.

Theorem 3.2. Under the assumptions of Theorem 3.1, T has a fixed point,
provided a < 1.

Proof. By Theorem 3.1, it follows that T has an AFPS (xn), say, and this
sequence is asymptotically regular also. Then, we have

‖xn − xm‖ ≤ ‖xn − Txn‖ + ‖Txn − Txm‖ + ‖xm − Txm‖
≤ ‖xn − Txn‖ + a‖xn − xm‖ + b‖xn − Txn‖ + c‖xm − Txm‖

+ ‖xm − Txm‖,

which implies that

(1 − a)‖xn − xm‖ ≤ ‖xn − Txn‖ + b‖xn − Txn‖ + c‖xm − Txm‖
+‖xm − Txm‖ → 0 as n,m → ∞.

Therefore, (xn) is a Cauchy sequence in C and hence convergent to some
z ∈ C. Again, we see that

‖Txn − Txm‖ ≤ a‖xn − xm‖ + b‖xn − Txn‖ + c‖xm − Txm‖
→ 0 as n,m → ∞.

Thus (Txn) is also a Cauchy sequence in C. Then, we have

‖Txn − z‖ ≤ ‖Txn − xn‖ + ‖xn − z‖ → 0 as n → ∞.

Again we have

‖Txn − Tz‖ ≤ a‖xn − z‖ + b‖xn − Txn‖ + c‖z − Tz‖.

Taking limit as n → ∞ in above inequality, we get

‖z − Tz‖ ≤ c‖z − Tz‖,



Vol. 21 (2019) Some characterizations of Reich and Chatterjea type Page 7 of 21 94

which gives z = Tz, i.e., z is a fixed point of T . �

The following theorem characterizes the fixed point set of Reich type
nonexpansive mappings.

Theorem 3.3. Let X be a Banach space and C be a non-empty subset of X.
If T is Reich type nonexpansive mapping on C with coefficients (a, b, c) such
that c < 1, then Fix(T ) is a closed subset of C.

Proof. Let (zn) be a sequence in Fix(T ) such that (zn) converges to z ∈ C.
Then we have

‖Tzn − Tz‖ ≤ a‖zn − z‖ + b‖zn − Tzn‖ + c‖z − Tz‖
⇒ ‖zn − Tz‖ ≤ a‖zn − z‖ + c‖z − Tz‖.

Taking limit as n → ∞ in above inequality, we get

‖z − Tz‖ ≤ c‖z − Tz‖,

which gives z = Tz, i.e., z ∈ Fix(T ). This shows that Fix(T ) is a closed
subset of C. �

In the next theorem, we give another characterization of the fixed point
set of Reich type nonexpansive mapping by taking the underlying space as a
Hilbert space in place of Banach space.

Theorem 3.4. Let X be a Hilbert space and C be a non-empty subset of X.
Let T be Reich type nonexpansive mapping on C with coefficients (a, b, c) with
c < 1. Assume that b ≤ c. Then Fix(T ) is a convex subset of C.

Proof. Let p, q ∈ Fix(T ) be arbitrary and λ be a scalar with 0 ≤ λ ≤ 1. Take
z = λp + (1 − λ)q. Then we have

‖Tz − Tp‖ ≤ a‖z − p‖ + b‖z − Tz‖ + c‖p − Tp‖
⇒ ‖Tz − p‖ ≤ a‖z − p‖ + b‖z − p‖ + b‖p − Tz‖

⇒ (1 − b)‖Tz − p‖ ≤ (1 − c)‖z − p‖.

Thus
‖Tz − p‖ ≤ ‖z − p‖. (3.6)

Now by parallelogram law, we have
∥
∥
∥
∥

z − p

2
+

Tz − p

2

∥
∥
∥
∥

2

+
∥
∥
∥
∥

z − p

2
− Tz − p

2

∥
∥
∥
∥

2

= 2

{∥
∥
∥
∥

z − p

2

∥
∥
∥
∥

2

+
∥
∥
∥
∥

Tz − p

2

∥
∥
∥
∥

2
}

⇒
∥
∥
∥
∥

z − p

2
+

Tz − p

2

∥
∥
∥
∥

2

+
1
4
‖z − Tz‖2 =

1
2
‖z − p‖2 +

1
2
‖Tz − p‖2

≤ 1
2
‖z − p‖2 +

1
2
‖z − p‖2

= ‖z − p‖2.
Then

∥
∥
∥
∥

z − p

2
+

Tz − p

2

∥
∥
∥
∥

2

≤ ‖z − p‖2 − 1
4
‖z − Tz‖2,
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which implies that
∥
∥
∥
∥

z + Tz

2
− p

∥
∥
∥
∥

2

≤ ‖z − p‖2 − 1
4
‖z − Tz‖2 = (1 − λ)2‖p − q‖2 − 1

4
‖z − Tz‖2.

Similarly, we can show that
∥
∥
∥
∥

z + Tz

2
− q

∥
∥
∥
∥

2

≤ λ2‖p − q‖2 − 1
4
‖z − Tz‖2.

If z 	= Tz, then we from above inequalities, we get
∥
∥
∥
∥

z + Tz

2
− p

∥
∥
∥
∥ < (1 − λ)‖p − q‖,

and
∥
∥
∥
∥

z + Tz

2
− q

∥
∥
∥
∥ < λ‖p − q‖.

Then we have

‖p − q‖ ≤
∥
∥
∥
∥

z + Tz

2
− p

∥
∥
∥
∥ +

∥
∥
∥
∥

z + Tz

2
− q

∥
∥
∥
∥

< (1 − λ)‖p − q‖ + λ‖p − q‖ = ‖p − q‖,

which is a contradiction. So, we must have z = Tz. i.e., z ∈ Fix(T ). There-
fore, Fix(T ) is a convex set. �

Our next theorem gives sufficient condition for Chatterjea nonexpansive
type mappings which guarantees that this class of mappings possess AFPS.

Theorem 3.5. Let X be a Banach space and C be a non-empty closed, convex,
bounded subset of X. Let T : C → C be a Chatterjea type nonexpansive
mapping with coefficients (a, b, c), such that b < 1. Also assume that for
x, y ∈ C

1 − b

7
‖x − Ty‖ ≤ ‖x − y‖ ⇒ ‖Tx − Ty‖ ≤ ‖x − y‖.

Then T has an AFPS in C. Moreover, the AFPS is asymptotically regular.

Proof. Since T is a Chatterjea type nonexpansive mapping with coefficients
(a, b, c), we have a, b, c ≥ 0, a + b + c = 1 and

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Ty‖ + c‖y − Tx‖ (3.7)

for all x, y ∈ C. Let x0 ∈ C be arbitrary but fixed. We consider the sequence
(xn) in X defined by xn+1 = λTxn +(1−λ)xn for all n ≥ 2 where 1

2 ≤ λ < 1.
Since C is bounded and convex, it follows that (xn) is a bounded sequence
in C. Now putting x = xn, y = xn+1 in Eq. (3.7), we get

‖Txn − Txn+1‖ ≤ a‖xn − xn+1‖ + b‖xn − Txn+1‖ + c‖xn+1 − Txn‖
≤ a‖xn − xn+1‖ + b‖xn − xn+1‖ + b‖xn+1 − Txn+1‖

+ c‖xn+1 − xn‖ + c‖xn − Txn‖
= ‖xn − xn+1‖ + b‖xn+1 − Txn+1‖ + c‖xn − Txn‖. (3.8)
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Since xn+1 = λTxn + (1 − λ)xn for all n ≥ 2, we have ‖xn − Txn‖ =
1
λ‖xn − xn+1‖ and ‖xn+1 − Txn+1‖ = 1

λ‖xn+1 − xn+2‖. Using these in Eq.
(3.8), we get

λ‖Txn − Txn+1‖ ≤ λ‖xn − xn+1‖ + b‖xn+1 − xn+2‖ + c‖xn − xn+1‖. (3.9)

Now

xn+1 − xn+2 = λ(Txn − Txn+1) + (1 − λ)(xn − xn+1)

⇒ ‖xn+1 − xn+2‖ ≤ λ‖Txn − Txn+1‖ + (1 − λ)‖xn − xn+1‖
≤ λ‖xn − xn+1‖ + b‖xn+1 − xn+2‖ + c‖xn − xn+1‖
+ (1 − λ)‖xn − xn+1‖ [using (3.9)]

⇒ ‖xn+1 − xn+2‖ ≤ 1 + c

1 − b
‖xn − xn+1‖. (3.10)

Again, we have

λ(Txn − Txn+1) = (xn+1 − xn+2) + (λ − 1)(xn − xn+1)

⇒ λ‖Txn − Txn+1‖ ≤ ‖xn+1 − xn+2‖ + (1 − λ)‖xn − xn+1‖. (3.11)

Therefore,

‖xn − Txn+1‖ ≤ ‖xn − Txn‖ + ‖Txn − Txn+1‖

=
1

λ
‖xn − xn+1‖ + ‖Txn − Txn+1‖

⇒ λ‖xn − Txn+1‖ ≤ ‖xn − xn+1‖ + λ‖Txn − Txn+1‖
≤ ‖xn − xn+1‖ + ‖xn+1 − xn+2‖ + (1 − λ)‖xn − xn+1‖ [using (3.11)]

≤ (2 − λ)‖xn − xn+1‖ +
1 + c

1 − b
‖xn − xn+1‖ [using (3.10)]

<

(
3

2
+

2

1 − b

)

‖xn − xn+1‖.

Thus
1
2
‖xn − Txn+1‖ ≤ λ‖xn − Txn+1‖

≤
(

3
2

+
2

1 − b

)

‖xn − xn+1‖.

Hence 1−b
7 ‖xn − Txn+1‖ < ‖xn − xn+1‖. Therefore, by given hypothesis, we

get

‖Txn − Txn+1‖ ≤ ‖xn − xn+1‖.

Thus, by Lemma 2.1, we have ‖xn − Txn‖ → 0 as n → ∞. So (xn) is an
AFPS of T . The fact that (xn) is asymptotically regular can be easily seen
from Theorem 3.1. �

Next, we prove a result concerning the existence of fixed points of such
mappings using Theorem 3.5.
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Theorem 3.6. Suppose that all the conditions of Theorem 3.5 are satisfied.
Further, assume that for any ε > 0, there exists δ > 0 such that

‖x − y‖ + ‖x − Ty‖ + ‖y − Tx‖ < 3ε + δ ⇒ ‖Tx − Ty‖ ≤ ε

2
. (3.12)

Then T has a fixed point in C.

Proof. By Theorem 3.5, T has an AFPS (xn), where xn+1 = λTxn+(1−λ)xn

and 1
2 ≤ λ < 1. Here we take λ = 1

2 . So we get an approximate fixed point
sequence (xn) given by xn+1 = 1

2 (Txn + xn), and this sequence is asymptot-
ically regular also. Next, we show that (xn) is a Cauchy sequence. Let ε > 0
be arbitrary. So there exists δ > 0 such that Eq. (3.12) holds. Without loss of
generality, we take δ < ε. Since, (xn) is asymptotically regular, there exists
N ∈ N such that

‖xn − xn+1‖ <
δ

4
for all n ≥ N . Next, we show by induction on p that

‖xN − xN+p‖ < ε for all p ∈ N. (3.13)

Clearly Eq. (3.13) is true for p = 1. Let Eq. (3.13) be true for some p ∈ N.
Therefore,

‖xN − xN+p‖ + ‖xN − TxN+p‖ + ‖xN+p − TxN‖
≤ ‖xN − xN+p‖ + ‖xN − xN+p‖
+ ‖xN+p − TxN+p‖ + ‖xN+p − xN‖
+ ‖xN − TxN‖

= 3‖xN − xN+p‖ + 2‖xN+p − xN+p+1‖
+ 2‖xN − xN+1‖

< 3ε + δ.

From Eq. (3.12), we get

‖TxN − TxN+p‖ ≤ ε

2
.

Again by the formation of (xn), we get

‖xN+p+1 − xN+1‖ ≤ 1
2
‖TxN+p − TxN‖ +

1
2
‖xN+p − xN‖ <

3ε

4
.

Thus

‖xN − xN+p+1‖ ≤ ‖xN − xN+1‖ + ‖xN+1 − xN+p+1‖

<
δ

4
+

3ε

4
< ε.

Therefore, Eq. (3.13) is true for p+1. So Eq. (3.13) is true for all p. Continuing
in a similar manner, we can show that

‖xn − xn+p‖ < ε for all n ∈ N and for all p ∈ N.
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Therefore, (xn) is a Cauchy sequence and hence convergent to some z ∈ C.
Again,

‖Txn − Txm‖ ≤ a‖xn − xm‖ + b‖xn − Txm‖ + c‖xm − Txn‖
≤ a‖xn − xm‖ + b‖xn − xm‖ + b‖xm − Txm‖ + c‖xm − xn‖

+ c‖xn − Txn‖
= ‖xn− xm‖+b‖xm− Txm‖+c‖xn− Txn‖→ 0 as n,m → ∞.

Therefore, (Txn) is a Cauchy sequence in C. Also, since xn+1 = 1
2 (Txn+xn),

we have that Txn = 2xn+1 − xn → z as n → ∞. Again,

‖z − Tz‖ ≤ ‖z − xn‖ + ‖xn − Txn‖ + ‖Txn − Tz‖
≤ ‖z − xn‖+ ‖xn− Txn‖+ a‖xn − z‖+ b‖xn − Tz‖ + c‖z − Txn‖.

Letting n → ∞ in above inequality, we get

‖z − Tz‖ ≤ b‖z − Tz‖,

which gives z = Tz, i.e., z is a fixed point of T . �
In the next theorem, we check the closedness property of the fixed point

set of Chatterjea type nonexpansive mappings.

Theorem 3.7. Let X be a Banach space and C be a non-empty subset of X.
If T is a Chatterjea type nonexpansive mapping on C with coefficients (a, b, c)
such that b < 1, then Fix(T ) is a closed subset of C.

Proof. Since T is Chatterjea type nonexpansive mapping with coefficients
(a, b, c), we have a, b, c ≥ 0 with a + b + c = 1 and

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Ty‖ + c‖y − Tx‖ (3.14)

for all x, y ∈ C. Let (zn) be a sequence in Fix(T ) converging to some z ∈ C.
Then, we have

‖Tzn − Tz‖ ≤ a‖zn − z‖ + b‖zn − Tz‖ + c‖z − Tzn‖
⇒ ‖zn − Tz‖ ≤ a‖zn − z‖ + b‖zn − Tz‖ + c‖z − zn‖.

Taking limit as n → ∞ in above inequality, we get ‖z − Tz‖ ≤ b‖z − Tz‖. So
z = Tz, i.e., z ∈ Fix(T ) and hence Fix(T ) is a closed set. �

In the upcoming theorem, we check the convexity property of the fixed
point set of Chatterjea type nonexpansive mappings.

Theorem 3.8. Let X be a Hilbert space and C be a non-empty subset of X. If
T is a Chatterjea type nonexpansive mapping on C with coefficients (a, b, c)
such that c < 1, then Fix(T ) is a convex subset of C.

Proof. Let x, y ∈ Fix(T ) be any two points and take z = λx + (1 − λ)y,
where λ is a scalar with 0 ≤ λ ≤ 1. Then we have

‖Tz − Tx‖ ≤ a‖z − x‖ + b‖z − Tx‖ + c‖x − Tz‖
⇒ ‖Tz − x‖ ≤ a‖z − x‖ + b‖z − x‖ + c‖x − Tz‖

⇒ (1 − c)‖Tz − x‖ ≤ (a + b)‖z − x‖
⇒ ‖Tz − x‖ ≤ ‖z − x‖.
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Next, using parallelogram law we have
∥
∥
∥
∥

z − x

2
+

Tz − x

2

∥
∥
∥
∥

2

+
∥
∥
∥
∥

z − x

2
− Tz − x

2

∥
∥
∥
∥

2

= 2

(∥
∥
∥
∥

z − x

2

∥
∥
∥
∥

2

+
∥
∥
∥
∥

Tz − x

2

∥
∥
∥
∥

2
)

⇒
∥
∥
∥
∥

z − x

2
+

Tz − x

2

∥
∥
∥
∥

2

+
1
4
‖z − Tz‖2 =

1
2
‖z − x‖2 +

1
2
‖Tz − x‖2

≤ 1
2
‖z − x‖2 +

1
2
‖z − x‖2

⇒
∥
∥
∥
∥

z − x

2
+

Tz − x

2

∥
∥
∥
∥

2

≤ ‖z − x‖2 − 1
4
‖z − Tz‖2

⇒
∥
∥
∥
∥

z + Tz

2
−x

∥
∥
∥
∥

2

≤ (1 − λ)2‖x − y‖2− 1
4
‖z − Tz‖2.

Similarly, we have
∥
∥
∥
∥

z + Tz

2
− y

∥
∥
∥
∥

2

≤ λ2‖x − y‖2 − 1
4
‖z − Tz‖2.

Now if z 	= Tz, then we have
∥
∥
∥
∥

z + Tz

2
− x

∥
∥
∥
∥ < (1 − t)‖x − y‖, and

∥
∥
∥
∥

z + Tz

2
− y

∥
∥
∥
∥ < t‖x − y‖.

Then, we get

‖x − y‖ ≤
∥
∥
∥
∥

z + Tz

2
− x

∥
∥
∥
∥ +

∥
∥
∥
∥

z + Tz

2
− y

∥
∥
∥
∥

< (1 − t)‖x − y‖ + t‖x − y‖
= ‖x − y‖,

which gives a contradiction. So we must have z = Tz, i.e., z ∈ Fix(T ).
Therefore, Fix(T ) is a convex set. �

Next, we present the following example showing the existence of AFPS
and of a fixed point for Reich type nonexpansive mappings.

Example 3.9. Let us consider the Banach space R equipped with the usual
norm and take C = [1, 10]. We define a function T : C → C by

Tx =

{
4
3x + 8, if 1 ≤ x ≤ 3

2 ;
10, if x > 3

2 .

Choose, a = 1
3 = b = c.

Let x, y ∈ C be arbitrary. Then the following three cases may arise:
Case I: Let 1 ≤ x, y ≤ 3

2 . Then, Tx = 4
3x + 8 and Ty = 4

3y + 8.
Therefore,

‖Tx − Ty‖ =
4
3
|x − y| ≤ 2

3
,
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and

a‖x − y‖ + b‖x − Tx‖ + c‖y − Ty‖ =
1
3

(
|x − y| + 8 +

x

3
+ 8 +

y

3

)
≥ 2

3
.

Thus

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Tx‖ + c‖y − Ty‖.

Case II: Let 1 ≤ x ≤ 3
2 and y > 3

2 . Then, Tx = 4
3x + 8 and Ty = 10.

Therefore,

‖Tx − Ty‖ = ‖4
3
x − 2‖ = 2 − 4

3
x,

and

a‖x − y‖ + b‖x − Tx‖ + c‖y − Ty‖
=

1
3

(
y − x + 8 +

x

3
+ 10 − y

)
=

1
3

(

18 − 2
3
x

)

.

So,

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Tx‖ + c‖y − Ty‖.

Case III: Let x, y > 3
2 . Then, it is obvious that

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Tx‖ + c‖y − Ty‖.

Thus we see that

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Tx‖ + c‖y − Ty‖
for all x, y ∈ C, i.e., T is a Reich type nonexpansive mapping with coefficients
( 13 , 1

3 , 1
3 ). It is easy to note that T has an AFPS. Here the AFPS is (xn), where

xn = 10 for all n. Also, T has a fixed point at x = 10.

Now we provide an example to validate Theorems 3.1 and 3.2.

Example 3.10. Let us consider the Banach space R equipped with the usual
norm and take C = [0, 1]. Define a mapping T : C → C by Tx = 1 − x for
all x ∈ C. Here we choose b = c = 1

2 . Let x, y ∈ C be two arbitrary points.
Then the following three cases may arise:

Case I: Assume that x, y ≤ 1
2 and take x > y. Then

‖Tx − Ty‖ − b‖x − Tx‖ − c‖y − Ty‖ = (x − y) − 1
2
(1 − 2x) − 1

2
(1 − 2y)

= 2x − 1 ≤ 0

⇒ ‖Tx − Ty‖ ≤ b‖x − Tx‖ + c‖y − Ty‖.

Case II: Assume that x, y > 1
2and take x > y. Then

‖Tx − Ty‖ − b‖x − Tx‖ − c‖y − Ty‖ = (x − y) − 1
2
(2x − 1) − 1

2
(2y − 1)

= 1 − 2y < 0

⇒ ‖Tx − Ty‖ < b‖x − Tx‖ + c‖y − Ty‖.
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Case III: Assume that x ≤ 1
2 and take y > 1

2 . Then

‖Tx − Ty‖ − b‖x − Tx‖ − c‖y − Ty‖ = (y − x) − 1
2
(1 − 2x) − 1

2
(2y − 1)

= 0

⇒ ‖Tx − Ty‖ = b‖x − Tx‖ + c‖y − Ty‖.

Thus T is a Reich type nonexpansive mapping with coefficients (0, 1
2 , 1

2 ).
Also, it can be easily verified that all the conditions of Theorems 3.1 and 3.2
hold good. So these two theorems, T has AFPS and fixed point. Indeed, the
sequences

(
1
2 − 1

n

)
and

(
1
2 + 1

n

)
are approximate fixed point sequences of T ,

and 1
2 is a fixed point of T .

Next, we present an example of a Chatterjea type nonexpansive map-
ping:

Example 3.11. Let us consider the Banach space R equipped with the usual
norm, take C = [0, 2] and define a mapping T : C → C by

Tx =

{
2 if x < 1

3 ;
5
3 if x ≥ 1

3 .

Choose a = b = c = 1
3 . Then for any x, y ∈ C, if x, y < 1

3 or if x, y ≥ 1
3 , it is

obvious to check that

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Ty‖ + c‖y − Tx‖.

Next, suppose that x < 1
3 and y ≥ 1

3 . Then ‖Tx − Ty‖ = 1
3 and

a‖x − y‖ + b‖x − Ty‖ + c‖y − Tx‖ =
1
3
(y − x +

5
3

− x + 2 − y) ≥ 1
3
,

so

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Ty‖ + c‖y − Tx‖.

Therefore, T is a Chatterjea type nonexpansive mapping with coefficients
(13 , 1

3 , 1
3 ). Also, T has an AFPS

(
5
3 + 1

n+2

)

n∈N

and Fix(T ) = { 5
3}, which is

obviously closed and convex.

Remark 3.12. Examples (3.9), (3.11) show that the classes of Reich and Chat-
terjea type nonexpansive mappings are larger than that of nonexpansive map-
pings. Now we will provide a sufficient condition under which class of Reich
type nonexpansive mapping reduces to the class of nonexpansive mappings.

Theorem 3.13. Let X be a finite dimensional Banach space, and C be non-
empty subset of X. Let T : C → C be a Reich type nonexpansive mapping
with coefficients (a, b, c) and assume that diam(Fix(T )) > 0. If Fix(T ) is
centerable and contains its Chebyshev center, then T becomes nonexpansive.

Proof. By Theorem 3.3, Fix(T ) is a closed subset of C. This implies that
Fix(T ) is compact as X is finite dimensional. So Fix(T ) is M -compact. Since
Fix(T ) is centerable and contains its Chebyshev center, it follows from Lemma
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6.1 of [19] that Fix(T ) attains its diameter. So there exists z1, z2 ∈ Fix(T )
such that ‖z1 − z2‖ = diam(Fix(T )) > 0. Therefore, we have

‖T (z1) − T (z2)‖ ≤ a‖z1 − z2‖ + b‖z1 − T (z1)‖ + c‖z2 − T (z2)‖
⇒ ‖z1 − z2‖ ≤ a‖z1 − z2‖
⇒ (1 − a)‖z1 − z2‖ = 0.

⇒ a = 1.

This implies that b = c = 0. Thus T becomes nonexpansive. �

In Theorem 3.13, we give a sufficient condition under which the class
of Reich type nonexpansive mapping reduces with the class of nonexpansive
mappings, but it is still unknown when the class of Chatterjea type non-
expansive mappings reduces to the class of nonexpansive mappings. So. we
propose the following open question:

Open question: Under what conditions does the class of Chatterjea type
nonexpansive mappings reduce to the class of nonexpansive mappings?

In the following theorem, we give an interesting property of AFPS for
Reich type and Chatterjea type nonexpansive mappings:

Theorem 3.14. Let X be a finite dimensional Banach space and C be non-
empty subset of X. Let T : C → C be a Reich type or a Chatterjea type
nonexpansive mapping with coefficients (a, b, c) such that max{b, c} < 1. If
(xn) is an AFPS for T , then for each k ∈ N, (T kxn) is an AFPS for T.

Proof. We will prove this result by mathematical induction and we will divide
the proofs into two cases:

Case 1: T is a Reich type nonexpansive mapping.
As T : C → C is a Reich type nonexpansive mappings, so for each

x, y ∈ C, we have

‖Tx − Ty‖ ≤ a‖x − y‖ + b‖x − Tx‖ + c‖y − Ty‖, (3.15)

where a, b, c ≥ 0, a + b + c = 1 and b, c < 1. Taking x = Txn and y = xn in
Eq. (3.15), we get

‖T (Txn) − Txn‖ ≤ a‖Txn − xn‖ + b‖Txn − T (Txn)‖ + c‖xn − Txn‖
⇒ lim

n→∞(1 − b)‖T (Txn) − Txn‖ ≤ 0
[
since lim

n→∞‖xn − Txn‖ = 0
]

⇒ lim
n→∞‖T (Txn) − Txn‖ = 0 [since b < 1].

This shows that the sequence (Txn) is an AFPS for the mapping T. So the
result is true for k = 1. Now assume that the result is true for k = p, i.e., the
sequence (T pxn) is an AFPS for the mapping T. Then putting x = T p+1xn

and y = T pxn in Eq. (3.15), we get

‖T (T p+1xn) − T p+1xn‖ ≤ a‖T p+1xn − T pxn‖ + b‖T p+1xn − T p+2xn‖
+c‖T pxn − T p+1xn‖.

⇒ lim
n→∞(1 − b)‖T (T p+1xn) − T p+1xn‖ = 0 as lim

n→∞‖T p+1xn − T pxn‖ = 0.

⇒ lim
n→∞‖T (T p+1xn) − T p+1xn‖ = 0 as b < 1.
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This shows that the sequence (T p+1xn) is an AFPS for the mapping T.
So the result is true for k = p + 1. By mathematical induction we have for
each k ∈ N, the sequence (T kxn) is an AFPS for the mapping T.

Case 2: T is a Chatterjea type nonexpansive mapping.
As T : C → C is a Chatterjea type nonexpansive mapping, so for each

x, y ∈ C, we have

‖T (x) − T (y)‖ ≤ a‖x − y‖ + b‖x − T (y)‖ + c‖y − T (x)‖, (3.16)

where a, b, c ≥ 0, a + b + c = 1 and b, c < 1. At first, we show that the
sequence (Txn) is an AFPS for the mapping T. Taking x = Txn and y = xn

in Eq. (3.16), we get

‖T (Txn) − Txn‖ ≤ a‖Txn − xn‖ + b‖Txn − Txn‖ + c‖xn − T (Txn)‖
≤ a‖Txn − xn‖ + c‖xn − Txn‖ + c‖Txn − T (Txn)‖
⇒ lim

n→∞(1 − c)‖T (Txn) − Txn‖ = 0 as lim
n→∞‖xn − Txn‖ = 0

⇒ lim
n→∞‖T (Txn) − Txn‖ = 0 as c < 1.

This shows that the sequence (Txn) is an AFPS for the mapping T. So
the result is true for k = 1. Next, we assume that the result is true for
k = p, i.e., the sequence (T pxn) is an AFPS for the mapping T. Then putting
x = T p+1xn and y = T pxn in Eq. (3.16), we get

‖T (T p+1xn) − T p+1xn‖ ≤ a‖T p+1xn − T pxn‖ + b‖T p+1xn − T p+1xn‖
+ c‖T pxn − T p+2xn‖

≤ a‖T p+1xn − T pxn‖ + c‖T pxn − T p+1xn‖
+ c‖T p+1xn − T p+2xn‖

⇒ lim
n→∞(1 − c)‖T (T p+1xn) − T p+1xn‖ = 0 as lim

n→∞‖T pxn − T p+1xn‖ = 0

⇒ lim
n→∞‖T (T p+1xn) − T p+1xn‖ = 0 as c < 1.

This shows that the sequence (T p+1xn) is an AFPS for the mapping T. So
the result is true for k = p + 1. By mathematical induction we have for each
k ∈ N, the sequence (T kxn) is an AFPS for the mapping T. �

In this part we will characterize the fixed point set Fix(T ) and the
domain set C of the two newly introduced mappings.

Theorem 3.15. Let X be a finite dimensional normed linear space, and C be
a non-empty, closed, bounded subset of X. Let T : C → C be a Reich type or
a Chatterjea type nonexpansive mapping with coefficients (a, b, c) such that
max{b, c} < 1. Then C is remotal but not uniquely remotal and Fix(T ) is
remotal but may not be uniquely remotal.

Proof. We will prove this result for Chatterjea type nonexpansive mappings.
The proof for Reich type nonexpansive mappings follows similarly. Let T :
C → C be a Chatterjea type nonexpansive mapping. As X is finite dimen-
sional and C is closed and bounded, so from [18] we can conclude that C
is remotal. But C cannot be uniquely remotal. Because C is a closed and
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bounded set in a finite dimensional space X, C is compact. If C is uniquely
remotal then by Klee’s result [9], C must be a singleton. Since C is not a
singleton, the set C cannot be uniquely remotal.

For the fixed point set we have already proved in Theorem 3.7, that
Fix(T ) is a closed set. Also since Fix(T ) ⊂ C, F ix(T ) is bounded. Since X
is finite dimensional, it follows that Fix(T ) is compact. So, from Theorem
B of [18], we can conclude that Fix(T ) is remotal. But Fix(T ) may not be
uniquely remotal because if Fix(T ) is uniquely remotal, then by Klee’s result,
the fixed point set Fix(T ) must be a singleton. But, the identity mapping
I : C → C is a Chatterjea type nonexpansive mapping for a = b = c = 1

3 and
Fix(I) = C, which is not a singleton. �

Remark 3.16. Let X be a finite dimensional normed linear space, and C be
non-empty, closed, bounded subset of X. Let T : C → C be a Reich type or a
Chatterjea type nonexpansive mapping. If Fix(T ) is uniquely remotal, then
T has a unique fixed point.

In the succeeding part, we prove a result regarding fixed points of far-
thest point map on a normed linear space.

Theorem 3.17. Let C be a non-empty, bounded subset of a normed linear
space X, and T : C → C be a mapping. If diam(Fix(T )) > 0 and Fix(T ) is
uniquely remotal, then the farthest point map F : X → Fix(T ) is fixed point
free.

Proof. Since diam(Fix(T )) > 0, Fix(T ) is non-empty, bounded subset of X
and Fix(T ) contains more than one point. As Fix(T ) is uniquely remotal so
the farthest point map F : X → Fix(T ) is well defined. Suppose F has a
fixed point. So there exists x ∈ X such that F (x) = x. So x ∈ Fix(T ) and
‖x − F (x)‖ = 0. This implies D(x,Fix(T )) = sup{‖x − a‖ : a ∈ Fix(T )} = 0
as ‖x−F (x)‖ = D(x,Fix(T )). But this is not possible as diam(Fix(T )) > 0.
So the farthest point map F is fixed point free. �

From the above theorem, we immediately have the following corollary:

Corollary 3.18. Let X be a normed linear space and C be non-empty, bounded
subset of X. Let T : C → C be Reich type or Chatterjea type nonexpansive
mapping. If diam(Fix(T )) > 0 and Fix(T ) is uniquely remotal, then the
farthest point map F : X → Fix(T ) is fixed point free.

In the upcoming lemma, we present a relation between AFPS and max-
imizing sequence.

Lemma 3.19. Let C be non-empty, bounded, closed subset of a finite dimen-
sional normed linear space X, and Let T : C → C be a mapping. If a sequence
(xn) in C is an AFPS for T , then (xn) is maximizing if and only if (Txn) is
maximizing.

Proof. We first assume that (xn) is maximizing. So there exists x0 ∈ X such
that ‖xn − x0‖ → D(x0, C) = sup{‖x0 − a‖ : a ∈ C} as n → ∞. Since
C is closed and bounded set in X and X is finite dimensional, it follows
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from Theorem B of [18] that C is remotal. So there exists c0 ∈ C such that
‖x0 − c0‖ = D(x0, C). So ‖xn − x0‖ → ‖x0 − c0‖ as n → ∞. Now

‖Txn − x0‖ ≤ ‖Txn − xn‖ + ‖xn − x0‖
⇒ lim

n→∞‖Txn − x0‖ ≤ ‖x0 − c0‖ as lim
n→∞‖Txn − xn‖ = 0.

Also

‖xn − x0‖ ≤ ‖Txn − xn‖ + ‖Txn − x0‖
⇒ lim

n→∞‖xn − x0‖ ≤ lim
n→∞‖Txn − x0‖ as lim

n→∞‖Txn − xn‖ = 0

⇒ ‖x0 − c0‖ ≤ lim
n→∞‖Txn − x0‖.

So we have

lim
n→∞‖Txn − x0‖ = ‖x0 − c0‖ = D(x0, C).

This proves that the sequence (Txn) is maximizing.
Next, suppose that (Txn) is maximizing. So there exists x ∈ X such that
‖Txn − x‖ → D(x,C) as n → ∞. As C is remotal so there exists c ∈ C such
that ‖x − c‖ = D(x,C). So ‖Txn − x‖ → ‖x − c‖ as n → ∞. Then,

‖xn − x‖ ≤ ‖Txn − xn‖ + ‖Txn − x‖
⇒ lim

n→∞‖xn − x‖ ≤ ‖x − c‖.

Since ‖Txn−x‖ ≤ ‖Txn−xn‖+‖xn−x‖, we get that ‖x−c‖ ≤ lim
n→∞‖xn−x‖.

Thus, we have

lim
n→∞‖xn − x‖ = ‖x − c‖ = D(x,C).

This proves that the sequence (xn) is maximizing. �

The following corollary is an immediate consequence of the above lemma:

Corollary 3.20. Let X be a finite dimensional normed linear space and C be
non-empty, closed, bounded subset of X. Let T : C → C be a Reich type or
Chatterjea type nonexpansive mapping. If a sequence (xn) in C is an AFPS
for T , then (xn) is maximizing if and only if (Txn) is maximizing.

In the upcoming result, we present a theorem relating to preserveness
of a maximizing sequence and an AFPS.

Theorem 3.21. Let X be a finite dimensional Banach space and C be non-
empty, closed, bounded subset of X. Let T : C → C be a Reich type or
Chatterjea type nonexpansive mapping with (a, b, c) such that b, c < 1. If a
sequence (xn) in C is an AFPS and maximizing for T , then for each k ∈ N,
the sequence (T kxn) is also AFPS and maximizing.

Proof. First let T be a Reich type nonexpansive mapping, and the sequence
(xn) be an AFPS and maximizing for T . Then from Theorem 3.14, we can say
that the sequence (Txn) is an AFPS for T , and also from Corollary 3.20, we
can say the sequence (Txn) is maximizing. So the result is true for k = 1. Now
suppose the result is true for k = p. So the sequence (T pxn) is an AFPS and
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maximizing for T . Similarly from Theorem 3.14 and Corollary 3.20, we can
say that the sequence (T p+1xn) is an AFPS and maximizing for T . Therefore,
by mathematical induction we have for each k ∈ N, the sequence (T kxn) is
an AFPS and maximizing for T .

The proof for the case of Chatterjea type nonexpansive mappings is
similar to that of Reich type and so omitted. �

Finally, we prove a result concerning the preserving property of M -
compactness of Reich type or Chatterjea nonexpansive mappings.

Theorem 3.22. Let X be a finite dimensional normed linear space and C be
non-empty, bounded subset of X. Let T : C → C be a Reich type or Chatterjea
type nonexpansive mapping. If every sequence (xn) in C is an AFPS for T
and T is continuous, then C is M -compact if and only if T (C) is M -compact.

Proof. Let T be a Reich type nonexpansive mapping, and suppose that C is
M -compact. Let (yn) be a maximizing sequence in T (C). So yn = Txn ∀ n ∈
N, where xn ∈ C. So (xn) is a sequence in C and since (xn) is an AFPS for T ,
by corollary 3.20, (xn) is a maximizing sequence in C. As C is M -compact,
so (xn) has a convergent subsequence (xnk

) in C. As T is continuous, so the
sequence (Txnk

), which is a subsequence of the sequence (yn), will converge
to a point in T (C). So the sequence (yn) is compact. This proves that the set
T (C) is M -compact.

Conversely, suppose that the set T (C) is M -compact. Let (xn) be a
maximizing sequence in C. Then (Txn) is a sequence in T (C). Since the se-
quence (xn) is an AFPS for T , by Corollary 3.20, we can say that the sequence
(Txn) is a maximizing sequence in T (C). As T (C) is M -compact so (Txn)
has a convergent subsequence (Txnk

) in T (C). Since T is continuous (xnk
)

converges to a point in C. So the sequence (xn) has a convergent subsequence
in C. This proves that C is M -compact.

The proof for the case of Chatterjea type nonexpansive mappings is
similar to the above proof and it is skipped again. �

Remark 3.23. The conditions in Theorem 3.22 are sufficient but not neces-
sary, which can be seen from the Example 3.11. In Example 3.11, T is a
Chatterjea type nonexpansive mapping, and C = [0, 2] and T (C) = {2, 5

3}
are M -compact subsets of R. But for the mapping T , the sequence ( 1

n+3 ) is
not an AFPS and also T is not continuous at x = 1

3 .
The conditions in Theorem 3.22 are sufficient but not necessary for Reich

type nonexpansive mapping also, as can be seen from the Example (3.9). In
Example (3.9), T is Reich type nonexpansive mapping and here C = [1, 10]
and T (C) = [283 , 10] are M -compact subsets of R. But for the mapping T ,
the sequence ( 32 − 1

n ) is not an AFPS but T is continuous.
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