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Abstract. We generalize Ekeland’s variational principle in partially
ordered complete metric spaces on sets defined by functions with the
mixed monotone property. We apply the result in giving an alternative
proofs for coupled fixed points for mixed monotone maps in partially
ordered complete metric spaces by using a variational technique. We
succeed in generalizing some of the known results about coupled fixed
points.
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1. Introduction and preliminaries

Ekeland proved a variational principle in [19]. In a series of articles [20,21]
he enriches the results. Later he presented a more concise proof [22], which
technique we will use. In the same article [22], various applications of the
variational principle in different fields of mathematics are presented. Eke-
land’s variational principle has many applications and generalizations [4–
6,9,12,16,33,35,46]. It is well known that fixed point theorems and varia-
tional principles are closely related [10,11,15,22,27,30].

Fixed point theorems, initiated by Banach’s Contraction Principle has
proved to be a powerful tool in nonlinear analysis. We cannot mention all
kinds of generalizations of Banach’s Contraction Principle. One direction for
generalization of it is the notion of coupled fixed points [25], where mixed
monotone maps in partially ordered by a cone Banach spaces are investigated.
Later this idea was developed for mixed monotone maps in partially ordered
metric spaces [8]. It is impossible to summarize all generalizations of the
ideas of coupled fixed points, for mixed monotone maps, in partially ordered
metric spaces. The investigation on the subject continuous as seen [1–3,13,
23,24,26,29,31,32,36,39,42–45,47], which is far from exhausting the most
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recent results. Another kind of maps considered in partially ordered complete
metric spaces are for monotone maps without the mixed monotone property
[17,18,28,40].

Let us mention that Ekeland’s variational principle holds for any l.s.c
maps T : X × X → R, provided that X is a partially ordered complete
metric space. Unfortunately, when investigating contraction type of maps F :
X × X → X, satisfying the mixed monotone property in a partially ordered
complete metric space X×X. the contraction conditions holds only for part of
the points (x, y), (u, v) ∈ X×X. Thus we can not apply Ekeland’s variational
principle, as it is done in [22]. Therefore we will try to generalize Ekeland’s
variational principle on classes of subsets of partially ordered complete metric
space X ×X, which need not to be compact or even closed, and then to apply
it for the existence of coupled fixed points for maps that satisfy the mixed
monotone property.

A similar approach was used in [37,38], where variational principles
in partially ordered metric spaces were obtained and used to investigated
problems, otherwise impossible to solve with the known variational principles.

Let (X, ρ) be a metric space. Following [9] an extended real valued func-
tion T : X → (−∞,+∞] on X is called lower semicontinuous (for short l.s.c)
if {x ∈ X : f(x) > a} is an open set for each a ∈ (−∞,+∞]. Equivalently T
is l.s.c if and only if at any point x0 ∈ X there holds lim inf

x→x0
f(x) ≥ f(x0). A

function T is called to be proper function, provided that T �≡ +∞.
Following [8,25] let X be a set and let � be a partial order in X,

then (X,�) is called a partially ordered set. We call two elements x, y ∈ X
comparable if either x � y or y � x. We denote x 	 y if y � x. We say that
x ≺ if x � y but x �= y. Let (X, ρ) be a metric space with a partial order �,
then the triple (X, ρ,�) is called a partially ordered metric space. Ran and
Reurings in [41] initiate the fixed point theory in partially ordered metric
spaces.

Definition 1.1 ([8,25]). Let (X,�) be a partially ordered set and let F :
X × X → X. The function F is said to have the mixed monotone property
if

for any x1, x2, y ∈ X such that x1 � x2

there holds F (x1, y) � F (x2, y)

and

for any y1, y2, x ∈ X such that y1 � y2
there holds F (x, y1) 	 F (x, y2).

Definition 1.2 ([8,25]). Let F : X ×X → X. An ordered pair (x, y) ∈ X ×X
is called coupled fixed point of F if x = F (x, y) and y = F (y, x).

Let (X, ρ,�) be a partially ordered complete metric space. We endow
the product space X × X with the following partial order (u, v) � (x, y),
provided that x 	 u and y � v hold simultaneously and with the following
metric d((x, y), (u, v)) = ρ(x, u) + ρ(y, v) for (x, y), (u, v) ∈ X × X.
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Everywhere for a partially ordered metric space (X, ρ,�) we will con-
sider the product space (X × X, d, �) endowed with the above-mentioned
partial order and metric.

2. Main result

Just to fit some of the formulas in the text field we will use the notation
u =

(
u(1), u(2)

) ∈ X×X and for any u ∈ X×X let us denote u =
(
u(2), u(1)

)
.

Theorem 2.1. Let (X, ρ,�) be a partially ordered complete metric space, (X×
X, d, �) and F : X × X → X be a continuous map with the mixed monotone
property. Let

V × V = {x = (x(1), x(2)) ∈ X × X : x(1) � F (x) and x(2) 	 F (x)} �= ∅.

Let T : X × X → R ∪ {+∞} be a proper, l.s.c, bounded from below function.
Let ε > 0 be arbitrary chosen and fixed and let u0 ∈ V ×V be an ordered pair
such that the inequality

T (u0) ≤ inf
V ×V

T (v) + ε (2.1)

holds. Then there exists an ordered pair x ∈ V × V , such that
(i) T (x) ≤ inf

u∈V ×V
T (u);

(ii) d(x, u0) ≤ 1;
(iii) For every w ∈ V × V different from x ∈ V × V holds the inequality

T (w) > T (x) − εd(w, v).

Proof. Let us define inductively a sequence of ordered pairs {un}∞
n=0 ⊂ X ×

X, starting with the pair u0 ∈ V × V , that satisfies (2.1).
Suppose that we have already chosen un ∈ V × V . There holds either:

(a) For every ordered pair w �= un, w ∈ V ×V , holds the inequality T (w) >
T (un) − εd(w, un);
or

(b) There exists w �= un, w ∈ V × V , so that there holds the inequality

T (w) ≤ T (un) − εd(w, un). (2.2)

If case (a) holds, we choose un+1 = un. In case of (b), let us denote by
Sn ⊂ V × V the set of all ordered pairs w ∈ V × V , which satisfy the
inequality (2.2). We choose un+1 ∈ Sn so that

T (un+1) ≤ T (un)
2

+
infv∈Sn

T (v)
2

. (2.3)

We claim that in both cases {un}∞
n=0 is a Cauchy sequence.

Indeed if case (a) ever occurs the sequence is stationary, starting from
some index n. If case (a) does not occur for any index n ∈ N, then it should
be case (b) for all indexes n ∈ N. Therefore by (2.2), we have the inequalities

d(uk, uk+1) ≤ T (uk) − T (uk+1)

for k = 0, 1, 2, . . . . Summing up the above inequalities for k from n to p − 1,
we get
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εd(un, up) ≤
p−1∑

k=n

εd(uk, uk+1)

≤
p−1∑

k=n

(T (uk) − T (uk+1)) = T (un) − T (up). (2.4)

From the inequality

T (un+1) ≤ T (un) − εd(un, un+1) < T (un),

it follows that the sequence {T (un)}∞
n=0 is a decreasing one and bounded

from below (by infv∈V ×V T (v)). Hence it is convergent. So the right-hand
side in (2.4) goes to zero, when n and p go to infinity simultaneously.
Consequently, {un}∞

n=0 is a Cauchy sequence. Since (X × X, d) is a com-
plete metric space (because (X, ρ) is complete), it follows that the sequence

{un}∞
n=0 =

{
(u(1)

n , u
(2)
n )

}∞

n=0
converges to some x =

(
x(1), x(2)

) ∈ X × X.

We claim that
(
x(1), x(2)

) ∈ V × V and satisfies (i), (ii) and (iii).

Indeed from the continuity of F and the choice of un =
(
u
(1)
n , u

(2)
n

)
∈

V × V we have

x(1) = lim
n→∞ u(1)

n � lim
n→∞ F (un) = F (x)

and

x(2) = lim
n→∞ u(2)

n 	 lim
n→∞ F (un) = F (x).

(i) By construction the sequence {T (un)}∞
n=0 is monotonously decreas-

ing, and consequently using the l.s.c. of T we get T (x) ≤ limn→∞ T (un) ≤
T (u0), and consequently (i) holds.

(ii) Let us put n = 0 in (2.4), i.e.,

εd(u0, up) ≤ T (u0) − T (up) ≤ T (u0) − inf
v∈V ×V

T (v) ≤ ε.

Letting p to infinity in the last inequality we get

εd(u0, x) = lim
p→∞ εd(u0, up) ≤ ε,

i.e., d(x, u) ≤ 1.
(iii) Let us suppose that (iii) were not true for all w ∈ V ×V . Therefore

we can choose w �= x, w ∈ V × V , so that

T (w) ≤ T (x) − εd(w, x) < T (x). (2.5)

Letting p → ∞ in (2.4), we obtain

εd(un, x) ≤ T (un) − T (x). (2.6)

From (2.5) and (2.6) we get the chain of inequalities

T (w) ≤ T (x) − εd(w, x) ≤ T (un) − εd(un, x) − εd(x,w)
= T (un) − ε(d(un, x) + d(x,w)) ≤ T (un) − εd(un, w)

and thus w ∈ Sn for all n ∈ N. From (2.3) we have

2T (un+1) − T (un) ≤ inf
Sn

F ≤ T (w), (2.7)
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because w ∈ ∩∞
n=0Sn. From the existence of limn→∞ F (un) = l and (2.7) it

follows that

lim
n→∞(2T (un+1) − T (un)) = lim

n→∞ T (un) = l ≤ T (w). (2.8)

Since T is l.s.c, we have the inequality

T (x) ≤ lim
n→∞ T (un) = l (2.9)

and thus (2.8) and (2.9) imply that T (x) ≤ T (w), a contradiction with
(2.5). �

3. Applications

We will need the next observation, that is used in [7,8,14], but not stated as
a proposition.

Proposition 3.1. Let (X,�) be a partially ordered set and F : X × X → X
be a map with the mixed monotone property. Let (x, y) ∈ X × X satisfy
the inequalities x � F (x, y), y 	 F (y, x) and let us put u = F (x, y) and
v = F (y, x). Then there hold u � F (u, v), v 	 F (v, u), u 	 x and v � y.

Proof. By the definition of (u, v) ∈ X × X there hold x � F (x, y) = u and
y 	 F (y, x) = v. From the assumption that F satisfies the mixed monotone
property, we get the inequalities

F (u, v) 	 F (x, v) 	 F (x, y) = u,

and

F (v, u) � F (y, u) � F (y, x) = v.

�

Let (X,�) be a partially ordered set and F : X × X → X. Following
[25], for any (ξ0, η0) ∈ X × X we will consider the sequence {ξn, ηn}∞

n=0,
defined by ξn = F (ξn−1, ηn−1) and ηn = F (ηn−1, ξn−1) for n ∈ N.

Proposition 3.2. Let (X,�) be a partially ordered set and F : X ×X → X be
a map with the mixed monotone property. Let (x, y) ∈ X×X be a coupled fixed
point, i.e., x = F (x, y), y = F (y, x) and let (ξ0, η0) be comparable with (x, y).
Then (ξn, ηn) is comparable with (x, y) = (F (x, y), F (y, x)) and (ηn, ξn) is
comparable with (y, x) = (F (y, x), F (x, y)).

Proof. If (ξ0, η0) is comparable with (x, y), then there holds either ξ0 � x
and η0 	 y or ξ0 	 x and η0 � y. Let us assume that there holds the second
one (i.e., ξ0 	 x and η0 � y). Using the mixed monotone property we get

ξ1 = F (ξ0, η0) 	 F (x, η0) 	 F (x, y) = x,

and

η1 = F (η0, ξ0) � F (y, ξ0) � F (y, x) = y.
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Therefore, (ξ1, η1) 	 (x, y) = (F (x, y), F (y, x)). We can get by induction
that

ξn = F (ξn−1, ηn−1) 	 F (x, ηn−1) 	 F (x, y) = x

and

ηn = F (ηn−1, ξn−1) � F (y, ξn−1) � F (y, x) = y.

Consequently, (ξn, ηn) is comparable with (x, y) and

(ξn, ηn) 	 (x, y) = (F (x, y), F (y, x)).

If there holds the first case (i.e., ξ0 � x and η0 	 y), we can get in a
similar fashion that there hold ξn � x and ηn 	 y and thus

(F (x, y), F (y, x)) = (x, y) 	 (ξn, ηn).

Therefore, (ξn, ηn) is comparable with (x, y) = (F (x, y), F (y, x)) in both
cases. �

We will need the result from [34] that in a partially ordered space any
element with an lower or an upper bound is equivalent to for every two
elements there exists an element, which is comparable with both of them.

We will give an alternative proof of ([7], Theorem 3) for the existence of
coupled fixed points using the variational principle from the previous section.

Theorem 3.3. Let (X, ρ,�) be a partially ordered complete metric space, (X×
X, d, �) and F : X × X → X be a continuous map with the mixed monotone
property. Let there exist α ∈ [0, 1), so that the inequality

ρ(F (x, y), F (u, v)) + ρ(F (y, x), F (v, u)) ≤ αρ(x, u) + αρ(y, v) (3.1)

holds for all x 	 u and y � v. If there exists at least one ordered pair (x, y),
such that x � F (x, y) and y 	 F (y, x), then there exists a coupled fixed points
(x, y) of F .

If in addition every pair of elements in X ×X has an lower or an upper
bound, then the coupled fixed point is unique.

Proof. Let us consider the function T : X × X → R, defined by

T (z) = d(z, (F (z), F (z)),

where z = (x, y) ∈ X × X and z = (y, x). The map T satisfies the conditions
of Theorem 2.1, as far as T is continuous, proper function, bounded from
below and the set of all z ∈ X × X, such that x � F (z) and y 	 F (z) is
not empty. Let us choose ε ∈ (0, 1 − α). By Theorem 2.1 there exists (x, y),
satisfying x � F (x, y) and y 	 F (y, x), such that there holds the inequality

T (x, y) ≤ T (u, v) + εd((x, y), (u, v)) (3.2)

for every u � F (u, v) and v 	 F (v, u).
Let us put u = F (x, y), v = F (y, x) and w = (u, v). By Proposition 3.1

it follows that u � F (u, v), v 	 F (v, u), u 	 x and v � y. From (3.1) using
the symmetry of the metrics ρ, we obtain

T (w) = d(w, (F (w), F (w))
= ρ(F (x, y), F (F (x, y), F (y, x)))
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+ρ(F (y, x), F (F (y, x), F (x, y)))
= ρ(F (F (x, y), F (y, x)), F (x, y))

+ρ(F (F (y, x), F (x, y)), F (y, x))
≤ α (ρ(F (x, y), x) + ρ(F (y, x), y)) = αT (x, y). (3.3)

Consequently from (3.2) using (3.3), we get

T (x, y) ≤ T (w) + εd((x, y), w) ≤ αT (x, y) + εT (x, y) = (α + ε) T (x, y)

From the choice of ε ∈ (0, 1 − α), we obtain T (x, y) < T (x, y). From the
last inequality it follows that T (x, y) = d((x, y), (F (x, y), F (y, x))) = 0, i.e.,
ρ(x, F (x, y)) + ρ(y, F (y, x)) = 0. Therefore (x, y) is a coupled fixed points of
F .

The proof of the uniqueness, provided that every pair of elements in
X × X has an lower or an upper bound is done in [7]. �

The next results is a corollary of Theorem 3.3, which slightly generalizes
the result from [8].

Corollary 3.4. Let (X, ρ,�) be a partially ordered complete metric space,
(X×X, d, �) and F : X×X → X be a continuous map with the mixed mono-
tone property. Let there exist α, β ∈ [0, 1), α + β < 1 so that the inequality

ρ(F (x, y), F (u, v)) ≤ αρ(x, u) + βρ(y, v) (3.4)

holds for all x 	 u and y � v. If there exists at least one ordered pair (x, y),
such that x � F (x, y) and y 	 F (y, x), then there exists a coupled fixed points
(x, y) of F .

If in addition every pair of elements in X ×X has an lower or an upper
bound, then the coupled fixed point is unique.

Proof. Let F satisfy (3.4). Then from (3.4) we get for x 	 u and y � v that
there holds

ρ(F (x, y), F (u, v)) ≤ αρ(x, u) + βρ(y, v). (3.5)

and using the symmetry of the metric ρ(·, ·) we get, using v 	 y and u � x

ρ(F (y, x), F (v, u)) = ρ(F (v, u), F (y, x)) ≤ αρ(y, v) + βρ(x, u) (3.6)

Summing up (3.5) and (3.6), we obtain

ρ(F (x, y), F (u, v)) + ρ(F (y, x), F (v, u)) ≤ (α + β)(ρ(x, u) + ρ(y, v)),
(3.7)

and consequently the conditions of Theorem 3.3 are satisfied. �

It was proved in [14] the existence and uniqueness of coupled fixed points
for Kannan type maps in metric space. We present a generalization in the
context of mixed monotone maps in partially ordered metric spaces.

Theorem 3.5. Let (X, ρ,�) be a partially ordered complete metric space, (X×
X, d, �) and F : X × X → X be a continuous map with the mixed monotone
property. Let there exist α ∈ [0, 1/2), so that the inequality

ρ(F (x, y), F (u, v)) ≤ αρ(x, F (x, y)) + αρ(u, F (u, v)) (3.8)
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holds for all x 	 u and y � v. If there exists at least one ordered pair (x, y),
such that x � F (x, y) and y 	 F (y, x), then there exists a coupled fixed point
(x, y) of F .

Proof. It is well known that α
1−α ∈ [0, 1) for any α ∈ [0, 1/2). Let us consider

the function T : X × X → R, defined by

T (z) = d(z, (F (z), F (z)) = ρ(x, F (x, y)) + ρ(y, F (y, x)),

where z = (x, y) ∈ X×X. The map T satisfies the conditions of Theorem 2.1,
as far as T is continuous, proper function, bounded from below and the set of
all z ∈ X × X, such that x � F (z) and y 	 F (z) is not empty. Let us choose
ε ∈ (0, 1 − α). By Theorem 2.1 there exists (x, y), satisfying x � F (x, y) and
y 	 F (y, x), such that there holds the inequality

T (x, y) ≤ T (u, v) + εd((x, y), (u, v)) (3.9)

for every u � F (u, v) and v 	 F (v, u).
Let us put u = F (x, y), v = F (y, x) and w = (u, v). By Proposition 3.1

it follows that u � F (u, v), v 	 F (v, u), u 	 x and v � y. From (3.8) using
the symmetry of ρ(·, ·), we obtain

S1 = ρ(F (x, y), F (F (x, y), F (y, x)))
= ρ(F (F (x, y), F (y, x)), F (x, y))
≤ αρ(x, F (x, y)) + αρ(F (x, y), F (F (x, y), F (y, x))),

because F (x, y) 	 x and F (y, x) � y and thus

ρ(F (x, y), F (F (x, y), F (y, x))) ≤ α

1 − α
ρ(x, F (x, y)). (3.10)

Similarly from (3.8) we get

S2 = ρ(F (y, x), F (F (y, x), F (x, y)))
≤ αρ(y, F (y, x)) + αρ(F (y, x), F (F (y, x), F (x, y))),

and consequently

ρ(F (y, x), F (F (y, x), F (x, y))) ≤ α

1 − α
ρ(y, F (y, x)). (3.11)

From (3.10) and (3.11), we obtain

T (w) = d(w, (F (w), F (w))
= ρ(F (x, y), F (F (x, y), F (y, x)))

+ρ(F (y, x), F (F (y, x), F (x, y))))

≤ α

1 − α
(ρ(x, F (x, y)) + ρ(y, F (y, x))) =

α

1 − α
T (x, y). (3.12)

Consequently from (3.10) using (3.12) we get

T (x, y) ≤ T (u, v) + εd((x, y), (u, v))

≤ α

1 − α
T (x, y) + εT (x, y) =

(
α

1 − α
+ ε

)
T (x, y).

From the choice of ε ∈
(
0, 1 − α

1−α

)
, we obtain T (x, y) < T (x, y). From the

last inequality it follows that T (x, y) = d((x, y), (F (x, y), F (y, x))) = 0, i.e.,
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ρ(x, F (x, y)) + ρ(y, F (y, x)) = 0. Therefore (x, y) is a coupled fixed points of
F .

Let there be two coupled fixed points (x, y), (u, v) ∈ X × X, then
x = F (x, y), y = F (y, x), u = F (u, v) and v = F (v, u). By the assumption
that any element has an lower or an upper bound it follows from [34] that
there exists (ξ0, η0) comparable with (x, y) and (u, v). From Proposition 3.2
it follows that (ξn, ηn) is comparable with both (x, y) = (F (x, y), F (y, x))
and (u, v) = (F (u, v), F (v, u)) and (ηn, ξn) is comparable with both (y, x)
and (v, u).

We will apply inequality (3.8). If (ξn, ηn) 	 (x, y), then it satisfies the
assumptions of the theorem.

If (ξn, ηn) � (x, y), using the symmetry of the metrics ρ we get

ρ(F (ξn, ηn), F (x, y)) = ρ(F (x, y), F (ξn, ηn))
≤ αρ(x, F (x, y)) + αρ(ξn, F (ξn, ηn)).

Consequently, we can apply (3.8) when (ξn, ηn) is comparable with

(F (x, y), F (y, x)).

There exists n0 ∈ N, such that
(

α
1−α

)n0

< ρ(ξ0,x)+ρ(η0,y)+ρ(ξ0,u)+ρ(η0,v)
ρ(x,u)+ρ(y,v) .

Let us denote In = ρ(ξn, x) and Jn = ρ(ηn, y). Using inequality (3.8),
we get that

In = ρ(ξn, x) = ρ(F (ξn−1, ηn−1), F (x, y))
≤ αρ(ξn−1, F (ξn−1, ηn−1)) + αρ(x, F (x, y))
= αρ(ξn−1, ξn) = αρ(ξn−1, x) + αρ(x, ξn),

and

Jn = ρ(ηn, y) = ρ(F (ηn−1, ξn−1), F (y, x))
≤ αρ(ηn−1, F (ηn−1, ξn−1)) + αρ(y, F (y, x))
= αρ(ηn−1, ηn) = αρ(ηn−1, y) + αρ(y, ηn).

Summing the last two inequalities, we obtain

In + Jn ≤ α (ρ(ξn−1, x) + ρ(ηn−1, y) + ρ(x, ξn) + ρ(y, ηn))
= α(In−1 + Jn−1) + α(In + Jn).

Consequently, In + Jn ≤ α
1−α (In−1 + Jn−1) and thus

In + Jn ≤
(

α

1 − α

)n

(ρ(ξ0, x) + ρ(η0, y)).

Then we obtain,

ρ(x, u) + ρ(y, v) ≤ ρ(x, ξn0) + ρ(ξn0 , u) + ρ(y, ηn0) + ρ(ηn0 , v)

≤
(

α

1 − α

)n0

(ρ(ξ0, x) + ρ(η0, y) + ρ(ξ0, u) + ρ(η0, v))

< ρ(x, u) + ρ(y, v),

which is a contradiction and that (x, y) = (u, v). �
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We would like to finish with a particular example. Let X = �1, endowed
with its classical norm ‖x‖1 =

∑∞
i=1 |xi| and the metric ρ1(x, y) = ‖x − y‖.

Let us define a partial order in X by x � y, if |xi| ≤ |yi| for all i ∈ N. Let us
define F : X × X → X by

F (x, y) =
{ |xi|

2
− |yi|

3
+

1
2i

}∞

i=1

.

Let us consider the ordered pair (x0, y0) =
({

2
5.2i

}∞
i=1

,
{

2
2i

}∞
i=1

)
. Then

F (x0, y0) =
{

1
5.2i

− 2
3.2i

+
1
2i

}∞

i=1

=
{

8
15.2i

}∞

i=1

,

and

F (y0, x0) =
{

1
2i

− 2
15.2i

+
1
2i

}∞

i=1

=
{

28
15.2i

}∞

i=1

The map F : X × X → X is a continuous map. From the inequality
∣
∣ 2
5.2i

∣
∣ <∣

∣ 8
15.2i

∣
∣ it follows that x0 � F (x0, y0), and from the inequality

∣
∣ 2
2i

∣
∣ <

∣
∣ 28
15.2i

∣
∣

it follows that y 	 F (y0, x0).
The map F has the mixed monotone property. Indeed it x � z, then

F (x, y) =
{ |xi|

2
− |yi|

3
+

1
2i

}∞

i=1

�
{ |zi|

2
− |yi|

3
+

1
2i

}∞

i=1

= F (z, y).

Let z � y hold, then F (x, z) 	 F (x, y).

F (x, z) =
{ |xi|

2
− |zi|

3
+

1
2i

}∞

i=1

	
{ |xi|

2
− |yi|

3
+

1
2i

}∞

i=1

= F (x, y).

Let now x 	 u and y � v hold.Then using that |xi|−|ui| ≥ 0 and |vi|−|yi| ≥ 0
we get

ρ1(F (x, y), F (u, v)) = ‖F (x, y) − F (u, v)‖1
=

∞∑

i=1

∣
∣
∣
∣
|xi|
2

− |yi|
3

+
1
2i

−
( |ui|

2
− |vi|

3
+

1
2i

)∣
∣
∣
∣

=
∞∑

i=1

∣
∣
∣
∣
|xi|
2

− |ui|
2

+
|vi|
3

− |yi|
3

∣
∣
∣
∣

=
∞∑

i=1

∣
∣
∣
∣
|xi|
2

− |ui|
2

∣
∣
∣
∣ +

∞∑

i=1

∣
∣
∣
∣
|vi|
3

+
yi

3

∣
∣
∣
∣

≤ 1
2

∞∑

i=1

|xi − ui| +
1
3

∞∑

i=1

|vi − yi|

=
1
2
ρ1(x, u) +

1
3
ρ1(y, v).

Therefore the map F satisfies the conditions of Corollary 3.4, and conse-
quently F has a coupled fixed point.
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It is easy to observe that for any two elements x, y ∈ (X, ρ1,�) there
exists an element z, which is comparable with both of them (we can choose
zi ≥ max{|xi|, |yi|}). Thus the coupled fixed point is unique.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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[3] Aydi, H., Damjanović Bosko, B., Samet, B., Shatanawi, W.: Coupled fixed
point theorems for nonlinear contractions in partially ordered G-metric spaces.
Math. Comput. Model. 54(9–10), 2443–2450 (2011)

[4] Bai, L., Nieto, J.J.: Variational approach to differential equations with not
instantaneous impulses. Appl. Math. Lett. 73, 44–48 (2017)

[5] Bai, L., Nieto, J.J., Wang, X.: Variational approach to non-instantaneous
impulsive nonlinear differential equations. J. Nonlinear Sci. Appl. 10(5), 2440–
2448 (2017)

[6] Benchohra, M., Litimein, S., Nieto, J.J.: Semilinear fractional differential equa-
tions with infinite delay and non-instantaneous impulses. J. Fixed Point Theory
Appl. 21(1), 21 (2019)

[7] Berinde, V.: Generalized coupled fixed point theorems for mixed monotone
mappings in partially ordered metric spaces. Nonlinear Anal. 74(18), 7347–
7355 (2011)

[8] Bhaskar, T.G., Lakshmikantham, V.: Fixed point theorems in partially ordered
metric spaces and applications. Nonlinear Anal. 65(7), 1379–1393 (2006)

[9] Borwein, J., Zhu, Q.: Techniques of Variational Analysis. CMS Books in Math-
ematics. Springer, Berlin (2005)

[10] Bota, M., Molnár, A., Varga, C.: On Eleland’s variational principle in b-metric
space. Fixed Point Theory 12(2), 21–28 (2011)

[11] Caristi, J.: Fixed point theorems for mappings satisfying inwardness conditions.
Trans. Am. Math. Soc. 215, 241–251 (1976)

[12] Chidume, C.E., Nnakwe, M.O.: Convergence theorems of subgradient extra-
gradient algorithm for solving variational inequalities and a convex feasibility
problem. Fixed Point Theory Appl. 2018, 16 (2018)

[13] Choudhury, B.S.: Amaresh Kundu: On coupled generalised banach and Kannan
type contractions. J. Nonlinear Sci. Appl. 5(4), 259–270 (2012)

[14] Choudhury, B.S., Maity, P.: Cyclic coupled fixed point result using Kannan
type contractions. J. Oper. 876749, 5 (2014)

[15] Daffer, P., Kaneko, H., Li, W.: Variational Principle and Fixed Points. Set
Valued Mappings With Applications in Nonlinear Analysis, pp. 129–136. Taylor
and Francis, New York (2002)



69 Page 12 of 13 B. Zlatanov JFPTA

[16] Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach
Spaces Pitman Monographs and Surveys in Pure and Applied Mathematics.
Longman Scientific and Technical, Harlow, copublished in the United States
with John Wiley & Sons, Inc., New York, (1993)
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[35] Petruşel, A.: Fixed points vs. coupled fixed points. J. Fixed Point Theory Appl.
20, 4 (2018). (Article number 150)
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[39] Radenović, S.: Coupled fixed point theorems for monotone mappings in par-
tially ordered metric spaces. Kragujevac J. Math. 38(2), 249–257 (2014)
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