J. Fixed Point Theory Appl. (2019) 21:54 https://doi.org/10.1007/s11784-019-0695-x Published online April 24, 2019 -c Springer Nature Switzerland AG 2019

Journal of Fixed Point Theory and Applications

A note on the fixed point theorem of G´ornicki

Ravindra K. Bish[t](http://orcid.org/0000-0002-6333-8127)

Abstract. In this note, we show that the main result (Theorem 2.6) due to Górnicki (J Fixed Point Theory Appl 21:29, [2019.](#page-2-0) [https://doi.org/](https://doi.org/10.1007/s11784-019-0668-0) [10.1007/s11784-019-0668-0\)](https://doi.org/10.1007/s11784-019-0668-0) is still valid if we replace the assumption of continuity of the mapping by some weaker versions of continuity conditions. As a by-product, we provide few more new answers to the open question of Rhoades (Contemp Math 72:233–245, [1988\)](#page-2-1).

Mathematics Subject Classification. Primary 47H09, Secondary 47H10. **Keywords.** Fixed point, asymptotic regularity.

1. Introduction

The following theorem is the key result of [\[3](#page-2-0)].

Theorem 1.1. If (X, d) is a complete metric space and $T: X \to X$ is a con t *inuous asymptotically regular mapping and if there exists* $0 \leqslant M < 1$ *and* $0 \leqslant K < +\infty$ *satisfying*

$$
d(Tx,Ty) \leqslant Md(x,y) + K\{d(x,Tx) + d(y,Ty)\}\tag{1.1}
$$

for all $x, y \in X$ *, then T has a unique fixed point* $p \in X$ *and* $T^n x \to p$ *for* $each \ x \in X$.

Recall that the set $O(x; T) = {T^n x: n = 0, 1, 2, \ldots}$ is called the orbit of the self-mapping *T* at the point $x \in X$.

Definition 1.1. A self-mapping *T* of a metric space (X, d) is said to be orbitally continuous at a point $z \in X$ if for any sequence $\{x_n\} \subset O(x;T)$ for some $x \in X$, $x_n \to z$ implies $Tx_n \to Tz$ as $n \to \infty$.

Remark 1.1. Every continuous self-mapping of a metric space is orbitally continuous, but the converse need not be true (see Example [1.1](#page-1-0) below).

Definition 1.2. [\[5\]](#page-2-2) A self-mapping *T* of a metric space (X, d) is called *k*continuous, $k = 1, 2, 3, \ldots$, if $T^k x_n \to T z$, whenever $\{x_n\}$ is a sequence in X such that $T^{k-1}x_n \to z$.

Remark 1.2. It is important to note that for a self-mapping *T* of a metric space (X, d) , the notion of 1-continuity coincides with continuity. However,

1-continuity \Rightarrow 2-continuity \Rightarrow 3-continuity \Rightarrow \cdots ,

but not conversely. The following example illustrates this fact [\[5\]](#page-2-2).

Example 1.1. Let $X = [0, 4]$ and *d* be the usual metric on *X*. Define $T: X \rightarrow$ *X* by

$$
T(x) = 2
$$
 if $x \in [0, 2], T(x) = 0$ if $x \in (2, 4].$

Then, $Tx_n \to t \Rightarrow T^2x_n \to t$, since $Tx_n \to t$ implies $t = 0$ or $t = 2$ and $T^2x_n \to 2 = T^2$ for all *n*. Hence, *T* is 2-continuous. However, *T* is discontinuous at $x = 2$.

In 1988, Rhoades [\[7](#page-2-1)] posed an open problem regarding existence of contractive definitions which yield a fixed point but the mapping need not be continuous at the fixed point. This problem was settled in the affirmative by Pant [\[6\]](#page-2-4). In a recent past, several new situations have been established where the existence of the fixed point is guaranteed but the mappings are discontinuous at the fixed point [\[1,](#page-2-5)[2](#page-2-6)[,4](#page-2-7)].

In this paper, we show that the assumption of continuity considered in Theorem 2.6 of [\[3](#page-2-0)] can be relaxed to some weaker notions of continuity, (orbital continuity or *k*-continuity) which thereby extends the scope of the study of fixed point theorems from the class of continuous mappings to a wider class of mappings which also include discontinuous mappings. As a by-product, we provide new answers to the open problem posed by Rhoades [\[7](#page-2-1)].

2. Main results

Theorem 2.1. *If* (X, d) *is a complete metric space and* $T: X \rightarrow X$ *is an* a symptotically regular mapping and if there exists $0 \leq M < 1$ and $0 \leq K <$ +∞ *satisfying*

$$
d(Tx,Ty) \leqslant Md(x,y) + K\{d(x,Tx) + d(y,Ty)\}\tag{2.1}
$$

for all $x, y \in X$ *, then T has a unique fixed point* $p \in X$ *provided T is either k*-continuous for $k \geq 1$ or orbitally continuous.

Proof. Let x_0 be any point in *X*. Define a sequence $\{x_n\}$ in *X* given by the rule $x_{n+1} = Tx_n = T^n x$. Then, following Theorem 2.6 of [\[3](#page-2-0)] we conclude that $\{x_n\}$ is a Cauchy sequence. Since X is complete, there exists a point *u* ∈ *X* such that x_n → *u* as n → ∞. Also, Tx_n → *u*. Furthermore, for each $k \geq 1$ we have $T^k x_n \to u$ as $n \to \infty$. Suppose that *T* is *k*-continuous. Since $T^{k-1}x_n \to u$, *k*-continuity of *T* implies that $\lim_{n\to\infty} T^kx_n = Tu$. This yields $u = Tu$, that is, *u* is a fixed point of *T*.

Finally, suppose that *T* is orbitally continuous. Since $x_n \to u$, orbital continuity implies that $\lim_{n\to\infty} Tx_n = Tu$. This yields $Tu = u$, that is, *u* is a fixed point of *T*.

We now give an example to show that the condition (2*.*1) is strong enough to generate a fixed point but does not force the mapping to be continuous at the fixed point [\[6](#page-2-4)].

Example 2.1. Let $X = [0, 2]$ and *d* be the usual metric on *X*. Define $T: X \rightarrow$ *X* by

$$
T(x) = \begin{cases} 1, & \text{if } 0 \leqslant x \leqslant 1; \\ 0, & \text{if } 1 < x \leqslant 2. \end{cases}
$$

Then, *T* satisfies all the conditions of Theorem [2.1](#page-1-1) and has a unique fixed point $x = 1$ at which T is discontinuous.

Acknowledgements

The author is thankful to the learned referee for suggesting some improvements and thereby removing certain obscurities in the presentation.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

- [1] Bisht, R.K., Pant, R.P.: A remark on discontinuity at fixed point. J. Math. Anal. Appl. **445**, 1239–1242 (2017)
- [2] Bisht, R.K., Rakocević, V.: Generalized Meir–Keeler type contractions and discontinuity at fixed point. Fixed Point Theory **19**(1), 57–64 (2018)
- [3] Górnicki, J.: Remarks on asymptotic regularity and fixed points. J. Fixed Point Theory Appl. **21**, 29 (2019). <https://doi.org/10.1007/s11784-019-0668-0>
- [4] Özgür, N.Y., Taş, N.: Some fixed-circle theorems on metric spaces. Bull. Malays. Math. Sci. Soc. (2017). <https://doi.org/10.1007/s40840-017-0555-z>
- [5] Pant, A., Pant, R.P.: Fixed points and continuity of contractive maps. Filomat Filomat **31**(11), 3501–3506 (2017). <https://doi.org/10.2298/FIL1711501P>
- [6] Pant, R.P.: Discontinuity and fixed points. J. Math. Anal. Appl. **240**, 284–289 (1999)
- [7] Rhoades, B.E.: Contractive definitions and continuity. Contemp. Math. **72**, 233– 245 (1988)

Ravindra K. Bisht Department of Mathematics National Defence Academy Khadakwasla Pune 411023 India e-mail: ravindra.bisht@yahoo.com