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Abstract. In this note, we show that the main result (Theorem 2.6) due
to Górnicki (J Fixed Point Theory Appl 21:29, 2019. https://doi.org/
10.1007/s11784-019-0668-0) is still valid if we replace the assumption of
continuity of the mapping by some weaker versions of continuity condi-
tions. As a by-product, we provide few more new answers to the open
question of Rhoades (Contemp Math 72:233–245, 1988).
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1. Introduction

The following theorem is the key result of [3].

Theorem 1.1. If (X, d) is a complete metric space and T : X → X is a con-
tinuous asymptotically regular mapping and if there exists 0 � M < 1 and
0 � K < +∞ satisfying

d(Tx, Ty) � Md(x, y) + K{d(x, Tx) + d(y, Ty)} (1.1)

for all x, y ∈ X, then T has a unique fixed point p ∈ X and Tnx → p for
each x ∈ X.

Recall that the set O(x;T ) = {Tnx: n = 0, 1, 2, . . .} is called the orbit
of the self-mapping T at the point x ∈ X.

Definition 1.1. A self-mapping T of a metric space (X, d) is said to be
orbitally continuous at a point z ∈ X if for any sequence {xn} ⊂ O(x;T ) for
some x ∈ X,xn → z implies Txn → Tz as n → ∞.

Remark 1.1. Every continuous self-mapping of a metric space is orbitally
continuous, but the converse need not be true (see Example 1.1 below).

Definition 1.2. [5] A self-mapping T of a metric space (X, d) is called k-
continuous, k = 1, 2, 3, . . . , if T kxn → Tz, whenever {xn} is a sequence in X
such that T k−1xn → z.
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Remark 1.2. It is important to note that for a self-mapping T of a metric
space (X, d), the notion of 1-continuity coincides with continuity. However,

1-continuity ⇒ 2-continuity ⇒ 3-continuity ⇒ · · · ,
but not conversely. The following example illustrates this fact [5].

Example 1.1. Let X = [0, 4] and d be the usual metric on X. Define T : X →
X by

T (x) = 2 if x ∈ [0, 2], T (x) = 0 if x ∈ (2, 4].

Then, Txn → t ⇒ T 2xn → t, since Txn → t implies t = 0 or t = 2
and T 2xn → 2 = T2 for all n. Hence, T is 2-continuous. However, T is
discontinuous at x = 2.

In 1988, Rhoades [7] posed an open problem regarding existence of con-
tractive definitions which yield a fixed point but the mapping need not be
continuous at the fixed point. This problem was settled in the affirmative
by Pant [6]. In a recent past, several new situations have been established
where the existence of the fixed point is guaranteed but the mappings are
discontinuous at the fixed point [1,2,4].

In this paper, we show that the assumption of continuity considered
in Theorem 2.6 of [3] can be relaxed to some weaker notions of continuity,
(orbital continuity or k-continuity) which thereby extends the scope of the
study of fixed point theorems from the class of continuous mappings to a
wider class of mappings which also include discontinuous mappings. As a
by-product, we provide new answers to the open problem posed by Rhoades
[7].

2. Main results

Theorem 2.1. If (X, d) is a complete metric space and T : X → X is an
asymptotically regular mapping and if there exists 0 � M < 1 and 0 � K <
+∞ satisfying

d(Tx, Ty) � Md(x, y) + K{d(x, Tx) + d(y, Ty)} (2.1)

for all x, y ∈ X, then T has a unique fixed point p ∈ X provided T is either
k-continuous for k � 1 or orbitally continuous.

Proof. Let x0 be any point in X. Define a sequence {xn} in X given by the
rule xn+1 = Txn = Tnx. Then, following Theorem 2.6 of [3] we conclude
that {xn} is a Cauchy sequence. Since X is complete, there exists a point
u ∈ X such that xn → u as n → ∞. Also, Txn → u. Furthermore, for each
k � 1 we have T kxn → u as n → ∞. Suppose that T is k-continuous. Since
T k−1xn → u, k-continuity of T implies that limn→∞ T kxn = Tu. This yields
u = Tu, that is, u is a fixed point of T .

Finally, suppose that T is orbitally continuous. Since xn → u, orbital
continuity implies that limn→∞ Txn = Tu. This yields Tu = u, that is, u is
a fixed point of T .
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We now give an example to show that the condition (2.1) is strong
enough to generate a fixed point but does not force the mapping to be con-
tinuous at the fixed point [6].

Example 2.1. Let X = [0, 2] and d be the usual metric on X. Define T : X →
X by

T (x) =
{

1, if 0 � x � 1;
0, if 1 < x � 2.

Then, T satisfies all the conditions of Theorem 2.1 and has a unique
fixed point x = 1 at which T is discontinuous.
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