
J. Fixed Point Theory Appl. (2019) 21:50

https://doi.org/10.1007/s11784-019-0684-0

Published onlineMarch 23, 2019
c© Springer Nature Switzerland AG 2019

Journal of Fixed Point Theory
and Applications

A self-adaptive projection method
with an inertial technique for split feasibility
problems in Banach spaces with applications
to image restoration problems

Yekini Shehu, Phan Tu Vuong and Prasit Cholamjiak

Abstract. In this work, we study the split feasibility problem (SFP)
in the framework of p-uniformly convex and uniformly smooth Banach
spaces. We propose an iterative scheme with inertial terms for seeking
the solution of SFP and then prove a strong convergence theorem for
the sequences generated by our iterative scheme under implemented
conditions on the step size which do not require the computation of the
norm of the bounded linear operator. We finally provide some numerical
examples which involve image restoration problems and demonstrate the
efficiency of the proposed algorithm. The obtained result of this paper
complements many recent results in this direction and seems to be the
first one to investigate the SFP outside Hilbert spaces involving the
inertial technique.
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1. Introduction

Let E1 and E2 be real Banach spaces. Let C and Q be nonempty, closed and
convex subsets of E1 and E2, respectively. Let A : E1 → E2 be a bounded
linear operator with its adjoint operator A∗ which is defined by A∗ : E∗

2 →
E∗

1 ,

〈A∗ȳ, x〉 := 〈ȳ, Ax〉 , ∀x ∈ E1, ȳ ∈ E∗
2

and the equalities ||A∗|| = ||A|| and N (A∗) = R(A)⊥ are valid, where
R(A)⊥ := {x∗ ∈ E∗

2 : 〈x∗, u〉 = 0, ∀u ∈ R(A)}. For more details on bounded
linear operators and their duals, please see [22,56,57].
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We shall adopt the following notations in this paper:
• xn → x means that xn → x strongly;
• xn ⇀ x means that xn → x weakly;
• ωw(xn) := {x : ∃xnj

⇀ x} is the weak w-limit set of the sequence {xn}.

The split feasibility problem (SFP) is the problem of finding a point
x ∈ C such that

Ax ∈ Q. (1)

We denote the solutions set by Ω := C ∩ A−1(Q) = {y ∈ C : Ay ∈ Q}.
This problem was first introduced by Censor and Elfving [15], in a finite
dimensional Hilbert space, for solving the inverse problems in the context
of phase retrievals, medical image reconstruction and also in modeling of
intensity modulated radiation therapy. Many authors have introduced several
iterative methods for finding a solution to (1) both in Hilbert spaces and
certain Banach spaces (see, for example, [25,38,41,50,52,53,58,59]). Censor
et al. in Section 2 of [11] (see also [25]) introduced the prototypical Split
Inverse Problem (SIP). In this, there are given two vector spaces X and Y
and a linear operator A : X → Y . In addition, two inverse problems are
involved. The first one, denoted by IP1, is formulated in the space X and the
second one, denoted by IP2, is formulated in the space Y . Given these data,
the Split Inverse Problem is formulated as follows: find a point x∗ ∈ X that
solves IP1 and such that the point y∗ = Ax∗ ∈ Y solves IP2.

Let H1 and H2 be real Hilbert spaces and A : H1 → H2 a bounded linear
operator. Let C and Q be nonempty, closed and convex subsets of H1 and
H2, respectively. To solve the SFP in Hilbert spaces, Byrne [10] introduced
the following CQ algorithm: x1 ∈ C and

xn+1 = PC(xn − λA∗(I − PQ)Axn), n ≥ 1, (2)

where λ > 0, PC and PQ are the orthogonal projections on C and Q, respec-
tively. It was proved that the sequence {xn} defined by (2) converges weakly
to a solution of the SFP provided the step size λ ∈ (0, 2

‖A‖2 ). It is observed
that, in order to achieve the convergence, one has to estimate the norm of
the bounded linear operator ‖A‖ (or the spectral radius of the matrix AT A
in the finite-dimensional framework) for selecting the step size λ, which is
not always possible in practice (see also Theorem 2.3 of [28]). To avoid this
computation, there have been worthwhile works that the convergence is guar-
anteed without any prior information of the matrix norm (see, for examples
[60,62–64]). Among these works, López et al. [34] introduced a new way to
select the step size by replacing the parameter λ appeared in (2) by the
following:

μn =
ρnf(xn)

‖∇f(xn)‖2
, n ≥ 1, (3)

where ρn ∈ (0, 4), f(xn) = 1
2‖(I − PQ)Axn‖2 and ∇f(xn) = A∗(I − PQ)Axn

for all n ≥ 1. This method is a modification of the CQ method which is often
called the self-adaptive method. Some modifications of the CQ algorithm and
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the self-adaptive method now have been invented for solving the SFP (see,
for example, [4,34,40,41,58,60]).

In optimization theory, to speed up the convergence rate, Polyak [47]
firstly proposed the heavy ball method of the two-order time dynamical sys-
tem which is a two-step iterative method for minimizing a smooth convex
function f . To improve the convergence rate, Nesterov [44] introduced a mod-
ified heavy ball method as follows:

yn = xn + αn(xn − xn−1),
xn+1 = yn − λn∇f(yn), n ≥ 1, (4)

where αn ∈ [0, 1) is an extrapolation factor and λn is a positive sequence.
Here, the inertial is represented by the term αn(xn − xn−1). It is remarkable
that the inertial methodology greatly improves the performance of the algo-
rithm and has a nice convergence properties (see [16,19,35]). In [3], Alvarez
and Attouch employed the idea of the heavy ball method to the setting of
a general maximal monotone operator using the framework of the proximal
point algorithm [9,49]. This method is called the inertial proximal point algo-
rithm and it is of the following form:

yn = xn + αn(xn − xn−1),
xn+1 = (I + λnB)−1(yn), n ≥ 1, (5)

where B is a maximal monotone operator. It was proved that if λn is non-
decreasing and αn ∈ [0, 1) is chosen such that

∞∑

n=1

αn‖xn − xn−1‖2 < ∞,

then {xn} generated by (5) converges to a zero point of B (see also [42]).
In subsequent work, Maingé [36] (see also [37]) introduced the inertial

Mann algorithm for solving the fixed point problem of nonexpansive mapping
T (i.e., ‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ H1) in Hilbert spaces as follows: take
x0, x1 ∈ H1 and generate the sequence {xn} by

yn = xn + αn(xn − xn−1),
xn+1 = yn + βn(Tyn − yn), n ≥ 1, (6)

where αn ∈ [0, 1) and βn ∈ (0, 1). It was shown that the sequence {xn}
converges weakly to a fixed point of T under the following conditions:
(A) αn ∈ [0, α) where α ∈ [0, 1);
(B)

∑∞
n=1 αn‖xn − xn−1‖2 < ∞;

(C) 0 < infn≥1 βn ≤ supn≥1 βn < 1.
To satisfy the summability condition (B) of the sequence {xn}, one

needs to calculate {αn} at each step. For further results on approximations
methods with inertial terms for nonexpansive mappings, please see [6,18].

Subsequently, Dong et al. [19] introduced an inertial CQ algorithm by
combining the CQ algorithm introduced by Nakajo and Takahashi [43] and
the inertial extrapolation and analyze its convergence. They proved the fol-
lowing theorem.
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Theorem 1.1. Let T : H → H be a nonexpansive mapping such that F (T ) �=
∅. Let

{αn} ⊂ [α, α], α ∈ (−∞, 0], α ∈ [0,∞), {βn} ⊂ [β, 1], β ∈ (0, 1].

Set x0, x1 ∈ H arbitrarily. Define a sequence {xn} by the following algorithm:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

wn = xn + αn(xn − xn−1),
yn = (1 − βn)wn + βnTwn,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖wn − z‖},
Qn = {z ∈ H : 〈xn − z, xn − x0〉 ≤ 0},

xx+1 = PCn∩Qn
x0

for each n ≥ 0. Then, the iterative sequence {xn} converges in norm to
PF (T )(x0).

Very recently, Dang et al. [16] proposed the inertial relaxed CQ algo-
rithms for solving SFP in Hilbert spaces and proved the weak convergence
theorem for Picard-type and Mann-type iteration processes (see also [20]).
Recently, there have been increasing interests in studying inertial extrapola-
tion type algorithms. See, for example, inertial forward–backward splitting
method [5,35,36], inertial Douglas–Rachford splitting method [6], inertial
ADMM [7,14], and inertial forward–backward–forward method [8]. These
results and other related ones analyzed the convergence properties of inertial
extrapolation type algorithms and demonstrated their performance numeri-
cally on some imaging and data analysis problems. It is based on this recent
trend that our contribution in solving the SFP in this paper lies.

For p > 1, the duality mapping JE
p : E → 2E∗

is defined by

JE
p (x) =

{
x̄ ∈ E∗ : 〈x, x̄〉 = ||x||p, ||x̄|| = ||x||p−1

}
.

In this situation, it is known that the duality mapping JE
p is one-to-one,

single-valued and satisfies JE
p = (JE

q )−1, where JE
q is the duality mapping of

E∗ (see [1,13,48]).
The duality mapping JE

p is said to be weak-to-weak continuous if

xn ⇀ x ⇒ 〈
JE

p xn, y
〉→ 〈

JE
p x, y

〉

holds true for any y ∈ E . It is worth noting that the �p(p > 1) space has
such a property, but the Lp(p > 2) space does not share this property (see
[13,33]).
Let C be a nonempty, closed and convex subset of a Banach space E. The
metric projection

PCx = argminy∈C ||x − y||, x ∈ E,

is the unique minimizer of the norm distance, which can be characterized by
a variational inequality:

〈
JE

p (x − PCx), z − PCx
〉 ≤ 0, ∀z ∈ C. (7)

More information on metric projections can be found, for example, in Section
3 of the book [27].
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Given a Gâteaux differentiable convex function f : E → R, the Bregman
distance with respect to f is defined as:

Δf (x, y) = f(y) − f(x) − 〈f ′(x), y − x〉 , x, y ∈ E.

It is worth noting that the duality mapping JE
p is in fact the derivative of

the function fp(x) = ( 1
p )||x||p. Then, the Bregman distance with respect to

fp is given by (see, for example, [1,12])

Δp(x, y) =
1
q
||x||p − 〈JE

p x, y
〉

+
1
p
||y||p

=
1
p
(||y||p − ||x||p) +

〈
JE

p x, x − y
〉

=
1
q
(||x||p − ||y||p) − 〈JE

p x − JE
p y, y

〉
.

Given x, y, z ∈ E, one can easily get

Δp(x, y) = Δp(x, z) + Δp(z, y) +
〈
z − y, JE

p x − JE
p z
〉
, (8)

Δp(x, y) + Δp(y, x) =
〈
x − y, JE

p x − JE
p y
〉
. (9)

If E is a Hilbert space H and fp(x) = 1
2 ||x||2, then Δp(x, y) = 1

2 ||x −
y||2, x, y ∈ H. Generally speaking, the Bregman distance is not a metric
due to the absence of symmetry, but it has some distance-like properties.
Some of these properties include (i)Δp(x, y) ≥ 0; (ii)Δp(x, x) = 0 and the
properties as given in (8) and (9).
Likewise, one can define the Bregman projection:

ΠCx = argminy∈CΔp(x, y), x ∈ E,

as the unique minimizer of the Bregman distance (see [54]). It has been shown
(see, e.g., [12]) that the Bregman projection (terminology is due to Censor
and Lent [12]) is a good replacement for the metric projection in optimization
methods and in algorithms for solving convex feasibility problems. Bregman
projections are continuous and have good stability properties. This mathe-
matical property is relevant because it opens a way for deeper studying the
effect of computational errors on the behavior of many iterative algorithms
involving Bregman projections. The Bregman projection can also be charac-
terized by a variational inequality:

〈
JE

p (x) − JE
p (ΠCx), z − ΠCx

〉 ≤ 0, ∀z ∈ C, (10)

from which one has

Δp(ΠCx, z) ≤ Δp(x, z) − Δp(x,ΠCx), ∀z ∈ C. (11)

In Hilbert spaces, the metric projection and the Bregman projection with
respect to f2 are coincident, but in general they are different.
The SFP was studied in more general framework, for example, Banach spaces.
More specifically, Schöpfer et al. [53] proposed in Banach spaces the following
algorithm: x1 ∈ E1 and

xn+1 = ΠCJ∗
E1

[JE1(xn) − λnA∗JE2(Axn − PQ(Axn))], n ≥ 1, (12)
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where {λn} is a positive sequence, ΠC denotes the generalized projection on
E, PQ is the metric projection on E2, JE1 is the duality mapping on E1 and
J∗

E1
is the duality mapping on E∗

1 . It was proved that the sequence {xn}
converges weakly to a solution of SFP, under some mild conditions, in p-
uniformly convex and uniformly smooth Banach spaces. To be more precise,
the condition that the duality mapping of E1 is sequentially weak-to-weak-
continuous is assumed in [53] (which excludes some important Banach spaces,
such as the classical Lp(2 < p < ∞) spaces). Please see some modifications
in [50,51].

Recently, since in some applied disciplines, the norm convergence is more
desirable that the weak convergence, Wang [59] modified the above algorithm
(12) and proved its strong convergence for the following multiple-sets split
feasibility problem (MSSFP): find x ∈ E1 satisfying

x ∈
r⋂

i=1

Ci, Ax ∈
r+s⋂

j=1+r

Qj , (13)

where r, s are two given integers, Ci, i = 1, . . . , r is a closed convex subset in
E1, and Qj , j = r + 1, . . . , r + s, is a closed convex subset in E2. He defined
for each n ∈ N,

Tn(x) =

{
ΠCi(n)(x), 1 ≤ i(n) ≤ r,

JE1
q [JE1

p (x) − λnA∗JE2
p (Ax − PQj(n)(Ax))], r+1 ≤ i(n) ≤ r+s,

where i : N → I is the cyclic control mapping

i(n) = n mod (r + s) + 1,

and λn satisfies

0 < λ ≤ λn ≤
(

q

cq||A||q
) 1

q−1

, (14)

with cq a uniform smoothness constant and proposed the following algorithm:
For any initial guess x1, define {xn} recursively by

⎧
⎪⎪⎨

⎪⎪⎩

yn = Tnxn

Dn = {w ∈ E1 : Δp(yn, w) ≤ Δp(xn, w)}
En = {w ∈ E1 : 〈xn − w, Jp(x1) − Jp(xn) ≥ 0}
xn+1 = ΠDn∩En

(x1).

(15)

Using the idea in the work of Nakajo and Takahashi [43], he proved the
following strong convergence theorem in p-uniformly convex Banach spaces
which is also uniformly smooth.

Theorem 1.2. Let E1 be p-uniformly convex real Banach space which is also
uniformly smooth. Let C and Q be nonempty, closed and convex subsets of
E1 and E2, respectively, A : E1 → E2 be a bounded linear operator and A∗ :
E∗

2 → E∗
1 be the adjoint of A. Suppose that SFP (13) has a nonempty solution

set Ω. Let the sequence {xn} be generated by (15). Then, {xn} converges
strongly to the Bregman projection of x1 onto the solution set Ω.
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It is observed that the main advantage of result of Wang [59] is that the
weak-to-weak continuity of the duality mapping assumed in [53] is dispensed
and strong convergence result was achieved. However, the step size λn still
depends on the computation of the norm of A which is very hard in general.

Motivated by the previous works, it is our purpose to introduce a new
self-adaptive projection method involving the inertial extrapolation term for
solving the SFP in p-uniformly convex and uniformly smooth Banach spaces.
We then prove a strong convergence theorem under the condition that does
not need to know a priori the norm of the bounded linear operator. Finally, we
provide some numerical experiments which involve image restoration problem
for the inertial method to illustrate the convergence behavior and the effec-
tiveness of our proposed algorithm. The obtained result of this paper seems
to be the first one to investigate the SFP outside Hilbert spaces involving the
inertial technique.

The rest of this paper is organized as follows: Some basic concepts and
lemmas are provided in Sect. 2. The strong convergence result of this paper
is proved in Sect. 3. Finally, in Sect. 4, numerical experiments are reported
to conclude the effectiveness and the implementation of our algorithm.

2. Preliminaries and lemmas

Let 1 < q ≤ 2 ≤ p < ∞. Let E be a real Banach space. The modulus of
convexity δE : [0, 2] → [0, 1] is defined as:

δE(ε) = inf
{

1 − ||x + y||
2

: ||x|| = 1 = ||y||, ||x − y|| ≥ ε

}
.

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2]; p-uniformly convex
if there is a cp > 0 so that δE(ε) ≥ cpε

p for any ε ∈ (0, 2]. The modulus of
smoothness ρE(τ) : [0,∞) → [0,∞) is defined by

ρE(τ) =
{ ||x + τy|| + ||x − τy||

2
− 1 : ||x|| = ||y|| = 1

}
.

E is called uniformly smooth if limn→∞
ρE(τ)

τ = 0; q-uniformly smooth if there
is a cq > 0 so that ρE(τ) ≤ cqτ

q for any τ > 0. The Lp space is 2-uniformly
convex for 1 < p ≤ 2 and p-uniformly convex for p ≥ 2. It is known that E
is p-uniformly convex if and only if its dual E∗ is q-uniformly smooth (see
[33]).

Here and hereafter, we assume that E1 is a p-uniformly convex and uni-
formly smooth, which implies that its dual space, E∗

1 , is q-uniformly smooth
and uniformly convex where 1 < q ≤ 2 ≤ p < ∞ with 1

p + 1
q = 1. We fur-

ther assume that JE1
p and JE2

p represent the duality mappings of E1 and E2,
respectively, and JE1

p = (J∗
E1

)−1 = (JE1
q )−1, where J∗

E1
= JE1

q is the duality
mapping of E∗

1 . For the p-uniformly convex space, the metric and Bregman
distance satisfies the following relation (see [53]):

τ ||x − y||p ≤ Δp(x, y) ≤ 〈x − y, JE1
p x − JE1

p y
〉
, (16)

where τ > 0 is some fixed number.
The q-uniformly smooth spaces have the following estimate [61].
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Lemma 2.1 (Xu [61]). Let x, y ∈ E1. If E1 is q-uniformly smooth, then there
is a cq > 0 so that

||x − y||q ≤ ||x||q − q
〈
y, JE1

q (x)
〉

+ cq||y||q.
It is easy to see that if {xn} and {yn} are bounded sequences of a p-uniformly
convex and uniformly smooth E1, then xn − yn → 0, n → ∞ implies that
Δp(xn, yn) → 0, n → ∞.

3. Main results

In this section, we introduce the inertial algorithm and prove strong conver-
gence of the sequence generated by our scheme for solving the split feasibility
problem in Banach spaces.

Algorithm 3.1. Inertial Algorithm for SFP: Let {αn} ⊂ R be a bounded set.
Set x0, x1 ∈ C. Define a sequence {xn} by the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wn = JE1
q [JE1

p (xn) + αn(JE1
p (xn) − JE1

p (xn−1))]

yn = ΠCJE1
q

[
JE1

p (wn) − ρn
fp−1(wn)

‖∇f(wn)‖p ∇f(wn)
]

Cn = {u ∈ E1 : Δp(yn, u) ≤ Δp(wn, u)}
Qn = {u ∈ E1 :

〈
xn − u, JE1

p (x0) − JE1
p (xn)

〉 ≥ 0}
xn+1 = ΠCn∩Qn

(x0).

(17)

for all n ≥ 0 where f(wn) := 1
p‖(I − PQ)Awn‖p, fp−1(wn) :=

(
1
p‖(I −

PQ)Awn‖p
)p−1

and {ρn} ⊂ (0,∞) lim infn→∞ ρn

(
p − cq

ρq−1
n

q

)
> 0.

Remark 3.2. In Algorithm 3.1, we use convention 0
0 = 0. Therefore, if ∇f(wn)

= 0, then yn = ΠC(wn).

Lemma 3.3. The sequence {xn} is well defined.

Proof. To show that {xn} is well defined, we have to show that Cn

⋂
Qn is

nonempty closed and convex ∀n ≥ 1. Clearly, Cn is closed and Qn is closed
convex. To show the convexity of Cn, it suffices to observe that

Δp(yn, u) ≤ Δp(wn, u) ⇐⇒ 〈
JE1

p (wn) − JE1
p (yn), u

〉

≤ 1
q
(‖wn‖p − ‖yn‖p), ∀u ∈ E1,

so that Cn is a half-space and, therefore, convex. Hence, Cn ∩ Qn is closed
and convex. We next show that Cn

⋂
Qn �= ∅. To do this, it suffices to show

that, ∀n ≥ 1,

Ω ⊂ Cn

⋂
Qn. (18)
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Observe that if (18) holds, then we note that Ω �= ∅ and so is Cn

⋂
Qn. To

verify (18), we first show Ω ⊂ Cn. Let z ∈ Ω. Then, let un = JE1
p (wn) −

ρn
fp−1(wn)

‖∇f(wn)‖p
∇f(wn) for all n ≥ 1. We see from Lemma 2.1 that

‖un‖q
E∗

1
= ‖JE1

p (wn) − ρn
fp−1(wn)

‖∇f(wn)‖p
∇f(wn)‖q

E∗
1

≤ ‖wn‖p − qρn
fp−1(wn)

‖∇f(wn)‖p
〈wn, ∇f(wn)〉 + cqρ

q
n

f (p−1)q(wn)

‖∇f(wn)‖pq
‖∇f(wn)‖q

= ‖wn‖p − qρn
fp−1(wn)

‖∇f(wn)‖p
〈wn, ∇f(wn)〉 + cqρ

q
n

fp(wn)

‖∇f(wn)‖p
. (19)

Then, by (11) and (19) we get

Δp(yn, z) ≤ Δp(JE1
q (un), z)

=
‖z‖p

p
+

1

q
‖JE1

q (un)‖p − 〈z, un〉

=
‖z‖p

p
+

1

q
‖un‖(q−1)p − 〈z, un〉

=
‖z‖p

p
+

1

q
‖un‖(q−1) q

(q−1) − 〈z, un〉

=
‖z‖p

p
+

1

q
‖un‖q − 〈z, un〉

=
‖z‖p

p
+

1

q
‖un‖q −

〈
z, JE1

p (wn)
〉

+ ρn
fp−1(wn)

‖∇f(wn)‖p
〈z, ∇f(wn)〉

≤ ‖z‖p

p
+

1

q

(
‖wn‖p − qρn

fp−1(wn)

‖∇f(wn)‖p
〈wn, ∇f(wn)〉 +cqρ

q
n

fp(wn)

‖∇f(wn)‖p

)

−
〈
z, JE1

p (wn)
〉

+ ρn
fp−1(wn)

‖∇f(wn)‖p
〈z, ∇f(wn)〉

=
‖z‖p

p
+

‖wn‖p

q
−
〈
z, JE1

p (wn)
〉

+
cqρ

q
n

q

fp(wn)

‖∇f(wn)‖p

+ρn
fp−1(wn)

‖∇f(wn)‖p
〈z − wn, ∇f(wn)〉

= Δp(wn, z) +
cqρ

q
n

q

fp(wn)

‖∇f(wn)‖p
+ ρn

fp−1(wn)

‖∇f(wn)‖p
〈z − wn, ∇f(wn)〉 .

(20)

On the other hand, observe that (using (7) and the fact that Az ∈ Q)

〈∇f(wn), z − wn〉 =
〈
A∗JE2

p (I − PQ)Awn, z − wn

〉

=
〈
JE2

p (I − PQ)Awn, Az − Awn

〉

=
〈
JE2

p (I − PQ)Awn, PQAwn − Awn

〉

+
〈
JE2

p (I − PQ)Awn, Az − PQAwn

〉

≤ −‖(I − PQ)Awn‖p = −pf(wn). (21)
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By using (20) and (21), we get

Δp(yn, z) ≤ Δp(wn, z) +
(

cqρ
q
n

q
− ρnp

)
fp(wn)

‖∇f(wn)‖p
, (22)

which implies by our assumption that

Δp(yn, z) ≤ Δp(wn, z).

This implies that Ω ⊂ Cn.
Finally, we show that Ω ⊂ Qn. For n = 0, we have Q0 = E1 and hence

Ω ⊆ Q0. Suppose that xk is given and Ω ⊆ Ck

⋂
Qk for some k ∈ N. Then,

there exists a unique element xk+1 such that

xk+1 = ΠCk

⋂
Qk

x0.

Using (10), we have
〈
xk+1 − z, JE1

p (x0) − JE1
p (xk+1)

〉 ≥ 0.

So that Ω ⊂ Qk+1. By induction, we can show that Ω ⊂ Qn ∀n ∈ N and,
thus, the proof is complete. �

Lemma 3.4. Let {xn} be generated by Algorithm 3.1. Then
(i) lim

n→∞ ‖xn+1 − xn‖ = 0;

(ii) lim
n→∞ ‖wn − xn‖ = 0;

(iii) lim
n→∞ ‖yn − xn+1‖ = 0;

(iv) lim
n→∞ ‖yn − wn‖ = 0;

(v) lim
n→∞ ‖A∗JE2

p (I − PQ)Awn‖ = 0.

Proof. Note that the definition of Qn actually implies that xn = ΠQn
(x0).

This together with the fact that Ω ⊂ Qn further implies that

Δp(x0, xn) ≤ Δp(x0, z), ∀z ∈ Ω.

Due to s := ΠΩ(x0) ∈ Ω, we obtain

Δp(x0, xn) ≤ Δp(x0, s), (23)

which implies that {Δp(x0, xn)} is bounded. Hence {xn} is bounded by
(16). On the other hand, from xn+1 ∈ Qn and (10), we have 〈xn − xn+1,
JE1

p (xn) − JE1
p (x0)

〉 ≤ 0 and hence by (11)

Δp(xn, xn+1) ≤ Δp(x0, xn+1) − Δp(x0, xn), ∀n ≥ 0. (24)

This implies that

Δp(x0, xn) ≤ Δp(x0, xn+1) − Δp(xn, xn+1)
≤ Δp(x0, xn+1).

Thus, {Δp(x0, xn)} is monotone nondecreasing and by (23) lim
n→∞ Δp(x0, xn)

exists. It then follows from (24) that

lim
n→∞ Δp(xn, xn+1) = 0.



Vol. 21 (2019) A self-adaptive projection method Page 11 of 24 50

Hence, we obtain from (16) that

lim
n→∞ ‖xn+1 − xn‖ = 0.

This establishes (i).
Since JE1

p is norm-to-norm uniformly continuous on bounded subsets of
E1, we get

lim
n→∞ ‖JE1

p (xn+1) − JE1
p (xn)‖ = 0.

Observe from Algorithm 3.1 that

JE1
p (wn) − JE1

p (xn) = αn(JE1
p (xn) − JE1

p (xn−1)).

So,
∥∥JE1

p (wn) − JE1
p (xn)

∥∥ = αn

∥∥JE1
p (xn) − JE1

p (xn−1)
∥∥

≤ ᾱ
∥∥JE1

p (xn) − JE1
p (xn−1)

∥∥→ 0, n → ∞.

Since JE1
q is also norm-to-norm uniformly continuous on bounded subsets of

E∗
1 , we have

‖wn − xn‖ → 0.

This establishes (ii).
Furthermore,

‖xn+1 − wn‖ ≤ ‖xn+1 − xn‖ + ‖xn − wn‖ → 0, n → ∞.

It follows that
∥∥JE1

p (wn) − JE1
p (xn+1)

∥∥→ 0.

By (16), we get

Δp(wn, xn+1) ≤ 〈wn − xn+1, J
E1
p (wn) − JE1

p (xn+1)
〉

≤ M
∥∥JE1

p (wn) − JE1
p (xn+1)

∥∥→ 0, n → ∞.

Since xn+1 ∈ Cn, we have that

Δp(yn, xn+1) ≤ Δp(wn, xn+1) → 0, n → ∞.

This implies that

‖yn − xn+1‖ → 0, n → ∞,

and this establishes (iii).
Observe that

‖yn − xn‖ ≤ ‖yn − xn+1‖ + ‖xn+1 − xn‖ → 0, n → ∞
and

‖yn − wn‖ ≤ ‖yn − xn‖ + ‖xn − wn‖ → 0, n → ∞. (25)

This establishes (iv).
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From (22) and z being in Ω, we get

Δp(yn, z) ≤ Δp(wn, z) + ρn

(
cqρ

q−1
n

q
− p

)
fp(wn)

‖∇f(wn)‖p

= Δp(wn, z) − ρn

(
p − cqρ

q−1
n

q

)
fp(wn)

‖∇f(wn)‖p
.

This implies that

ρn

(
p − cqρ

q−1
n

q

)
fp(wn)

‖∇f(wn)‖p
≤ Δp(wn, z) − Δp(yn, z). (26)

By (8), we get

Δp(wn, z) = Δp(wn, yn) + Δp(yn, z) +
〈
yn − z, JE1

p (wn) − JE1
p (yn)

〉
,

which implies that

Δp(wn, z) − Δp(yn, z) = Δp(wn, yn) +
〈
yn − z, JE1

p (wn) − JE1
p (yn)

〉

≤ 〈wn − yn, JE1
p (wn) − JE1

p (yn)
〉

+
〈
yn − z, JE1

p (wn) − JE1
p (yn)

〉

≤ M∗‖JE1
p (wn) − JE1

p (yn)‖ → 0, n → ∞.

(27)

Combining (26) and (27), we get

ρn

(
p − cqρ

q−1
n

q

)
fp(wn)

‖∇f(wn)‖p
→ 0, n → ∞. (28)

Since lim infn→∞ ρn

(
p − cq

ρq−1
n

q

)
> 0, we get

fp(wn)
‖∇f(wn)‖p

→ 0, n → ∞

and hence
f(wn)

‖∇f(wn)‖ → 0, n → ∞. (29)

Since JE1
p is norm-to-norm uniformly continuous on bounded subsets of E1,

we have from (25) that

‖JE1
p (yn) − JE1

p (wn)‖ → 0, n → ∞. (30)

Furthermore, since {∇f(wn)} is bounded, we obtain from (29) that

0 ≤ f(wn) = ‖∇f(wn)‖ f(wn)
‖∇f(wn)‖

≤ M1
f(wn)

‖∇f(wn)‖ → 0, n → ∞,

for some M1 > 0. Therefore

lim
n→∞ f(wn) = 0.
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Hence

lim
n→∞ ‖(I − PQ)Awn‖ = 0.

Also

‖A∗JE2
p (I − PQ)Awn‖ ≤ ‖A‖‖(I − PQ)Awn‖ → 0, n → ∞.

Thus
∥∥A∗JE2

p (I − PQ)Awn

∥∥→ 0, n → ∞.

This establishes (v). �

Lemma 3.5. Let {xn} be generated by Algorithm 3.1. Then, the sequence {xn}
has a weak cluster point and ωw(xn) ⊆ Ω.

Proof. From the previous Lemma 3.4, we see that {xn} is bounded. By the
hypothesis, E1 is clearly reflexive and thus the weak cluster point set of
{xn} is nonempty. So it suffices to show that ωw(xn) ⊆ Ω. To do this, let
us choose a subsequence {xnj

} of {xn} such that xnj
⇀ z ∈ ωw(xn). Since

‖yn −xn‖ → 0, n → ∞, then we get ynj
⇀ z. Obviously we have z ∈ C. Now

since xnj
⇀ z and lim

n→∞ ‖xn − wn‖ = 0, we obtain that wnj
⇀ z. Let us fix

some x ∈ Ω. Then, Ax ∈ Q and by (7), we get

‖(I − PQ)Awnj
‖p =

〈
JE2

p (I − PQ)Awnj
, (I − PQ)Awnj

〉

=
〈
JE2

p (I − PQ)Awnj
, Awnj

− Ax
〉

+
〈
JE2

p (I − PQ)Awnj
, Ax − PQAwnj

〉

≤ 〈JE2
p (I − PQ)Awnj

, Awnj
− Ax

〉

≤ M1‖A∗JE2
p (I − PQ)Awnj

‖p−1 → 0, j → ∞,

(31)

where M1 > 0 is a sufficiently large number. It then follows that

‖(I − PQ)Az‖p =
〈
JE2

p (Az − PQAz), Az − PQAz
〉

=
〈
JE2

p (Az − PQAz), Az − Awnj

〉

+
〈
JE2

p (Az − PQAz), Awnj
− PQAwnj

〉

+
〈
JE2

p (Az − PQAz), PQAwnj
− PQAz

〉

≤ 〈JE2
p (Az − PQAz), Az − Awnj

〉

+
〈
JE2

p (Az − PQAz), Awnj
− PQAwnj

〉
. (32)

Note that since wnj
⇀ z, then Awnj

⇀ Az. Letting j → ∞ in (32), we
obtain

‖Az − PQAz‖ = 0.

Thus, Az ∈ Q and hence z ∈ Ω. �

Theorem 3.6. The sequence {xn} generated by Algorithm 3.1 converges
strongly to the Bregman projection of x0 onto the solution set Ω.
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Proof. We see that there is {xnj
} of {xn} such that xnj

⇀ z. Hence, z ∈ Ω
by Lemma 3.4. Since xn+1 ∈ Qn and ΠQn

(x0) = argminy∈Qn
Δp(x0, y), it

follows that

Δp(x0, xn) = Δp(x0,ΠQn
(x0))

≤ Δp(x0, xn+1).

By Lemma 3.2, ΠΩ(x0) ∈ Ω ⊆ Qn+1 and hence

Δp(x0, xn+1) = Δp(x0,ΠQn+1(x0))
≤ Δp(x0,ΠΩ(x0)).

Thus,

Δp(x0, xn) ≤ Δp(x0, xn+1) ≤ Δp(x0,ΠΩ(x0)).

From (8) and (9), we see that

Δp(ΠΩx0, xnj
) = Δp(ΠΩx0, x0) + Δp(x0, xnj

)

+
〈
x0 − xnj

, JE1
p (ΠΩx0) − JE1

p (x0)
〉

≤ Δp(ΠΩx0, x0) + Δp(x0,ΠΩx0)

+
〈
x0 − ΠΩx0, J

E1
p (ΠΩx0) − JE1

p (x0)
〉

+
〈
ΠΩx0 − xnj

, JE1
p (ΠΩx0) − JE1

p (x0)
〉

=
〈
xnj

− ΠΩ(x0), JE1
p (x0) − JE1

p (ΠΩx0)
〉
. (33)

Taking limsup yields

lim sup
j→∞

Δp(ΠΩx0, xnj
) ≤ lim sup

j→∞

〈
xnj

− ΠΩx0, J
E1
p (x0) − JE1

p (ΠΩx0)
〉

=
〈
z − ΠΩx0, J

E1
p (x0) − JE1

p (ΠΩx0)
〉

≤ 0.

Hence, limj→∞ Δp(xnj
,ΠΩx0) = 0, and so xnj

→ ΠΩx0. By the arbitrariness
of {xnj

} and uniqueness of ΠΩx0, we have that xn ⇀ ΠΩx0. Using (16), it
follows from (33) that

τ‖xn − ΠΩx0‖p ≤ Δp(xn,ΠΩx0)

≤ 〈xn − ΠΩx0, J
E1
p (x0) − JE1

p (ΠΩx0)
〉
.

Taking limit as n → ∞ above, we get that xn → ΠΩx0.
�

Remark 3.7. (i) On comparing with the conditions on {αn} in the inertial
Mann algorithm of [6], our assumptions on {αn} in the inertial CQ algo-
rithm are obviously relaxed. To be more precise, we do not require that the
inertial sequence {αn} is nonnegative, nondecreasing and cannot exceed 1/3.
Moreover, our main result seems to be new in a Banach space for solving the
SFP with the inertial technique. As far as we know, it should be noted that
the conditions of convergence of the inertial CQ algorithm introduced in this
paper are weakest among the inertial algorithms proposed in some certain
Banach spaces.
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(ii) Our proposed Algorithm 3.1 has connections with some recent meth-
ods in the literature. For example, the inertial extrapolation factor αn in our
method has similar property with the recent papers of Dong et al. [19], where

{αn} ⊂ [α, α], α ∈ (−∞, 0], α ∈ [0,∞)

and the proposed method in [17], where {αn} is assumed to be bounded.
In these papers, several choices of {αn} are considered in numerical imple-
mentations and the authors showed that their proposed methods are efficient
and implementable. It is in the light of these results that our proposed Algo-
rithm 3.1 is introduced and studied for SFP (1.1).

4. Application

Next, we give some example and application which serve as motivation for
studying the split feasibility problem (1) outside Hilbert spaces. This example
concerns computing Lp-solutions of Fredholm integral equations of the first
kind with p ≥ 2. In this example, let E1 = Lp([α, β]), p ≥ 2. Observe that
the duality mapping of the spaces E1 = E2 = Lp([α, β]) is the function
JE1

p : Lp([α, β]) → Lq([α, β]) defined by (see [2])

JE1
p (x) := ‖x‖2−p.|x|p−2.x

and the Bregman distance function Δp(., .) is given by

Δp(y, x) := ‖y‖p + (p − 1)‖x‖p − p
〈|x|p−2.x, y

〉
,

where |x| is the Euclidean norm of x and ‖x‖ is the Lp norm of x.

Example 4.1. Let us consider computing Lp-solutions of Fredholm integral
equations of the first kind, as considered in [2],

∫ β

α

K(s, t)x(t)dt = g(s), s ∈ [α, β], (34)

involving a continuous kernel K : [α, β]2 → R and a continuous free term
g : [α, β] → R. Fredholm integral equations of the first kind appear in many
physical and engineering applications. An immense amount of work has been
done on solving (34). The literature is very extensive on the subject. Many
analytical and numerical techniques have been constructed so far and it is
still expanding. For more details, see, for example, [65].
It can be shown that (34) is an SFP (1) with A := I, the identity, which is
the problem: find x ∈ C :=

⋂N
i=1 Ci, where

Ci = {x ∈ Lp : 〈ai, x〉 = bi}, i = 1, 2, . . . , N (35)

with ai(t) = K(si, t) ∈ Lq([α, β])(q = p
p−1 ) and bi = g(si) ∈ R, while

α = s1 < s2 < . . . < sN = β (see [2,29,65]). Under some hypothesis, (34)
has solutions (cf. [39]) and approximating a Lp-solution of (34) amounts to
solving a consistent SFP (1).
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In this setting, our Algorithm 3.1 reduces to

Algorithm 4.2. Let {αn} ⊂ R be a bounded set. Set x0, x1 ∈ C. Define a
sequence {xn} by the following manner:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wn = JE1
q [JE1

p (xn) + αn(JE1
p (xn) − JE1

p (xn−1))]

yn = ΠC[n](wn)

Cn = {u ∈ E1 : Δp(yn, u) ≤ Δp(wn, u)}
Qn = {u ∈ E1 :

〈
xn − u, JE1

p (x0) − JE1
p (xn)

〉 ≥ 0}
xn+1 = ΠCn∩Qn

(x0).

(36)

for all n ≥ 0 where [n] := n(mod N) with the mod function taking values in

{1, 2, . . . , N} and {ρn} ⊂ (0,∞) satisfies lim inf
n→∞ ρn

(
p − cq

ρq−1
n

q

)
> 0.

By Theorem 3.6, we can show that, if (34) has solutions, then the sequence
{xn} generated by (36) converges strongly to a solution of (34).

5. Examples and numerical results

In this section, we provide computational experiments comparing our newly
proposed method considered in Sect. 3 of this paper to the existing iterative
method of Wang [59] for solving some problems in p-uniformly convex Banach
space which is also uniformly smooth. All codes were written in Matlab 2017a.
We perform all computations on a Linux desktop with an Intel(R) Core(TM)
i5-4670S CPU at 3.10 GHz.

Example 1: image restoration problem
The image restoration problem consists of the reconstruction of an original
image that has been digitized and has been degraded by blur and additive
noise. In this problem, the interest is in finding the minimum p-norm solution
of Ax = y, with exact data y ∈ R(A), where A : E1 → E2 is a continuous
linear operator between the two Banach spaces E1 and E2 with x ∈ E1.
Since the solution is almost sparse, the minimum p-norm solution is always
sought for with p ∈ (1, 2], to promote sparsity in the restored solution. For
more information about the role of the sparsity in inverse problems, we refer
to [21,23,31,55]. Using Algorithm 3.1, we develop an iterative algorithm to
recover the solution of the functional linear equation Ax = y. Furthermore,
we compare the performance of our proposed Algorithm 3.1 with Algorithm
(15).

Let us choose a simple image restoration problem studied in [53]. For
simplicity, we consider the case when p = 2 = q and E1 = L2([0, 1]) = E2.
Consider the matrix A ∈ R

1000×1000

A =
1

1000

⎛

⎜⎜⎜⎜⎝

1 0 · · · 0
...

. . . . . .
...

...
. . . 0

1 · · · · · · 1

⎞

⎟⎟⎟⎟⎠
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Figure 1. x∗ ∈ C (left) and Ax∗ ∈ Q (right)

resulting from a discretization of the operator equation of the first kind

y(t) = (Ax)(t) :=
∫ t

0

x(s)ds, s, t ∈ [0, 1]; x, y : [0, 1] → [0, 1].

We are interested in solutions x ∈ {x ∈ C : Ax ∈ Q}, where C is the cone of
functions x(s) that are negative for s ∈ [0, 0.25] and positive for s ∈ [0.25, 1]
and Q = [a(t), b(t)] is a box delimited by the functions a(t), b(t). We take
E1 = (R1000, ‖.‖2), E2 = (R1000, ‖.‖2). We compute the metric projection PQ

with formula:

P[a,b](x) := max{a,min{x, b}}, (37)

where [a, b] := {x ∈ H : a ≤ x ≤ b} is a closed box with extended real valued
functions a, b, “≤”, “min” and “max” are to be understood pointwise a.e..
Since E1, E2 are Hilbert spaces, the Bregman projection ΠC coincides with
the metric projection PC , which can be also computed with (37) because
C = [c(s),d(s)] is furthermore an unbounded box with c(s) = −∞,d(s) = 0
for s ∈ [0, 0.25] and c(s) = 0,d(s) = +∞ for s ∈ [0.25, 1].

To ensure the existence of the solution of the considered problem, a
sparse vector x∗(t) is generated randomly in C (see Fig. 1a). Taking y(t) =
Ax∗(t) and a(t) = y(t) − 0.01, b(t) = y(t) + 0.01 (Fig. 1b) we have Q =
[a(t), b(t)]. The problem of interest is to find x ∈ C such that Ax ∈ Q.

In Fig. 2, we report the results comparing the behavior of Algorithm 3.1
with Algorithm (15) for initial guess x0 = x1 = 0. For Algorithm (17), we
take αn = α = 3 and ρn = ρ = 2, for Algorithm (15), we take λn = λ = 1

‖A‖2 .
We compute the error as:

Error = ‖xn − ΠC(xn)‖ + ‖Axn − PQ(Axn)‖.

It can be seen that Algorithm 3.1 is significantly faster than Algorithm (15).

Example 2
The following example was considered in [51], where E1 = E2 = L2[0, 1] with
the inner product given as:

〈f, g〉 =
∫ 1

0

f(t)g(t)dt.
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Figure 2. Number of iterations and error estimate for Algo-
rithm 3.1 and Algorithm (15) for image restoration problem

Let

C := {x ∈ E1 : 〈a, x〉 = b} ,

where a = 2t2 and b = 0. In this case, we have

PC(x) = x +
b − 〈a, x〉

‖a‖2
a.

Also, let

Q := {x ∈ E2 : 〈c, x〉 ≤ d} ,

where c = t/3 and d = 1, we obtain

PQ(x) = x + max
{

0,
d − 〈c, x〉

‖c‖2
c

}
.

We assume that

A : E1 → E2, Ax(t) =
x(t)
2

.

Then, A is a bounded linear operator and A∗ = A. Observe that the solution
set

Ω = {x ∈ C : Ax ∈ Q}
is nonempty since 0 ∈ Ω. In the following figures, we compare Algorithm 3.1
with Algorithm (15) for two initial guesses x0(t) = x1(t) = exp(2t) and
x0(t) = x1(t) = 3 sin(t). For Algorithm (17), we take αn = α = 1 and
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Figure 3. Number of iterations and error estimate for Algo-
rithm 3.1 and Algorithm (15) with x0(t) = x1(t) = exp(2t)
(left) and x0(t) = x1(t) = 3 sin(t) (right) in Example 2

Table 1. Comparison of Algorithm 3.1 and Algorithm (15)

Algorithm 3.1
iterations

CPU
time (s)

Algorithm (15)
iterations

CPU
time

Example 2, x0(t) =
x1(t) = exp(2t)

36 1.5084 56 2.7393

Example 2, x0(t) =
x1(t) = 3 sin(t)

39 1.3225 86 3.0666

Example 2,
x0 = x1 = 0

199 7.973 248 9.9056

ρn = ρ = 2, for Algorithm (15), we take λn = λ = 1
‖A‖2 . The iteration was

stopped with accuracy

Error = ‖xn − ΠC(xn)‖ + ‖Axn − PQ(Axn)‖ ≤ ε,

where ε = 10−4 (Fig. 3).
Finally, let us summarize the comparison of Algorithm 3.1 with Algo-

rithm (15) in Table 1.

6. Conclusion and final remarks

In this paper, we study the modified self-adaptive projection method with an
inertial technique for solving the split feasibility problem (1) in p-uniformly
convex Banach spaces which are also uniformly smooth. We show in a simple
and novel way how the sequence generated by our projection method with an
inertial technique strongly converges to a solution of the SFP. The effective-
ness and numerical implementation of the proposed method are illustrated
for solving the some examples in Banach spaces. All the numerical imple-
mentations of our results are compared with the Wang’s [59] algorithm. On
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these grounds, we can summarize that our proposed method is really more
efficient and faster than Wang’s method.

In recent years, the nonlinear split feasibility problem (NLSFP) gained
a lot of interest, see, e.g., [26,32]. In addition, the non-convex case is also very
attractive from the application point of view, see [45]. In our future project,
we will extend the results of this paper to nonlinear split feasibility problem
and non-convex case of split feasibility problem.
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