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Abstract. The periodic problem is studied in this paper for the neutral
Liénard equation with a singularity of repulsive type

(x(t) − cx(t − σ))′′ + f(x(t))x′(t) + ϕ(t)x(t − τ) − r(t)

xµ(t)
= h(t),

where f : [0, +∞) → R is continuous, r : R → (0, +∞) and ϕ : R → R
are continuous with T -periodicity in the t variable, c, μ, σ, τ are con-
stants with |c| > 1, μ > 1, 0 < σ, τ < T . Many authors obtained the
existence of periodic solutions under the condition |c| < 1 , and we
extend their results to the case of |c| > 1. The proof of the main result
relies on a continuation theorem of coincidence degree theory established
by Mawhin.
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1. Introduction

As we all know, differential equations with singularities have a wide range of
applications in physics, mechanics and biology (see [1–5]). For example, the
positive periodic solutions for the singular equation [6]

x′′(t) + cx′(t) − 1
x(t)

= e(t)

can be used to describe the movement of the piston at the bottom of the
enclosing cylinder which under the effect of restoring forces is caused by the
compressed gas. It has been recognized that the paper [7] is a major milestone
in the study of problem of periodic solutions for second-order differential
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equation with singularities. In [7], Lazer and Solimini studied the following
equation with a singularity of repulsive type

x′′(t) − 1
xα(t)

= h(t), (1.1)

where h : R → R is a T -periodic continuous function. Using the topolog-
ical degree methods as well as the lower and upper function method, they
obtained that 1

T

∫ T

0
h(s)ds < 0 is the necessary and sufficient condition for

the existence of positive periodic solutions to (1.1) under the condition α ≥ 1.
Since then, many authors have focused their attention on the equations with
singularities of repulsive type [7–16].

In the past few years, the problem of existence of periodic solutions for
neutral differential equations was studied in many papers (see [17–19] and the
references therein). For example, Peng [17] studied the existence of periodic
solutions for the second-order neutral differential equation of the form

d
dt

(ϕp(u(t) − cu(t − σ))′) + f(u′(t)) + g(u(t − τ)) = e(t),

where f, g ∈ C(R;R), c, σ and τ are constants with |c| �= 1. Using the contin-
uous theorem of coincidence degree theory and some new analysis techniques,
they obtained some new results on the existence of periodic solutions. How-
ever, the study of positive periodic solutions for delay differential equations
or neutral differential equations with singularities is relatively infrequent [20–
22]. In [21,22], the authors investigated the periodic problem for a neutral
Liénard equation with a singularity of repulsive type

(x(t) − cx(t − σ))′′ + f(x(t))x′(t) + ϕ(t)x(t − τ) − r(t)
xμ(t)

= h(t), (1.2)

where f : [0,+∞) → R is continuous, r : R → (0,+∞) and ϕ : R → R
are continuous with T -periodicity in the t variable, μ > 1 and c ∈ R are
constants. Under the conditions of ϕ(t) ≥ 0 for t ∈ [0, T ], |c| < 1 and other
suitable assumptions, some results on the existence of positive T -periodic
solutions are obtained.

The parameter c in neutral functional differential equations has rich
physical significance. For example, the vertical motion of the pendulum–
MSD (mass–spring–damper) system can be described in [23] by the following
second-order neutral differential equation

d2

dt2

(

y(t) +
M1

M2
y(t − τ)

)

+ A
dy

dt
+ By = 0, (1.3)

where M2 is the mass of a body which is mounted on a linear spring, to which
a pendulum of mass M1 is attached via a hinged massless rod of length. The
physical meaning of the parameters of τ , A and B can be found in [23].
Corresponding to Eq. (1.2), c = M1

M2
. Clearly, c is allowed to satisfy c > 1.

In this case, one can see from the results in [23] that the steady state y = 0
of (1.3) is always unstable for any positive delay τ . For the other detailed
explanation of physical meaning of the parameter c, we refer reader to see [24].
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In this paper, we continue to study the periodic problem of equation
(1.2) in the case of |c| > 1. Using a continuation theorem of coincidence
degree theory established by Mawhin, we obtain the following result.

Theorem 1.1. Assume that the following conditions hold:

[H1] ϕ̄ := 1
T

∫ T

0
ϕ(s)ds > 0;

[H2] |f(x)| ≤ L for all x ∈ (0,+∞);

[H3] |c| − 1 − σ0 > 0, and δ := 1 − Tϕ+
2ϕ

(
|ϕ|

|c|−1−σ0

) 1
2

> 0, where σ0 =

min{σL, LT
π }, L is determined in [H2] and σ in (1.2).

Then there exists at least one positive T -periodic solution to (1.2).

From Theorem 1.1, one can find that the constant c associated to the
difference operator D : C([−σ, 0], R) → R,Dϕ = ϕ(0) − cϕ(−σ) required
|c| > 1. This is essentially different from the corresponding condition |c| < 1
assumed by Kong et al. [21,22]. Furthermore, the sign of ϕ(t) is allowed to
change. Just because of these two factors, there are more difficulties in the
present paper than in [21,22] for estimating a priori bounds of all the possible
positive T -periodic solutions to Eq. (1.2) with a parameter λ

(x(t) − cx(t − σ))′′ + λf(x(t))x′(t) + λϕ(t)x(t − τ) − λr(t)
xμ(t)

= λh(t), λ ∈ (0, 1).
(1.4)

If ϕ(t) ≥ 0 for t ∈ [0, T ], then using Theorem 1.1, we can get the
following Corollary.

Corollary 1.2. Assume that [H2] holds and ϕ(t) ≥ 0 for t ∈ [0, T ] with ϕ̄ > 0.
If

|c| > 1 + σ0 +
T 2

4
ϕ̄,

then there exists at least one positive T -periodic solution to (1.2).

For illustrating the application of Theorem 1.1, we give the following
example.

Example 1.3. Consider the neutral Liénard equation with a singularity of
repulsive type

(x(t) − 50x(t − π))′′ + x′(t) · sinx(t) + (1 + 2 sin t)x(t − τ) − r(t)
xμ(t)

= h(t),

where τ ∈ R, μ > 1 are constants, r, h are 2π-periodic continuous functions
with r(t) > 0 for t ∈ [0, T ].

Corresponding to (1.2), we have

T = 2π, f(x) = sin x, ϕ(t) = 1 + 2 sin t.

Clearly,

|f(x)| ≤ 1, ϕ = 1 > 0, ϕ+ =
2π + 3

√
3

3π
, ϕ− =

−π + 3
√

3
3π

.
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By a direct calculation, we arrive at

σ0 = 2, |c| − 1 − σ0 = 47 > 0, δ ≈ 0.2 > 0.

Thus, assumptions of [H1]–[H3] hold, and using Theorem 1.1, we know that
this equation has at least one positive 2π-periodic solution.

The rest of this paper is organized as follows. In the second section, we
present some necessary lemmas. In the last section, we prove our main result
(Theorem 1.1).

2. Essential definitions and lemmas

In this section, we will introduce four lemmas. The first is a continuation the-
orem of coincidence degree theory which was established by Mawhin in [25],
and this lemma is the theoretic basis of this paper. The rest of the lemmas
are used for estimating a priori bounds of periodic solutions to Eq. (1.4).

Now, we give some notations and definitions which will be used through-
out this paper. For any T -periodic continuous function y(t), let

y+(t) = max{y(t), 0}, y−(t) = −min{y(t), 0},

ȳ =
1
T

∫ T

0

y(s)ds and ||y||∞ = max
t∈[0,T ]

|y(t)|.

Clearly, y(t) = y+(t) − y−(t) for all t ∈ R, and ȳ = y+ − y−. Let X = C1
T :=

{x ∈ C1(R,R) : x(t+T ) ≡ x(t)} with the norm ‖x‖X = max{‖x‖∞, ‖x′‖∞},
Y = CT := {y ∈ C(R,R) : y(t + T ) ≡ y(t)} with the norm ‖y‖Y = ‖y‖∞. It
is easy to see that X and Y are Banach spaces.

Next, we define the linear operator L as

Lx = (Ax)′′, L : D(L) ⊂ X → Y,

where A : CT → CT , (Ax)(t) = x(t) − cx(t − σ), D(L) = {x ∈ X : Ax ∈
C2(R,R)}, and

N : Δ → Y, (Nx)(t) = −f(x(t))x′(t) − ϕ(t)x(t − τ) +
r(t)
xμ(t)

+ h(t),

where Δ = {x ∈ X : x(t) > 0, t ∈ [0, T ]}. It is easy to see that

KerL = R and ImL =

{

y ∈ Y :
∫ T

0

y(t)dt = 0

}

.

This implies that L is a Fredholm operator of index zero.
Let us define two continuous projectors P : X → KerL and Q : Y → Y

by setting

Px =
1
T

∫ T

0

x(t)dt and Qy =
1
T

∫ T

0

y(t)dt,

respectively. Meanwhile, we can know that kerL = ImP, kerQ = ImL.
Let Lp = L|D(L)∩kerP → ImL, then Lp has its inverse L−1

p : ImL →
D(L) ∩ KerP and we define Kp : ImL → D(L) ∩ KerP by

Kp = L−1
p .
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Clearly, for arbitrary y ∈ ImL, we have

(Kpy)(t) = (A−1Fy)(t),

where

(Fy)(t) =
∫ T

0

G(t, s)y(s)ds, G(t, x) =
{

(T−s)s
2T , 0≤s<t≤T ;

(s−2t)(T−s)
2T , 0≤t≤s≤T.

For any bounded set Ω ⊂ Δ, we can prove by standard arguments that
Kp(I − Q)N and QN are relatively compact on the closure Ω̄. Therefore, N
is L-compact on Ω̄.

Lemma 2.1. [25] Let X and Y be two real Banach spaces. Suppose that L :
D(L) ⊂ X → Y is a Fredholm operator with index zero and N : Ω̄ → Y is
L-compact on Ω̄, where Ω is an open bounded subset of X. Moreover, assume
that all the following conditions are satisfied.

(S1) Lx �= λNx, for all x ∈ ∂Ω ∩ D(L), λ ∈ (0, 1);
(S2) Nx /∈ ImL, for all x ∈ ∂Ω ∩ KerL;
(S3) The Brouwer degree deg{JQN,Ω ∩ KerL, 0} �= 0, where J : ImQ →

KerL is an isomorphism.

Then equation Lx = Nx has at least one solution on Ω̄.

Remark 2.2. If r̄ > 0, ϕ̄ > 0, then there exist two constants of D1 and D2

with 0 < D1 < D2 < +∞, such that
r̄

xμ
− ϕ̄x + h̄ > 0, ∀x ∈ (0,D1)

and
r̄

xμ
− ϕ̄x + h̄ < 0, ∀x ∈ (D2,∞).

Lemma 2.3. [26] If |c| �= 1, then A has a continuous bounded inverse on CT

and the following hold:

1. ‖A−1x‖ ≤ ‖x‖
|1−|c|| , for every t ∈ [0, T ].

2.
∫ T

0
|(A−1f)(t)|dt ≤ 1

|1−|c||
∫ T

0
|f(t)|dt, for every f ∈ CT .

3. If Af ∈ C1
T , then f ∈ C1

T and (Af)′(t) = (Af ′)(t), for every t ∈ [0, T ].

Lemma 2.4. [27] Let u : [0, T ] → R be a absolute continuous function, and
u(0) = u(T ), then

(

max
t∈[0,T ]

u(t) − min
t∈[0,T ]

u(t)
)2

≤ T

4

∫ T

0

|u′(s)|2ds.

Lemma 2.5. [28] Let x be a continuously differentiable T -periodic function.
Then, for any τ ∈ [0, T ],

(∫ T

0

|x(t) − x(t − τ)|2dt

) 1
2

≤ τ

(∫ T

0

|x′(t)|2dt

) 1
2

. (2.1)
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3. Main results

Let us define

D = {x ∈ C1
T : Lx = λNx, λ ∈ (0, 1);x(t) > 0,∀t ∈ [0, T ]} (3.1)

and

M0 = max

{
Tϕ+

2δϕ

(
h−

|c| − 1 − σ0

) 1
2

+
(

r̄ + |h̄|
δϕ

) 1
2

, 1

}

, (3.2)

where σ0 and δ are determined in assumption [H3] of Theorem 1.1. Notice
that for every u ∈ D, u(t) is a positive T -periodic solution to (1.4), i.e.,

(u(t) − cu(t − σ))′′ + λf(u(t))u′(t) + λϕ(t)u(t − τ) − λ
r(t)
uμ(t)

= λh(t), λ ∈ (0, 1).
(3.3)

Lemma 3.1. Assume that [H2] holds, then
∣
∣
∣
∣
∣

∫ T

0

f(x(t))x′(t)x(t − σ)dt

∣
∣
∣
∣
∣

≤ σ0

∫ T

0

|x′(t)|2dt for all x ∈ C1
T .

Proof. For each x ∈ C1
T , let x̃(t) = x(t)−x̄. Then using Wirtinger’s inequality,

we get

(∫ T

0

|x̃(t)|2dt

) 1
2

≤ T

π

(∫ T

0

|x′(t)|2dt

) 1
2

,

which together [H2] yields
∣
∣
∣
∣
∣

∫ T

0

f(x(t))x′(t)x(t − σ)dt

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ T

0

f(x(t))x′(t)[x(t − σ) − x̄]dt

∣
∣
∣
∣
∣

≤ L

∫ T

0

|x′(t)||x(t − σ) − x̄|dt

≤ L

(∫ T

0

|x′(t)|2dt

) 1
2

(∫ T

0

|x(t − σ) − x̄|2dt

) 1
2

≤ TL

π

∫ T

0

|x′(t)|2dt.

(3.4)
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On the other hand, using (2.1) in Lemma 2.5, we obtain
∣
∣
∣
∣
∣

∫ T

0

f(x(t))x′(t)x(t − σ)dt

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ T

0

f(x(t))x′(t)[x(t − σ) − x(t)]dt +
∫ T

0

f(x(t))x(t)x′(t)dt

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ T

0

f(x(t))x′(t)[x(t − σ) − x(t)]dt

∣
∣
∣
∣
∣

≤ L

∫ T

0

|x′(t)||x(t) − x(t − σ)|dt

≤ L

(∫ T

0

|x(t) − x(t − σ)|2dt

) 1
2

(∫ T

0

|x′(t)|2dt

) 1
2

≤ Lσ

(∫ T

0

|x′(t)|2dt

) 1
2

(∫ T

0

|x′(t)|2dt

) 1
2

= Lσ

∫ T

0

|x′(t)|2dt.

(3.5)

The conclusion follows from (3.4) and (3.5) directly. �

Lemma 3.2. Suppose that assumption [H2] holds, and |c| − 1 − σ0 > 0, then
for each u ∈ D, u satisfies

(∫ T

0

|u′(t)|2dt

) 1
2

≤
(

T |ϕ|
|c| − 1 − σ0

) 1
2

||u||∞ +

(
T |h|

|c| − 1 − σ0

) 1
2

||u|| 1
2∞,

(3.6)
where D is defined by (3.1).

Proof. Suppose that u ∈ D, then u(t) satisfies (3.3). Multiplying both sides
of (3.3) by u(t − σ) and integrate it on [0, T ], we have

∫ T

0

(u(t) − cu(t − σ))′′u(t − σ)dt + λ

∫ T

0

f(u(t))u′(t)u(t − σ)dt

+λ

∫ T

0

ϕ(t)u(t − τ)u(t − σ)dt − λ

∫ T

0

r(t)u(t − σ)

uµ(t)
dt = λ

∫ T

0

h(t)u(t − σ)dt.

By a direct calculation and using Conclusion 3 of Lemma 2.3, we arrive at

c

∫ T

0

|u′(t)|2dt =

∫ T

0

u′(t)u′(t − σ)dt − λ

∫ T

0

f(u(t))u′(t)u(t − σ)dt

− λ

∫ T

0

ϕ(t)u(t − τ)u(t − σ)dt + λ

∫ T

0

r(t)u(t − σ)

uµ(t)
dt + λ

∫ T

0

h(t)u(t − σ)dt.

(3.7)
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Using Lemma 3.1, we have
∣
∣
∣
∣
∣

∫ T

0

f(u(t))u′(t)u(t − σ)dt

∣
∣
∣
∣
∣

≤ σ0

∫ T

0

|u′(t)|2dt,

(3.8)

and using Hölder inequality, we get

−
∫ T

0

u′(t)u′(t − σ)dt

≤
∣
∣
∣

∫ T

0

u′(t)u′(t − σ)dt
∣
∣
∣ ≤

∫ T

0

|u′(t)||u′(t − σ)|dt

≤
( ∫ T

0

|u′(t)|2dt
) 1

2
(∫ T

0

|u′(t − σ)|2dt
) 1

2

=
( ∫ T

0

|u′(t)|2dt
) 1

2
(∫ T−σ

−σ

|u′(s)|2ds
) 1

2

=
( ∫ T

0

|u′(t)|2dt
) 1

2
(∫ T

0

|u′(s)|2ds
) 1

2

=
∫ T

0

|u′(t)|2dt.

(3.9)

If c < −1, substituting (3.8) and (3.9) into (3.7), we get

|c|
∫ T

0

|u′(t)|2dt = −c

∫ T

0

|u′(t)|2dt

= −
∫ T

0

u′(t)u′(t − σ)dt + λ

∫ T

0

f(u(t))u′(t)u(t − σ)dt

+ λ

∫ T

0

ϕ(t)u(t − τ)u(t − σ)dt − λ

∫ T

0

r(t)u(t − σ)

uµ(t)
dt − λ

∫ T

0

h(t)u(t − σ)dt

≤ (1 + σ0)

∫ T

0

|u′(t)|2dt + ||u||2∞Tϕ+ + ||u||∞Th−.

This gives us that

(|c| − 1 − σ0)
∫ T

0

|u′(t)|2dt ≤ ||u||2∞Tϕ+ + ||u||∞Th−. (3.10)

If c > 1, substituting (3.8) and (3.9) into (3.7) again, we have

|c|
∫ T

0

|u′(t)|2dt = c

∫ T

0

|u′(t)|2dt

= −
∫ T

0

u′(t)u′(t − σ)dt − λ

∫ T

0

f(u(t))u′(t)u(t − σ)dt

−λ

∫ T

0

ϕ(t)u(t − τ)u(t − σ)dt + λ

∫ T

0

r(t)u(t − σ)

uµ(t)
dt + λ

∫ T

0

h(t)u(t − σ)dt

≤ (1 + σ0)

∫ T

0

|u′(t)|2dt + ||u||2∞Tϕ− + ||u||∞
[ ∫ T

0

r(t)

uµ(t)
dt + Th+

]
.

(3.11)
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Integrating (3.3) on [0, T ], we arrive at
∫ T

0

ϕ(t)u(t − τ)dt =
∫ T

0

r(t)
uμ(t)

dt +
∫ T

0

h(t)dt, (3.12)

i.e.,
∫ T

0

r(t)
uμ(t)

dt =
∫ T

0

ϕ(t)u(t − τ)dt − T h̄, (3.13)

which together with (3.11) leads to

(|c| − 1 − σ0

) ∫ T

0

|u′(t)|2dt

≤ ||u||2∞Tϕ− + ||u||∞
[
Th+ +

∫ T

0

ϕ(t)u(t − τ)dt − T h̄
]

≤ ||u||2∞Tϕ− + ||u||∞
[
T |h| + Tϕ+||u||∞

]

= ||u||2∞T |ϕ| + ||u||∞T |h|.

(3.14)

Thus, from (3.10) and (3.14), we see that in either case c < −1 or the
case c > 1, we always have

(
|c| − 1 − σ0

) ∫ T

0

|u′(t)|2dt ≤ ||u||2∞T |ϕ| + ||u||∞T |h|,

i.e.,
(∫ T

0

|u′(t)|2dt
) 1

2 ≤
( T |ϕ|

|c| − 1 − σ0

) 1
2 ||u||∞ +

( T |h|
|c| − 1 − σ0

) 1
2 ||u|| 1

2∞.

(3.15)
The proof is complete. �

Lemma 3.3. Suppose assumptions of [H1]–[H3] hold, then for arbitrary u ∈
D, there exists a t0 ∈ [0, T ] such that u(t0) ≤ M0, where M0 is defined by
(3.2).

Proof. Assume that the conclusion does not hold, then there exists an u0 ∈ D
such that

u0(t) > M0, for every t ∈ [0, T ]. (3.16)

From the definition of D, we have

(u0(t)− cu0(t−σ))′′ +λf(u0(t))u′
0(t)+λϕ(t)u0(t− τ)−λ

r(t)
uμ
0 (t)

= λh(t),

(3.17)
and it follows from (3.12) that

∫ T

0

ϕ(t)u0(t − τ)dt =
∫ T

0

r(t)
uμ
0 (t)

dt +
∫ T

0

h(t)dt,

which means
∫ T

0

ϕ+(t)u0(t − τ)dt =
∫ T

0

ϕ−(t)u0(t − τ)dt +
∫ T

0

r(t)
uμ
0 (t)

dt +
∫ T

0

h(t)dt.
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Using the mean value theorem of integrals, we know that there exist two
constants ζ, ξ ∈ R such that

Tϕ+u0(ζ) ≤ Tϕ−u0(ξ) + T r̄M−μ
0 + T h̄.

Notice that M0 ≥ 1, we have

Tϕ+u0(ζ) ≤ Tϕ−u0(ξ) + T r̄ + T h̄,

namely,

u0(ζ) ≤ ϕ−
ϕ+

‖u0‖∞ +
r̄ + |h̄|

ϕ+
. (3.18)

By means of Lemma 2.4, we get the following inequality

‖u0‖∞ ≤ u0(ζ) +
T

1
2

2

(∫ T

0

|u′
0(s)|ds

) 1
2

. (3.19)

Substituting (3.18) into (3.19), and from [H1], we have

‖u0‖∞ ≤ T
1
2 ϕ+

2ϕ

(∫ T

0

|u′
0(s)|ds

) 1
2

+
r̄ + |h̄|

ϕ
. (3.20)

On the other hand, using Lemma 3.2, we see that
( ∫ T

0

|u′
0(t)|2dt

) 1
2 ≤

( T |ϕ|
|c| − 1 − σ0

) 1
2 ||u0||∞ +

( T |h|
|c| − 1 − σ0

) 1
2 ||u0||

1
2∞.

(3.21)
Substituting (3.21) into (3.20), we get

‖u0‖∞ ≤ T
1
2 ϕ+

2ϕ

[( T |ϕ|
|c| − 1 − σ0

) 1
2 ||u0||∞ +

( T |h|
|c| − 1 − σ0

) 1
2 ||u0||

1
2∞

]
+

r̄ + h̄

ϕ

. =
Tϕ+

2ϕ

( |ϕ|
|c| − 1 − σ0

) 1
2 ||u0||∞ +

Tϕ+

2ϕ

( |h|
|c| − 1 − σ0

) 1
2 ||u0||

1
2∞

+
r̄ + |h̄|

ϕ
.

(3.22)

Since δ = 1 − Tϕ+
2ϕ

(
|ϕ|

|c|−1−σ0

) 1
2

> 0, it follows from (3.22) that

||u0||∞ ≤ Tϕ+

2δϕ

( |h|
|c| − 1 − σ0

) 1
2 ||u0||

1
2∞ +

r̄ + |h̄|
δϕ

.

By simply calculating, we have

||u0||∞ <
Tϕ+

2δϕ

( |h|
|c| − 1 − σ0

) 1
2

+
( r̄ + |h̄|

δϕ

) 1
2
,

i.e., ‖u0‖∞ < M0, which contradicts (3.16). This contradiction implies that
the conclusion of Lemma 3.3 holds. �

Lemma 3.4. Assume that [H1] holds, then there exists a constant

γ = min

{
|h̄| + 1

ϕ+
,

(
r̄

2|h̄| + 1

) 1
µ

}

(3.23)
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such that, for every u ∈ D, there always exists a t1 ∈ [0, T ] satisfies x(t1) ≥ γ.

Proof. Assume that the conclusion does not hold, then there exists an u1 ∈ D
satisfies

u1(t) < γ, for all t ∈ [0, T ] (3.24)
and

(u1(t) − cu1(t − σ))′′ + λf(u1(t))u′
1(t) + λϕ(t)u1(t − τ) − λr(t)

uμ
1 (t)

= λh(t).

Integrating it on [0, T ], we arrive at
∫ T

0

ϕ(t)u1(t − τ)dt −
∫ T

0

r(t)
uμ
1 (t)

dt =
∫ T

0

h(t)dt,

which results in
∫ T

0

ϕ+(t)u1(t − τ)dt ≥
∫ T

0

r(t)
uμ
1 (t)

dt + T h̄.

Using (3.24) and (3.23), we get

Tγϕ+ = γ

∫ T

0

ϕ+(t)dt >

∫ T

0

ϕ+(t)u1(t − τ)dt

≥ T r̄

γμ
+ T h̄

= T (2|h̄| + 1) + T h̄

≥ T |h̄| + T.

By simply calculating, we have

γ >
|h̄| + 1

ϕ+
,

which contradicts (3.23). So, for every u ∈ D, there always exists a t1 ∈ [0, T ]
satisfies x(t1) ≥ γ. �

Finally, we are going to prove Theorem 1.1.

Proof. For u ∈ D, according to Lemma 3.3 and Lemma 3.4, we know that
there exist t0, t1 ∈ [0, T ] such that

u(t0) ≤ M0, u(t1) ≥ γ. (3.25)

Lemma 3.3 gives us that
(∫ T

0

|u′(t)|2dt
) 1

2 ≤
( T |ϕ|

|c| − 1 − σ0

) 1
2 ||u||∞ +

( T |h|
|c| − 1 − σ0

) 1
2 ||u|| 1

2∞.

(3.26)
From (3.25) and using Lemma 2.4, we get

‖u‖∞ ≤ M0 +
T

1
2

2

(∫ T

0

|u′(t)|2dt
) 1

2
,

which together with (3.26) yields

‖u‖∞ ≤ M0 +
T

2

( |ϕ|
|c| − 1 − σ0

) 1
2 ||u||∞ +

T

2

( |h|
|c| − 1 − σ0

) 1
2 ||u|| 1

2∞,
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i.e.,

δ1‖u‖∞ ≤ M0 +
T

2

( |h|
|c| − 1 − σ0

) 1
2 ||u|| 1

2∞, (3.27)

where δ1 := 1 − T
2

(
|ϕ|

|c|−1−σ0

) 1
2
. Since ϕ̄ > 0, it follows from [H3] that δ1 ≥

δ > 0, and then by (3.27), we get

‖u‖∞ ≤ T

2δ1

( |h|
|c| − 1 − σ0

) 1
2

+
(M0

δ1

) 1
2

:= M1. (3.28)

Thanks to Au ∈ C2
T , there exists a t2 ∈ [0, T ] s.t. (Au)′(t2) = 0. Integrating

(3.3) on [t2, t], we have

(Au)′(t) = −λ

∫ t

t2

f(u(t))u′(t)dt − λ

∫ t

t2

ϕ(t)u(t − τ)dt

+λ

∫ t

t2

r(t)
uμ(t)

dt + λ

∫ t

t2

h(t)dt,

where t ∈ [t2, t2 + T ]. And From F (x) =
∫ x

0
f(s)ds, we know

|(Au)′(t)| ≤ 2λ max
u∈[0,M1]

|F (u)| + λT |ϕ|‖u‖∞ + λT |h| + λ

∫ T

0

r(t)
uμ(t)

dt.

Using the conclusion (3) of Lemma 2.3, we have from (3.13) that

‖Au′‖∞ = ‖(Au)′‖∞ ≤ 2λ( max
u∈[0,M1]

|F (u)| + T |ϕ|‖u‖∞ + T |h|). (3.29)

It follows from conclusion (2) of Lemma 2.3 that

‖u′‖∞ = ‖A−1Au′‖∞ ≤ ‖Au′‖∞
|c| − 1

<
2(maxu∈[0,M1] |F (u)| + T |ϕ|‖u‖∞ + T |h|)

|c| − 1

:= M2,

namely,
‖u′‖∞ < M2. (3.30)

In the following part, we will give a priori lower estimate over the set D.
To do it, multiplying both sides of (3.3) by u′(t)

r(t) and integrating it on [t1, t],
where t1 is determined in Lemma 3.4, we get

λ
∣
∣
∣

∫ t

t1

u′(s)
uμ(s)

ds
∣
∣
∣ =

∫ t

t1

∣
∣
∣(Au)′′(s)

u′(s)
r(s)

∣
∣
∣ds + λ

∫ t

t1

∣
∣
∣f(u(s))u′(s)

u′(s)
r(s)

∣
∣
∣ds

+ λ

∫ t

t1

∣
∣
∣ϕ(s)u(s − τ)

u′(s)
r(s)

∣
∣
∣ds − λ

∫ t

t1

∣
∣
∣h(s)

u′(s)
r(s)

∣
∣
∣ds

≤ ||u′||∞
rl

∫ T

0

|(Au)′′(s)|ds + λTL
||u′||2∞

rl
+

λT |ϕ| ||u||∞||u′||∞
rl

+ λT |h| ||u
′||∞
rl

,
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where t ∈ [t1, t1 + T ] and rl = mint∈[0,T ] r(t), which together with (3.28) and
(3.30) yields

λ
∣
∣
∣

∫ u(t)

u(t1)

1
vμ

dv
∣
∣
∣ ≤ M2

rl

∫ T

0

|(Au)′′(s)|ds +
λTLM2

2

rl
+

λT |ϕ|M1M2

rl
+

λT |h|M2

rl
.

(3.31)

From (3.3), we know
∫ T

0

|(Au)′′(s)|ds ≤ λT (M2L + 2M1|ϕ| + 2|h|). (3.32)

Substituting (3.32) into (3.31), we arrive at

∣
∣
∣

∫ u(t)

u(t1)

1
vμ

dv
∣
∣
∣ ≤ 2TLM2

2

rl
+

3T |ϕ|M1M2

rl
+

3T |h|M2

rl

:= M3.

(3.33)

Since μ > 1, it follows that there exists a constant γ0 ∈ (0, γ) such that
∫ γ

ε

1
vμ

dv > M3, for every ε ∈ (0, γ0],

where γ is defined by (3.23). If u(t) ≤ γ0, then we obtain that

∣
∣
∣

∫ u(t)

u(t1)

1
vμ(s)

dv
∣
∣
∣ ≥

∫ γ

γ0

1
vμ

dv > M3,

which contradicts to (3.33), and therefore we get

u(t) > γ0, for every t ∈ [0, T ]. (3.34)

From (3.28), (3.30) and (3.34), we have

γ0 < min
t∈[0,T ]

u(t), max
t∈[0,T ]

u(t) < M1, ||u′||∞ < M2, ∀u ∈ D. (3.35)

Let m0 = min{γ0,D1}, m1 = max{M1,D2}, where D1 and D2 are deter-
mined in Remark 2.2. Set

Ω = {u ∈ CT : m0 < u(t) < m1, |u′(t)| < M2, for every t ∈ [0, T ]},

we can easily verify that conditions of (S1) and (S2) in Lemma 2.1 hold. And
we also have

(
r̄

mμ
0

− ϕ̄m0 + h̄

)(
r̄

mμ
1

− ϕ̄m1 + h̄

)

< 0,

which means deg{JQN,Ω ∩ kerL, 0} �= 0, namely, the condition (S3) holds
also. Thus, using Lemma 2.1 we know that Eq. (1.2) has at least one positive
T -periodic solution u1 ∈ Ω. �
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