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Abstract. In this paper we study some properties of isolated invariant
continua for arbitrary homeomorphisms of Rn. We study the existence
of special isolating blocks for them which allow us to compute the fixed
point indices of the iterates of arbitrary homeomorphisms at arbitrary
isolated continua in dimension two. Among the consequences we would
highlight the following:

– If K ⊂ R
2 is an isolated invariant continuum that decomposes the

plane in more than two connected components, then K contains a
periodic orbit.

– A proper invariant continuum of the 2-sphere containing the set
of periodic orbits of a homeomorphism is not isolated.

– If K is an isolated invariant continuum for f : Sn → Sn, then
Sn\K has a finite amount of connected components.
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1. Introduction

The existence of a minimal homeomorphism of R
m is an open problem sug-

gested by Ulam and contained in the Scottish Book [21]. In dimension 2, one
can consider the more general problem of the existence or not of minimal
homeomorphisms f : R

2\K → R
2\K with K a compact set. If K = ∅, the

answer follows from the Brouwer’s translation arcs theorem. Handel, in [12],
proved that, if K has at least two points, there are not minimal homeomor-
phisms of R

2\K. Le Calvez and Yoccoz [18] and [19] solved completely the
problem in the multi-punctured plane. Later Franks, in [7], gave an alterna-
tive proof using Conley index methods. A general result for a compact set K
is given in [28]. More recently, it has been proved that there are no minimal
orientation reversing homeomorphisms in R

3 ([13]).
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The key of the proof in [18] is the study of the fixed point indices of the
iterations of an orientation preserving local homeomorphism f : U ⊂ R

2 →
R

2 in a neighborhood of a point p which is not an attractor nor a repeller
isolated invariant set. This result was extended in [25] to the orientation
reversing case using the following ideas:

If f : U ⊂ R
2 → R

2 is a local homeomorphism and p ∈ U is a non-
repeller fixed point of f such that {p} is an isolated invariant set, then there
are an AR (absolute retract for metric spaces), D, containing a neighborhood
V ⊂ R

2 of p, a finite subset {q1, . . . , qm} ⊂ D and a map f ′ : D → D such
that f ′|V = f |V and for every k ∈ N, Fix((f ′)k) ⊂ {p, q1, . . . , qm}. Moreover,

a) (Le Calvez-Yoccoz) If f preserves the orientation, the sequence of fixed
point indices of the iterates of f in R

2 satisfy

iR2(fk, p) =
{

1 − rq if k ∈ rN

1 if k /∈ rN,

where k ∈ N, q is the number of periodic orbits of f ′ (excluding p) and
r is their period.

b) Assume that f reverses the orientation (see [25]). Then,

iR2(fk, p) =
{

1 − δ if k odd
1 − (2q + δ) if k even ,

where q and δ are the number of orbits of period 2 and 1 of f ′ in {q1, . . . , qm}.
More results about the computation of this sequence for a fixed point p

can be obtained in [1,2,6,9–11,13,14,17,20,23,24] .
The aim of this paper was to extend the above result computing the fixed

point index iRn(fk,K) for K an isolated invariant continuum, with special
interest in the planar case n = 2. The techniques we employ are based on
Conley index ideas. From the results of [20] it follows that the sequence is
periodic if n = 2.

We will prove, in a constructive way, the existence of certain special iso-
lating blocks and index pairs, which we call strong filtration pairs, associated
with an isolated invariant continuum K of a homeomorphism f : Sn → Sn.
The if isolating block, N , of K will be a connected manifold. Our principal
interest is focused in the case n = 2. In this situation, N and K will decom-
pose the plane in the same number of components. This construction permits
us to prove the Main Theorems which compute the fixed point indices of the
iterations of a homeomorphism f at K.

Main Theorem 1. Let f : U ⊂ R
2 → f(U) ⊂ R

2 be a homeomorphism and
let K be an isolated invariant continuum. Then,

iR2(fk,K) =
{

2 − C(k) − P (k) if fk is orientation preserving.
−C ′(k) − P (k) if fk is orientation reversing.,

where C(k) ≥ 0 is the number of components C of R
2\K such that fk(U ∩

C) ⊂ C. The integers C ′(k) (k odd) are also defined only in terms of the
above components (as the number of them which are exit regions for fk in
a neighborhood of K minus the cardinal of the rest). The integers P (k) ≥ 0
depend on the behavior of fk in the exit set of N .
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Let us observe that, if k is even or f is orientation preserving, the index
is iR2(fk,K) = 2 − C(k) − P (k) ≤ 2. On the other hand, if k is odd and f is
orientation reversing, iR2(fk,K) = −C ′(k) − P (k).

Corollary 1. Under the above conditions, if f is orientation preserving,
iR2(fk,K) ≤ 2. Moreover, there exists k0 ∈ N such that iR2(fnk0 ,K) ≤ 1
for every n ∈ N.

Corollary 2. Given any homeomorphism f , if K decomposes the plane into
three or more components, there exists k0 ∈ N such that iR2(fk0 ,K) < 0.
Consequently f has a periodic orbit in K.

A stronger version of the above result of existence of periodic orbits is
well known to be true in the orientation reversing case (see [16] for example).
However, here we find periodic points of non-zero index. On the other hand,
note that using Corollary 4 below (see also [27]), Corollary 2 admits a simple
proof if K is an attractor that decomposes the plane into three or more
components. Indeed, one can construct a connected manifold N , isolating
block of K, such that f(N) ⊂ N and dim H1(N ; Q) ≥ 2. Then, there exists
k ∈ N such that the iR2(fk,K) = Λ(fk|N ) < 0 where Λ(fk|N ) stands for the
Lefschetz number of fk|N : N → N .

The knowledge of the structure of the set of periodic orbits of homeomor-
phisms of the sphere is an interesting problem that was stated explicitly by
Le Calvez in his lecture in the ICM 2006. The question of whether cl(Per(f))
is isolated has been studied in [28] with restrictions on the homeomorphism
(area-preserving). The next corollary is valid for invariant continua contain-
ing Per(f).

Corollary 3. Given a homeomorphism f : S2 → S2, if K � S2 is an invariant
continuum which contains Per(f), then K is not isolated. On the other hand,
if K has a finite amount of connected components, K =

⋃n
i=1 Ki, and for each

Ki, S2\Ki has no invariant components Ui,j for some fni,j which are locally
attracted to K or repelled from K for fni,j (fni,j (Ui,j ∩UK) � Ui,j ∩UK and
fni,j (Ui,j ∩UK) � Ui,j ∩UK for every neighborhood UK of K), then K is not
isolated.

When K is not locally maximal but R
2\K has a finite number of compo-

nents, one way to study the problem of the computation of the index could be
made by using Carathéodory’s prime ends techniques, but we will not treat
this situation here.

The structure of the article is the following; In Sect. 2 we introduce the
Conley index techniques we will need for our particular setting. Sections 3
and 4 are devoted to prove the Main Theorem.

In Sect. 5 we see a theorem which relates the fixed point indices with
the local dynamics of f in a neighborhood of K.

The reader is referred to the text of [4,5,15] and [22] for information
about the fixed point index theory.
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2. Preliminaries. Conley index and construction of adequate
filtration pairs in R

n

Let U ⊂ X be an open set. By a local semidynamical system we mean a locally
defined continuous map f : U → X. We say that a function σ : Z → X is a
solution to f through x in N ⊂ U if f(σ(i)) = σ(i + 1) for all i ∈ Z, σ(0) = x
and σ(i) ∈ N for all i ∈ Z. The invariant part of N , Inv(N, f), is defined as
the set of all x ∈ N that admit a solution to f through x in N , i. e. the set of
all x ∈ N such that there is a full orbit γ such that x ∈ γ ⊂ N . Inv+(N, f)
(respectively, Inv−(N, f)) denotes the set of all x ∈ N such that fn(x) ∈ N
for every n ∈ N (respectively, f−n(x) is well defined and belongs to N for
every n ∈ N).

Given A ⊂ B ⊂ N , cl(A), clB(A), int(A), intB(A), ∂(A) and ∂B(A) will
denote the closure of A, the closure of A in B, the interior of A, the interior
of A in B, the boundary of A and the boundary of A in B.

A compact set K ⊂ X is invariant if f(K) = K. An invariant compact
set K is isolated with respect to f if there exists a compact neighborhood N
of K such that Inv(N, f) = K. The neighborhood N is called an isolating
neighborhood of K.

A compact set N ⊂ f(U) is called isolating block if f(N)∩N∩f−1(N) ⊂
int(N). If K = Inv(N, f) we will say that N is an isolating block of K.

We consider the exit set of N to be defined as

N− = {x ∈ N : f(x) /∈ int(N)}.

Let f : U ⊂ R
n → f(U) ⊂ R

n be a homeomorphism with U an open
set and let K ⊂ U be an isolated invariant continuum. Given k ∈ N we want
to compute the fixed point index of fk in K, iRn(fk,K), i.e. the fixed point
index of each fk in a small enough neighborhood of K, with a special interest
in the planar case.

We begin this study with the choice of an adequate isolating block N of
K with topological properties which give us information about the dynamical
behavior of f in a neighborhood of K.

Among all compact connected smooth manifolds (discs with a finite
amount of holes if n = 2) which are isolating blocks of K, we take N to
be one of them which decomposes R

n into the minimum possible number of
components. The existence of the manifold N is given in [8], Theorem 3.7.

If we consider K ⊂ N ⊂ Sn, the set I(K) = Sn\K is an open subset of
Sn and Sn\int(N) has p components {D1, . . . , Dp}. Let us denote {I(K)j}
the connected components of I(K) (Fig. 1).

Assume that f|N : N → f(N) is the restriction of a global homeomor-
phism f∗ : Sn → Sn. If n = 2, by the Schönflies theorem, every homeo-
morphism f|N : N → f(N) satisfies that there is such a homeomorphism
f∗ : S2 → S2.

Lemma 1. Any component I(K)j contains a component Dj ∈ {D1, . . . , Dp}.
As a consequence, I(K) decomposes into a finite number of components on
which f∗ acts as a permutation.
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N

K

I(K)i

Figure 1. Picture of I(K)

Proof. Since N is an isolating block, if I(K)j ⊂ N then each image
fn(I(K)j) ⊂ I(K) is contained in N . In fact, if there exists Di′ ⊂ I(K)j′ =
f∗(I(K)j) ⊂ f(N), it is obvious that ∂(Di′) ⊂ f(N). Since N is an iso-
lating block, one gets f(∂(Di′)) ∩ N = ∅. On the other hand, f(∂(Di′)) is
an hypersurface of Sn without boundary, and it decomposes Sn into two
connected components with boundary f(∂(Di′)). Then, f∗(Di′) ∩ N = ∅ or
N ⊂ f∗(Di′). But, since K ⊂ N , it is only possible that f∗(Di′) ∩ N = ∅.

This shows that I(K)j′′ = f∗(I(K)j′) also contains at least another Di′′ .
Furthermore, ∂(Di′′) ⊂ f(N). In fact, if there exists x ∈ ∂(Di′′) such that
x = f∗(x0), with x0 ∈ I(K)j′ ∩ int(Di′

0
), then Di′

0
	= Di′ (f∗(Di′) ∩ N = ∅)

and there exists x′ ∈ f(∂(Di′
0
))∩ ∂(Di′′). The set {x′, f−1(x′), f−2(x′)} ⊂ N

and f−1(x′) ∈ ∂(Di′
0
) ⊂ ∂(N), but this is not possible because N is an

isolating block.
By an induction argument, all the images by f∗ of I(K)j have ele-

ments of the finite family {D1, . . . , Dp}. Then, there exists nj such that
(f∗)nj (I(K)j) = I(K)j and it must contain a component of Sn\N . This is a
contradiction and we conclude that, if I(K)j ⊂ N , each image fn(I(K)j) ⊂
I(K) is contained in N . In this case, the set K ∪ cl(

⋃
n∈Z

(f∗)n(I(K)j)) 	= K
is an invariant continuum contained in N . This contradicts the fact that
Inv(N, f) = K and the proof is finished. �

Lemma 2. Let Dj ⊂ I(K)j. Then

f∗(Dj) 	⊂ N and (f∗)−1(Dj) 	⊂ N.

Proof. Let us prove that f∗(Dj) 	⊂ N (the other statement has an analogous
proof). If f∗(Dj) ⊂ N , since N is an isolating block, f−1(∂(Dj))∩N = ∅. On
the other hand, f−1(∂(Dj)) is an hypersurface of Sn without boundary and it
decomposes Sn into two connected components with boundary f−1(∂(Dj)).
Then, (f∗)−1(Dj) ∩ N = ∅ or N ⊂ (f∗)−1(Dj). Since K ⊂ N , it is only
possible that (f∗)−1(Dj)∩N = ∅. We conclude that (f∗)−1(Dj) ⊂ int(Di) ⊂
I(K)i = (f∗)−1(I(K)j) with Di 	= Dj .

Let us see that the set N ′ = N ∪Dj is an isolating block of K. We only
have to prove that

(f∗)−1(N ′) ∩ N ′ ∩ (f∗)(N ′) ⊂ int(N ′)
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Since (f∗)−1(Dj)∩N = ∅ it is obvious that (f∗)−1(int(Dj))∩N = ∅. On the
other hand, (f∗)−1(N ′) = (f∗)−1(N) ∪ (f∗)−1(int(Dj)), N ′ = N ∪ int(Dj)
and (f∗)(N ′) = f∗(N) ∪ f∗(int(Dj)).

Let x ∈ (f∗)−1(N ′) ∩ N ′ ∩ (f∗)(N ′). Then x ∈ N ′ = N ∪ int(Dj). We
have two situations:

• If x ∈ int(Dj), then x ∈ int(N ′) and we have finished.
• If x ∈ N , since (f∗)−1(int(Dj)) ∩ N = ∅ and x ∈ (f∗)−1(N ′), then

x ∈ (f∗)−1(N). Finally, x ∈ f∗(N ′) = f∗(N)∪f∗(int(Dj)) and we have
two cases:

– If x ∈ f∗(N), since N is an isolating block of K, x ∈ f−1(N) ∩
N ∩ f(N) ⊂ int(N) ⊂ int(N ′).

– If x ∈ f∗(int(Dj)), since f∗(Dj) ⊂ N , f∗(int(Dj)) ⊂ int(N) ⊂
int(N ′).

The isolating block of K, N ′, decomposes Sn in one component less
than N , which is a contradiction. �

Lemma 3. I(K)j contains a unique component Dj.

Proof. Let us suppose that there are two components Dj,1 	= Dj,2 in I(K)j

and let D0 =
⋃p

i=1 Di ⊂ Sn. Let Bj be a compact and connected manifold
(a disc if n = 2) with Dj,1 ∪ Dj,2 ⊂ Bj ⊂ I(K)j . We consider a finite
covering of Bj , in I(K)j , formed by closed balls {B(x)}x∈F , with F a finite
subset of Bj , and such that for all B(x) there exists some nx ∈ Z with
(f∗)nx(B(x)) ⊂ int(D0). Let n0 be a natural number such that |nx| ≤ n0 for
all x ∈ F .

Our goal is to construct an isolating block of K, Nn0 , with similar
properties than N and such that Sn\Nn0 has less components than Sn\N .
We will arrive at a contradiction.

We define a manifold E0 = D0 ∪ V1 ∪ V−1 ⊂ Sn, with the following:
• V±1 are compact manifolds homeomorphic to (f∗)±1(D0) such that

V±1 ⊂ int((f∗)±1(D0)).
• V±1 are transversal to D0 and V1 is transversal to V−1.
• V±1 intersect the same components of Sn\N than (f∗)±1(D0).
• If x ∈ F with (f∗)±1(B(x)) ⊂ int(D0), then B(x) ⊂ int(V∓1).

Let D1 be the union of E0 and the connected components of Sn\E0

which do not contain K. It is obvious that D1 is a compact manifold which
does not intersect K and, by Lemma 2, E0 and D1 have at most p compo-
nents (Fig. 2).

Let us define

N1 = N\int(D1)

Note that K ⊂ int(N1) ⊂ int(N) and D0 ⊂ D1. The set N1 is a compact
and connected manifold (the component of Sn\int(E0) which contains K),
isolating block of K, such that Sn\N1 has at most p components. The set
N1 and the components of D1 are in the conditions of Lemma 2.

Let us prove that N1 is, indeed, an isolating block of K. We only have
to see that, given x ∈ ∂(N1), f(x) /∈ N1 or f−1(x) /∈ N1. Notice that ∂(N1) ⊂
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D0

V1

V−1 K

E0 = D0 ∪ V1 ∪ V.−1

N

D1

Figure 2. Picture of E0 and D1

∂(D0) ∪ ∂(V1) ∪ ∂(V−1). If x ∈ ∂(D0), then {f(x), f−1(x)} 	⊂ N and, since
N1 ⊂ N , {f(x), f−1(x)} 	⊂ N1. On the other hand, if x ∈ ∂(V±1), then
f∓1(x) ∈ int(D0) ⊂ int(D1) and {f(x), f−1(x)} 	⊂ N1.

By an induction argument, define a manifold Ei−1 = Di−1 ∪Vi ∪V−i ⊂
Sn, with the following:

• V±i compact manifolds homeomorphic to (f∗)±1(Di−1) such that V±i ⊂
int((f∗)±1(Di−1)).

• V±i transversal to Di−1 and Vi transversal to V−i.
• V±i intersect the same components of Sn\Ni−1 than (f∗)±1(Di−1).
• If x ∈ F with (f∗)±1(B(x)) ⊂ int(Di−1), then B(x) ⊂ int(V∓i).

If we repeat the last construction n0 times, we get the pairs of man-
ifolds and complementary components {(N,D0), (N1,D

1), . . . , (Nn0 ,D
n0)}

with D0 ⊂ D1 ⊂ · · · ⊂ Dn0 and Nn0 ⊂ · · · ⊂ N1 ⊂ N . Each Dm is a finite
union of disjoint compact and connected manifolds (discs if Sn = S2) and if
Dm′ ⊂ Dm, each component of Dm contains, at least, a component of Dm′

.
Since D0 has p components and Dj,1 ∪ Dj,2 ⊂ Bj ⊂ ⋃

x∈F B(x) ⊂ Dn0 , then
Dn0 has less than p components.

The set Nn0 is a compact connected manifold, isolating block of K and,
since Sn\Nn0 has less than p components, we obtain a contradiction. �

The last three lemmas give us the following corollaries:

Corollary 4. If K is an invariant and isolated continuum for a homeomor-
phism f : U ⊂ R

2 → f(U) ⊂ R
2, there exists a manifold, N , isolating block of

K, such that the inclusion i : K ⊂ N is a shape equivalence. Then i induces
isomorphisms in Čech (co)homology groups.

Remark 1. However, the set K does not have, in general, the shape of a
manifold for n ≥ 3. It is easy to find such sets K for n ≥ 3, for example, if K
is a hawaiian earring in R

3 and f is a flow transversal to K with Fix(f) = K.
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Corollary 5. If K is an invariant and isolated continuum for a homeomor-
phism f : Sn → Sn, Sn\K has a finite amount of connected components.

Corollary 6. If f : R
n → R

n is a volume contracting homeomorphism and K
is an isolated invariant continuum, then K does not decompose R

n. Moreover,
there exists an isolating block N of K, which is a manifold with boundary,
such that R

n\N is connected.

Definition 1 ([8]). Let K be a compact isolated invariant set and suppose
L ⊂ N is a compact pair contained in the interior of the domain of f . The
pair (N,L) is called a filtration pair for K provided N and L are each the
closure of their interiors and
(1) cl(N\L) is an isolating neighborhood of K.
(2) f(cl(N\L)) ⊂ int(N) and
(3) f(L) ∩ cl(N\L) = ∅.

In the next proposition we prove the existence of certain compact pairs
that we call strong filtration pairs and that are of particular interest for us.

Proposition 1. Let f : Sn → Sn be a homeomorphism and let K be an isolated
invariant continuum. Then, there exists a pair (N,L), which we call strong
filtration pair, satisfying properties (1) and (2) of the filtration pairs and such
that
a) N ⊂ Sn is a compact connected n-manifold, isolating block for K, in

such a way that Sn\N has a minimum possible number of components
{D1, . . . , Dp}.

b) L = L1 ∪ · · · ∪ Lm ⊂ N is a finite union of disjoint compact connected
n-manifolds with boundary such that Li ∩ N− 	= ∅ and Li ∩ ∂(N) 	= ∅
for all i. Each set N\Li is connected and contains K when K is not a
repeller.

c) ∂N (Li) is a (n − 1)-manifold, not necessarily connected, transversal to
∂(N) if the intersection is not empty and f(∂N (Li)) ∩ cl(N\L) = ∅
for all i. Then, we obtain that f(∂N (Li)) ⊂ int(L) and, if ∂N (Li) is
connected, f(∂N (Li)) ⊂ int(Lj) for some j.

Proof. Let N be a compact connected manifold, isolating block for K, such
that Sn\N has the minimum possible number of components {D1, . . . , Dp}.
The existence of N isolating block is given in the proof of Theorem 3.7 in
[8]. Following the steps of the proof of Proposition 3 in [20] we can obtain a
filtration pair (N, J). The set J = J1 ∪ · · · ∪ Jm can be selected as a finite
union of disjoint n-dimensional compact connected manifolds such that the
pair (N, J) is a filtration pair for K, with J a submanifold of N , ∂N (Ji)
transversal to ∂(N), Ji ∩N− 	= ∅ for all i ∈ {1, . . . , m}. If K is not a repeller
nor an attractor, Sn\J has no connected components included in N . If K is
a repeller, there exists a unique connected component of Sn\J contained in
N and this component contains K. If K is an attractor, J is empty (Fig. 3).

If we add to each Ji of the filtration pair (N, J) the connected compo-
nents of N\Ji which do not intersect K, we obtain a compact and connected
manifold denoted by Li. Let us consider the pair (N,L) with L =

⋃m
i=1 Li.
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1)

K

Ji Ji

2)

K

Ji

3)

K

Figure 3. Filtration pairs (N, J)

1)

K

Li Li

2)

K

Li

3)

K

Figure 4. Pairs (N,L)

Each Li ⊂ I(Kj) for some j and the set N\Li is connected and contains K
(Fig. 4).

We can suppose that L = L1 ∪ · · · ∪ Lm are disjoints. The pair (N,L)
follows properties (1) and (2) of filtration pairs:
(1) cl(N\L) is an isolating neighborhood of K. In fact, K does not intersect

the boundary of cl(N\L) and K ⊂ cl(N\L) ⊂ cl(N\J) which is an
isolating neighborhood of K.

(2) f(cl(N\L)) ⊂ int(N). In fact, since cl(N\L) ⊂ cl(N\J), then
f(cl(N\L)) ⊂ f(cl(N\J)) ⊂ int(N).
Property a) follows from the construction of the pair (N,L).
Property b) only needs the proof of Li ∩ ∂(N) 	= ∅. In fact, if this is not

true, Li ⊂ int(N) and f(∂(Li)) ⊂ int(N). Then, there exists Dj ⊂ f(Li)
with f(∂(Dj)) ⊂ N c and, therefore, f(Dj) ⊂ N c. It is easy to see that the
set N ′ = N ∪ Dj is a manifold, isolating block of K, with a hole less than N
which is a contradiction.

Property c) is also easy to see from the construction of (N,L). �

Let f : U ⊂ R
2 → f(U) ⊂ R

2 be a homeomorphism, and let K be an
isolated invariant continuum. Then, we have the following two remarks:

Remark 2. There exists a strong filtration pair (N,L), where N is a com-
pact connected 2-manifold, isolating block of K, such that S2\int(N) has a
minimum possible number of components {D1, . . . , Dp} which are discs, and
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L = L1 ∪ · · · ∪ Lm ⊂ N is a finite union of discs with, at most, one hole.
Finally, ∂N (Li) is an arc with ∂N (Li)∩∂(N) = {ai, bi} two points, or ∂N (Li)
is a Jordan curve.

Remark 3. If ∂N (Lj) is homeomorphic to S1, then Lj is a disc with a hole.
Furthermore, S2\Lj has two connected components: one of them contains K
and the other one is int(Di) for some i. On the other hand, if ∂N (Lj) is an
arc, then Lj is a disc without holes. Therefore, cl(N\L) is a disc with the
same amount of holes as N .

In the conditions of Proposition 1, let cl(N\L)/ ∼ = NL be the quo-
tient space obtained by identifying each component, ∂i, of ∂N (L) ⊂ cl(N\L)
to a point qi (i = 1, . . . ,m′, with m′ ≥ m). Since f(∂i) ⊂ int(Lj) for some
j, there exists a induced continuous map f ′ : NL → NL with f ′ ≡ f in a
neighborhood of K, f ′({q1, . . . , qm′}) ⊂ {q1, . . . , qm′} and f ′(U ′(qi)) = qj for
a neighborhood U ′(qi) of qi.

Obviously Fix(f ′) ⊂ K∪{q1, . . . , qm′} and, since cl(N\L) is an isolating
neighborhood of K, Fix((f ′)k) ⊂ K ∪ {q1, . . . , qm′}.

By applying f∗ to the family {I(K)1, . . . , I(K)p} we obtain a finite
union of cycles. We have p = t1 + · · · + tl, with {t1, . . . , tl} the lengths
of the cycles. Let us change the notation of the open sets {I(K)i}p

i=1 and
the connected components {Di}p

i=1, by
{{I(K)1,j}t1

j=1, . . . , {I(K)l,j}tl
j=1

}
and

{{D1,j}t1
j=1, . . . , {Dl,j}tl

j=1,
}

where Di,j ⊂ I(K)i,j and each family
{I(K)i,j}ti

j=1, with i ∈ {1, . . . , l}, is a cycle of length ti. Let us observe that
(f∗)ti : I(K)i,j → I(K)i,j with i ∈ {1, . . . , l}, j ∈ {1, . . . , ti}.

Remark 4. a) Given a cycle {I(K)i,j}j , if I(K)i,1 contains a component
Lh1 of L which decompose Sn into two connected components, one of them
int(Di,1), then there exists Lhj

⊂ I(K)i,j which decomposes Sn in two con-
nected components, one of them int(Di,j). Moreover, there exists only one
component of L, Lhj

, in each I(K)i,j .
b) Given a cycle {I(K)i,j}j , if I(K)i,1 ∩ L = ∅, then I(K)i,j ∩ L = ∅.

Definition 2. Let us decompose the set of lengths of cycles of I(K) ⊂ Sn,
{t1, . . . , tl} into three disjoint sets tA, tR, tS ⊂ {t1, . . . , tl} such that tA ∪ tR ∪
tS = {t1, . . . , tl}, with tA the set of lengths of cycles corresponding to case
b) of Remark 4 (attracting), tR the set of lengths of cycles corresponding
to case a) of Remark 4 (repelling), and tS the rest of lengths of {t1, . . . , tl}
(hyperbolicity).

The next theorem is a very useful tool for detecting periodic orbits in
K:

Theorem 1. Let f : Sn → Sn be a homeomorphism and let (N,L) be a strong
filtration pair with K = Inv(N, f). Then,

iRn(fk,K) =
n∑

i=0

(−1)itr((f ′)k
∗) − lk,

where lk ∈ N is the number of qi ∈ {q1, . . . , qm′} ∩ Fix((f ′)k).
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Proof. By the additivity property of the fixed point index
iNL

((f ′)k, NL) = iRn(fk,K) +
∑

qi∈{q1,...,qm′}∩Fix((f ′)k)

iNL
((f ′)k, qi)

We have that, in the last equality, iNL
((f ′)k, qi) = 1. Then, iNL

((f ′)k, NL) = iRn(fk,K) + lk.
On the other hand,

iNL
((f ′)k, NL) = Λ((f ′)k) =

n∑
i=0

(−1)itr((f ′)k
∗)

We conclude that

iRn(fk,K) =
n∑

i=0

(−1)itr((f ′)k
∗) − lk

�

Let us see some examples obtained as corollaries of the above theorem.

Example. Let f : Sn → Sn be a homeomorphism and let (N,L) be a strong
filtration pair with N an n-dimensional ball such that both Sn\int(N) and
L are finite union of disjoint topological balls with ∂N (Li) connected for all
i. Denote by m the number of components of Sn\int(N). Then, there exists
k such that

iRn(fk,K) =
n∑

i=0

(−1)itr((f ′)k
∗) − lk = 1 + (−1)n−1m − lk

The last equality follows from the fact that Hi(NL) = 0 for i /∈ {0, n−1},
H0(NL) = Q and Hn−1(NL) = Q ⊕ · · · ⊕ Q has m generators. The number
k is selected in such a way that the generators of Hn−1(NL) are invariant
under the action of (f ′)k

∗.
If n is even then iRn(fk,K) = 1 − m − lk for certain k ∈ N. If N

decomposes R
n into more than two connected components (m ≥ 2), then

iRn(fk,K) = 1 − m − lk ≤ −1 for certain k ∈ N, and there exist periodic
orbits in K.

If n is odd, iRn(fk,K) = 1 + m − lk for certain k ∈ N. In this case, if
m 	= lk − 1 we detect periodic orbits in K.

Let us observe that in this example, if L = ∅, K is an attractor and we
obtain:

If n is even, iRn(fk,K) = 1 − m.
If n is odd, iRn(fk,K) = 1 + m ≥ 1 which give us the existence of

periodic orbits in K.

3. Main theorem. Orientation preserving case

From now on, our attention will be focused on the two-dimensional case. By
remark 2, we can suppose that L has m connected components and that
∂N (L) also has m connected components which give us, after the identifica-
tion in NL, the family of points {q1, . . . , qm}. Let us observe that ∂(N\L)/ ∼
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is a finite and disjoint union of jordan curves and points. Take the pro-
jection π : cl(N\L) → NL and a retraction r : N → cl(N\L) with
r(x) = x if x ∈ cl(N\L) and r retracts each Li to ∂N (Li).

Definition 3. Let θ = {p1, . . . , ps} ⊂ {q1, . . . , qm} be such that f ′(θ) = θ. We
say that pi, pj ∈ θ are adjacent in θ if there is an arc γ ⊂ ∂(N\L)/ ∼ such
that γ ∩ θ = {pi, pj}.

Lemma 4 ([25]). Let θ = {p1, . . . , ps} ⊂ {q1, . . . , qm} such that f ′(θ) = θ. If
pi, pj are adjacent in θ, then their images by f ′, pi+1 and pj+1 are adjacent
in θ.

In this section we consider an orientation preserving homeomorphism
f : U ⊂ R

2 → f(U) ⊂ R
2.

Proposition 2. If f is orientation preserving and {I(K)i,j}ti
j=1 is a cycle, the

set of periodic orbits of f ′|
(π◦r)(

⋃ti
j=1 ∂(Di,j))

is such that all its orbits have the
same period ri = niti for some ni ∈ N.

Proof. Let us fix an orientation in I(K)i,1 ∩ ∂(N\L) � S1. The jordan curve
f(I(K)i,1∩∂(N\L)) ⊂ I(K)i,2 bounds Di,2 ⊂ I(K)i,2 preserving orientation.

In case a) of Remark 4 we only have a periodic orbit of period ti. This
is also true in the n-dimensional case.

In case b) of Remark 4 the result is obvious because (π◦r)(
⋃ti

j=1 ∂(Di,1))
∩ {q1, . . . , qm} = ∅. It is also true in the n-dimensional case.

In any other case, given two periodic orbits θ1 = {pi1, . . . , pir1} and
θ2 = {p′

i1, . . . , p
′
ir2

}, by Lemma 4 it is easy to see that r1 = r2 = niti for
some ni ∈ N. In the n-dimensional case this is not true in general. �
Corollary 7. In the conditions of the last proposition, and given k ∈ N, (f ′)k

has fixed points in (π ◦ r)(
⋃ti

j=1 ∂(Di,j)) ⊂ ∂(N\L)/ ∼ if and only if k ∈ riN.
Then, the number of fixed points is riq

i, with qi the number of periodic orbits
of f ′ in (π ◦ r)(

⋃ti
j=1 ∂(Di,j)).

Remark 5. It is obvious that rj = qj = 0 for all tj ∈ tA, rj = tj with qj = 1
for all tj ∈ tR and rj = njtj for all tj ∈ tS .

The family of periods {r1, . . . , rl} and the number of periodic orbits of
each period {q1, . . . , ql} permit us to compute the number of fixed points of
(f ′)k in {q1, . . . , qm} for all k ∈ N.

Proposition 3. If f is orientation preserving, then

iNL
((f ′)k, NL) = 2 −

∑
ti∈tA∪tS

k∈tiN

ti

Proof. If K is not a repeller, NL is homeomorphic to a disc with a finite
amount of holes. On the other hand, H0(NL) = Q, H1(NL) = Q⊕· · ·⊕Q with∑

ti∈tA∪tS
ti−1 generators and H2(NL) = 0. Since iNL

((f ′)k, NL) = Λ((f ′)k
∗),

from the study of the trace of (f ′)k
∗ : H1(NL) → H1(NL) it is easy to obtain

the value of the fixed point index (see Fig. 5).
If K is a repeller, NL � S2 and H0(NL) = Q, H1(NL) = 0,H2(NL)

= Q. We obtain iNL
((f ′)k, NL) = 2. �
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NL

d e
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b

c

(f )k∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a → b
b a −− b − d − e
d →

→
e

e → d

Figure 5. Picture of NL and behavior of (f ′)k
∗

Main Theorem 2 (Orientation preserving case). Let f : U ⊂ R
2 → f(U) ⊂

R
2 be an orientation preserving homeomorphism and let K be an isolated

invariant continuum. Then,

iR2(fk,K) = 2 −
∑

ti∈tA∪tR∪tS
k∈tiN

ti −
∑
ti∈tS

k∈nitiN

tiniq
i ≤ 2

Proof. By the additivity property of the fixed point index,

iNL
((f ′)k, NL) = iR2(fk,K) +

∑
qi∈{q1,...,qm}∩Fix((f ′)k)

iNL
((f ′)k, qi)

Since the value of each index in the last summation is 1 (f ′ is constant
in a neighborhood of each qi), we have

iR2(fk,K) = 2 −
∑

ti∈tA∪tS
k∈tiN

ti −
∑

ri∈{r1,...rl}
k∈riN

riq
i

obtaining the result we are looking for. �

Remark 6. (Proofs of Corollaries 1, 2 and 3). Let us observe that the sequence
{iR2(fk,K)}k is periodic and, if K decomposes S2 in p connected compo-
nents,

2 − p −
∑

ti∈tS

tiniq
i ≤ iR2(fk,K) ≤ 2

for all k. If k ∈ (∏
ti∈tA∪tR

ti
) (∏

ti∈tS
niti

)
N, then iR2(fk,K) = 2 − p −∑

ti∈tS
tiniq

i. This proves Corollary 1. Consequently, if p ≥ 3, K has peri-
odic orbits of period which divides

(∏
ti∈tA∪tR

ti
) (∏

ti∈tS
niti

)
which proves

Corollary 2. The proof of Corollary 3 is also easy. If f : S2 → S2 is a home-
omorphism with K an invariant continuum which contains Per(f), then K
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is not isolated because, if K were isolated, there should be k0 ∈ N with
iR2(fnk0 ,K) ≤ 1. Then,

2 = iS2(f2k0 , S2) = iR2(f2k0 ,K) ≤ 1,

and we obtain a contradiction. A similar argument permits us to prove the
same result if K has a finite amount of connected components K =

⋃n
i=1 Ki

with each Ki in the conditions of the Corollary 3. If K were isolated, there
should be k0 ∈ 2N such that each Ki is invariant and isolated for fk0 and
iR2(fk0 ,Ki) ≤ 0 (tS 	= ∅ for each Ki). Then

2 =
n∑

i=1

iR2(fk0 ,Ki) ≤ 0,

which is a contradiction. �

Let us suppose that the domain U of f is an open ball. In this case,
there exists an invariant component, which we call I(K)0, of I(K) (t0 = 1)
which contains ∞. We obtain the next corollary.

Corollary 8. If the domain U of f is an open ball, then iR2(fk,K) ≤ 1 for all
k ∈ N. Moreover, if K is an attractor or a repeller, iR2(fk,K) = 1−∑

ti �=t0
k∈tiN

ti.

Example. Let us see an example of index 2 with U an open set which is not an
open ball. Let p = (p1, p2) ∈ U = R

2\{0}. We define the homeomorphisms:
S1 : U → U as S1(p) = 1

||p||2 p, S2 : R
2 → R

2 by S2(p1, p2) = (−p1, p2) and
f : R

2 → R
2 by f(p) = ||p||p.

Both S1 and S2 are orientation reversing and f is orientation preserving.
The map g = f◦S2◦S1 : U → U is an orientation-preserving homeomorphism.
The unit circle K = {p : ||p|| = 1} is an isolated invariant continuum for g and
it is easy to see if we consider the extension ḡ : S2 → S2 that iR2(g,K) = 2.

4. Main theorem. Orientation-reversing case

Proposition 4. Let f : U ⊂ R
2 → f(U) ⊂ R

2 be an orientation reversing
homeomorphism and let K be an isolated invariant continuum. Given a cycle
{I(K)i,j}ti

j=1, there are two possibilities:

a) ti is even. Then f ′|
(π◦r)(

⋃ti
j=1 ∂(Di,j))

has qi periodic orbits of the same
period ri = tini.

b) ti is odd. Then f ′|
(π◦r)(

⋃ti
j=1 ∂(Di,j))

has qi,1 ≤ 2 periodic orbits of period

ri,1 = ti and qi,2 periodic orbits of period ri,2 = 2ti.

Proof. The case a) follows from Lemma 4. Let us see the case b). If ti is
odd, the periodic orbits have period ri,1 = ti or ri,2 = 2ti. In fact, take
a periodic orbit θ = {p1, . . . , pr} of period r. Let p1 < p2 be adjacent in
θ (with the ordering given by the orientation of ∂(N\L)/ ∼). By Lemma 4,
(f ′)ti(p1) > (f ′)ti(p2) are adjacent in θ. Let us observe that if (f ′)ti(p1) = p2,
then (f ′)ti(p2) = p1 and r = 2ti. Let us suppose that r > 2ti, and let p3 ∈ θ,
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p3 	= p1, such that p2 < p3 are adjacent in θ. Then, by an induction argument
we find a point of θ with period ≤ 2ti, which is a contradiction. Then r ≤ 2ti.

Let us prove that the number of periodic orbits of period ti is ≤ 2. In
fact, let θ1, θ2 be two periodic orbits of period ti. If there is another peri-
odic orbit θ3, we obtain, using Lemma 4 and the fact that f is orientation
reversing, that the period of θ3 is > ti. �

Proposition 5. If f is orientation reversing, then

iNL
((f ′)k, NL) = 1 + (−1)k −

∑
ti∈tA∪tS

k∈tiN

(−1)kti.

The proof of this result is analogous to the proof of Proposition 3 except
that now f is orientation reversing. We leave it to the reader.

The family of lengths of cycles {t1, . . . , tl} decomposes into two disjoint
sets: the set of even lengths tP and the set of odd lengths tI .

Main Theorem 3 (Orientation-reversing case). Let f : U ⊂ R
2 → f(U) ⊂ R

2

be an orientation-reversing homeomorphism and let K be an isolated invari-
ant continuum. Then

iR2(fk,K) = 1 + (−1)k −
∑

ti∈tA∪tS
k∈tiN

(−1)kti −
∑

ti∈tP ∩tS
k∈nitiN

nitiq
i

−
∑

ti∈tI∩tS
k∈tiN

tiq
i,1 −

∑
ti∈tI∩tS
k∈2tiN

2tiq
i,2 −

∑
ti∈tR
k∈tiN

ti.

Proof. By the additivity property of the fixed point index

iNL
((f ′)k, NL) = iR2(fk,K) +

∑
qi∈{q1,...,qm}∩Fix((f ′)k)

iNL
((f ′)k, qi),

where each index of the last summation is 1. Then the result follows auto-
matically. �

Remark 7. If f is orientation reversing, the sequence {iR2(fk,K)}k is periodic
and, if K decompose S2 in p connected components,

2 − p −
∑

ti∈tP ∩tS

nitiq
i −

∑
ti∈tI∩tS

tiq
i,1 −

∑
ti∈tI∩tS

2tiq
i,2 ≤ iR2(fk,K) ≤ 2

for all k even.
If k ∈ 2

(∏
ti∈tA∪tR

ti
) (∏

ti∈tS
niti

)
N, with ni = 1 if ti ∈ tI ∩ tS , then

iR2(fk,K) = 2 − p − ∑
ti∈tP ∩tS

nitiq
i − ∑

ti∈tI∩tS
tiq

i,1 − ∑
ti∈tI∩tS

2tiq
i,2.

Consequently, if p ≥ 3, K has periodic orbits of periods which divide
2
(∏

ti∈tA∪tR
ti

) (∏
ti∈tS

niti
)

with ni = 1 if ti ∈ tI ∩ tS .

Remark 8. Let f : U ⊂ R
2 → f(U) ⊂ R

2 be a homeomorphism and let
K be a compact isolated invariant set with a finite amount of connected
components K =

⋃m1
i=1 K1,i ∪ · · · ∪⋃mr

i=1 Kr,i, such that f(Ki,j) = Ki,j+1 and
f(Ki,mi

) = Ki,1. Then by the additivity property of the fixed point index
applied to fk, iR2(fk,K) =

∑
k∈miN

miiR2(fk,Ki,1).
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Corollary 9. Let f : S2 → S2 be a homeomorphism and let K be a compact,
invariant and proper set with a finite amount of connected components. Then
f : S2\K → S2\K is not minimal.

Proof. Our proof is analogous to that given in [18] for K a finite amount of
points. If f |S2\K is minimal, K is an isolated invariant set which is not an
attractor nor a repeller. For an adequate 2n we have that the components
of K and S2\K are invariant for the orientation-preserving homeomorphism
f2n and, by Remarks 6 and 8 applied to f2n, iS2(f2n,K) ≤ 0, but it is not
possible because 2 = Λ(f2n

∗ ) = iS2(f2n, S2) = iS2(f2n,K). �

5. Dynamical behavior and fixed point index

In this section we study the relationship between the fixed point indices
iR2(fn,K) and the local dynamics of f in a neighborhood of K. If (N,L)
is a strong filtration pair, define cl(N\L)K and R

2
K as the spaces obtained

from cl(N\L) and R
2 by the identification of K to a point [k] and define

f : cl(N\L)K → R
2
K as the map induced by f (with the same notation). Let

us observe that cl(N\L)K is the pointed union of a finite family of p discs, Ei,
where p is de number of components of R

2\K. Denote cl(N\L)K =
∨p

i=1 Ei

with Ei ∩ Ej = [k] for all i 	= j.

Theorem 2. Let K be an isolated continuum for a homeomorphism f : U ⊂
R

2 → f(U) ⊂ R
2 which decomposes the plane in p components and let

(N,L) be a strong filtration pair. Then there exist two families of closed
discs, {A1, . . . , Aa}, {R1, . . . , Rr}, in cl(N\L)K =

∨p
i=1 Ei and two fami-

lies of continua without holes in cl(N\L)K , {S1, . . . , Ss}, {U1, . . . , Us}, with
s = −iR2(fd,K) + 2 − p.

a = −iR2(fd,K) + 2 −
∑

ti∈tR∪tS

ti − s.

r = −iR2(fd,K) + 2 −
∑

ti∈tA∪tS

ti − s.

for d = 2
(∏

ti∈tS
tini

) (∏
ti∈tA∪tR

ti
)
, (ni = 1 if f is orientation reversing

and ti ∈ tI ∩ tS). These sets satisfy the following properties (Fig. 6):

1.
⋃s

i=1 Si ⊂ K+ and
⋃s

i=1 Ui ⊂ K−. The set K+ is the connected com-
ponent of Inv+(cl(N\L)K , f) which contains [k] and the set K− is the
connected component of Inv−(cl(N\L)K , f) which contains [k].

2. Si ∩ Sj = Ui ∩ Uj = Si ∩ Uj = [k], every Si ⊂ Ek for some k = 1, . . . , p
and every Uj ⊂ Ek′ for some k′ = 1, . . . , p.

3. fd(Si) ⊂ Si, f−d(Ui) ⊂ Ui,
⋂

n∈N
fnd(Si) =

⋂
n∈N

f−nd(Ui) = [k].
4. The sets {Si}i and {Ui}i alternate in the circles of ∂(cl(N\L)) ⊂

cl(N\L)K

5. fd(Ai) ⊂ int(Ai), f−d(Rj) ⊂ int(Rj) and
⋂

n∈N
fnd(Ai) =

⋂
n∈N

f−nd

(Ri) = [k]. for all i = 1, . . . , a and j = 1, . . . , r.
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cl(N \ L)

L
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S4
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U4 U5

U6
U7

K

Figure 6. Dynamics of cl(N\L)K

Proof. Let us consider the topological space NL,K obtained from the iden-
tification in NL of K to a point [k] and let f ′ : NL,K → NL,K be the
induced map obtained from f ′ : NL → NL. The space NL,K is the pointed
union of

∑
ti∈tA∪tS

ti discs, {Cj}j , and
∑

ti∈tR
ti = r spheres, {Tj}j , with

Ci ∩ Cj = Ti ∩ Tj = Ci ∩ Tj = [k]. The map (f ′)d sends each disc to itself
and each sphere to itself.

The rest of the proof is similar to that given in Proposition 7 of [26].
Let θ = {p1, . . . , ps} ⊂ {q1, . . . , qm} ⊂ NL,K be the biggest subset on which
f ′ acts as a permutation and such that its points are not isolated points
of πK(∂(N\L)) ⊂ NL,K with πK : cl(N\L)K → NL,K defined as π but in
cl(N\L)K . It is clear that θ has s =

∑
ti∈tS

nitiq
i elements if f preserves

orientation and s =
∑

ti∈tP ∩tS
nitiq

i +
∑

ti∈tI∩tS
tiq

i,1 +
∑

ti∈tI∩tS
2tiq

i,2

elements if f reverses orientation. Moreover, (f ′)d(pi) = pi for all i = 1, . . . , s.
Define A = {x ∈ NL,K such that there exists nx with (f ′)nx(x) ∈ θ}

and A(pi) the connected component of A which contains pi ∈ θ. It is clear
that A(pi) ⊂ Cj for some disc Cj of NL,K .

Let Ki =
⋂

n∈N
(f ′)nd(cl(A(pi)), i = 1, . . . , s. Since (f ′)d(cl(A(pi)) ⊂

cl(A(pi)), Ki is a continuum which contains pi and [k] with (f ′)d(Ki) =
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Ki ⊂ Cj . Define

Ui = (π−1
K (Ki) ∩ K−)

Let us construct the sets Si. If pi−1, pi ∈ θ are adjacent in πK

(∂(cl(N\L))), let γ ⊂ πK(∂(cl(N\L))) be an arc joining pi−1 and pi with
γ ∩ θ = {pi−1, pi} and γ ⊂ Cj for some disc Cj of the pointed union NL,K .
There is a component Kpi

of ∂(A(pi)) separating pi from θ\pi, [k] ∈ Kpi
with

limn→∞(f ′)nd(x) = [k] for all x ∈ Kpi
, and such that Kpi

∩ γ 	= ∅. Let Bi be
the connected component of Cj\(Ki−1 ∪ Ki) containing Kpi

∩ γ. Define

Si = (π−1
K (Bi) ∪ [k]) ∩ K+

It is easy to prove that the sets Ui and Si satisfy the properties 1 to 4
of the theorem. The details are left to the reader.

The equality relating the number s of sets {Ui} and {Si} with the fixed
point index, s = −iR2(fd,K) + 2 − p follows, in the orientation preserving
case, from the Main Theorem 1:

s =
∑

ti∈tS

nitiq
i = −iR2(fd,K) + 2 − p.

For the orientation-reversing case we have, from the Main Theorem 2
the following:

s =
∑

ti∈tP ∩tS

nitiq
i +

∑
ti∈tI∩tS

tiq
i,1 +

∑
ti∈tI∩tS

2tiq
i,2

= −iR2(fd,K) + 2 − p.

For every disc Ei of the pointed union
∨p+1

i=1 Ei such that Ei ∩ L = ∅,
define Ai = Ei and for every Ej such that Ej ∩ L is a circumference, define
Rj = Ej . The proof of the property 5 is immediate.

The equalities relating a and r with the fixed point index follow from

a =
∑

ti∈tA

ti = −iR2(fd,K) + 2 −
∑

ti∈tR∪tS

ti − s.

r =
∑

ti∈tR

ti = −iR2(fd,K) + 2 −
∑

ti∈tA∪tS

ti − s.

�
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