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Abstract. The purpose of this paper is to study and analyze two new ex-
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variational inequalities in real Hilbert spaces. Under suitable conditions,
weak and strong convergence theorems of the proposed methods are es-
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1. Introduction

We focus on the following classical variational inequality (VI) ([9,10]) which
consists in finding a point x∗ ∈ C such that

〈Ax∗, x − x∗〉 ≥ 0 ∀x ∈ C, (1.1)

where C is a nonempty closed convex subset in a real Hilbert space H, and
is a single-valued mapping A : H → H. As commonly done, we denote by
VI(C,A) the solution set of VI (1.1). Variational inequalities are fundamental
in a broad range of mathematical and applied sciences; the theoretical and
algorithmic foundations as well as the applications of variational inequalities
have been extensively studied in the literature and continue to attract inten-
sive research. For the current state of the art in a finite-dimensional setting,
see for instance [8] and the extensive list of references therein.

Many authors have proposed and analyzed several iterative methods for
solving the variational inequality (1.1). The simplest one is the following pro-
jection method, which can be seen as an extension of the projected gradient
method introduced for solving optimization problems.

xn+1 = PC(xn − λAxn), (1.2)
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for each n ≥ 1, where PC denotes the metric projection from H onto C. It
is known that the assumptions which imply convergence of this method are
quite restrictive and require A to be L-Lipschitz continuous and α-strongly

monotone (see Chapter 13 in [19]) and λ ∈
(

0,
2α

L2

)
.

One way to weaken the (1.2) convergence assumptions, Korpelevich [20]
(also independently by [1]) proposed a double projection method known as
the extragradient method in Euclidean space when A is monotone and L-
Lipschitz continuous. The iterative step of the method is as follows:⎧⎪⎨

⎪⎩
x0 ∈ C,

yn = PC(xn − λnAxn),
xn+1 = PC(xn − λnAyn),

where λn ∈
(

0,
1
L

)
.

In recent years, the extragradient method was further extended to
infinite-dimensional spaces in various ways, see, e.g. [2–5,16,23,24,30–32,34]
and the references therein.

Obviously, when A is not Lipschitz continuous or its Lipschitz constant
L is difficult to compute/approximate, Korpelevich’s method fails since the
step-size λn depends on this. So, Iusem [14] proposed the following algorithm
in a way to avoid this obstacle.

Algorithm 1.1.

Initialization: Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1). Let x0 ∈ C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1. Compute
yn = PC(xn − λnAxn),

where λn := γlmn and mn is the smallest non-negative integer m satisfying

γlm‖Axn − Ayn‖ ≤ μ‖xn − yn‖. (1.3)

If xn = yn then stop and xn is a solution of V I(C,A). Otherwise
Step 2. Compute

xn+1 = PC(xn − βnAyn),
where

βn :=
〈Ayn, xn − yn〉

‖Ayn‖2 .

Set n := n + 1 and go to Step 1.

Similar extensions have been developed by many authors, for exam-
ple Khobotov [18] and Marcotte [25]. These algorithms assume that A is
monotone and continuous on C. Thus, in this spirit, we wish to construct
an extragradient modification which converges under a weaker condition in



Vol. 21 (2019) Extragradient methods for solving non-Lipschitzian Page 3 of 19 20

Hilbert spaces. To be more specific, we assume that A is a uniformly con-
tinuous pseudo-monotone operator. Our scheme also make use of a different
Armijo-type line-search and then A is only assumed to be pseudo-monotone
on C in the sense of Karamardian [17]. Weak and strong convergence of these
proposed algorithms is established in real Hilbert spaces.

The paper is organized as follows. We first recall some basic definitions
and results in Sect. 2. Our algorithms are presented and analyzed in Sect.
3. In Sect. 4, we present some numerical experiments which demonstrate
the algorithms performances as well as provide a preliminary computational
overview by comparing it with some related algorithms.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty, closed and convex subset
of H. The weak convergence of {xn}∞

n=1 to x is denoted by xn ⇀ x as n → ∞,
while the strong convergence of {xn}∞

n=1 to x is written as xn → x as n → ∞.
For each x, y ∈ H and α ∈ R, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉.
‖αx + (1 − α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1 − α)‖x − y‖2.

Definition 2.1. Let T : H → H be an operator.
1. The operator T is called L-Lipschitz continuous with L > 0 if

‖Tx − Ty‖ ≤ L‖x − y‖ ∀x, y ∈ H. (2.1)

if L = 1 then the operator T is called nonexpansive and if L ∈ (0, 1),
T is called a contraction.

2. The operator T is called monotone if

〈Tx − Ty, x − y〉 ≥ 0 ∀x, y ∈ H. (2.2)

3. The operator T is called pseudo-monotone if

〈Tx, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ 0 ∀x, y ∈ H. (2.3)

4. The operator T is called α-strongly monotone if there exists a constant
α > 0 such that

〈Tx − Ty, x − y〉 ≥ α‖x − y‖2 ∀x, y ∈ H.

5. The operator T is called sequentially weakly continuous if for each
sequence {xn} we have: {xn} converges weakly to x implies Txn con-
verges weakly to Tx.

It is easy to see that every monotone operator is pseudo-monotone, but
the converse is not true.

For every point x ∈ H, there exists a unique nearest point in C, denoted
by PCx such that ‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C. PC is called the metric
projection of H onto C. It is known that PC is nonexpansive.

Lemma 2.2. [12] Let C be a nonempty closed convex subset of a real Hilbert
space H. Given x ∈ H and z ∈ C. Then z = PCx ⇐⇒ 〈x−z, z−y〉 ≥ 0 ∀y ∈
C.
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Lemma 2.3. [12] Let C be a closed and convex subset in a real Hilbert space
H, x ∈ H. Then

(i) ‖PCx − PCy‖2 ≤ 〈PCx − PCy, x − y〉 ∀y ∈ C;
(ii) ‖PCx − y‖2 ≤ ‖x − y‖2 − ‖x − PCx‖2 ∀y ∈ C;
(iii) 〈(I − PC)x − (I − PC)y, x − y〉 ≥ ‖(I − PC)x − (I − PC)y‖2 ∀y ∈ C.

For properties of the metric projection, the interested reader could be
referred to [12, Section 3].

The following Lemmas are useful for the convergence of our proposed
methods.

Lemma 2.4. [7] For x ∈ H and α ≥ β > 0 the following inequalities hold.
‖x − PC(x − αAx)‖

α
≤ ‖x − PC(x − βAx)‖

β
,

‖x − PC(x − βAx)‖ ≤ ‖x − PC(x − αAx)‖.

Lemma 2.5. [15] Let H1 and H2 be two real Hilbert spaces. Suppose A : H1 →
H2 is uniformly continuous on bounded subsets of H1 and M is a bounded
subset of H1. Then A(M) (the image of M under A) is bounded.

Lemma 2.6. ([6], Lemma 2.1) Consider the problem V I(C,A) with C being
a nonempty, closed, convex subset of a real Hilbert space H and A : C → H
being pseudo-monotone and continuous. Then, x∗ is a solution of V I(C,A)
if and only if

〈Ax, x − x∗〉 ≥ 0 ∀x ∈ C.

Lemma 2.7. [26] Let C be a nonempty set of H and {xn} be a sequence in H
such that the following two conditions hold:

(i) for every x ∈ C, limn→∞ ‖xn − x‖ exists;
(ii) every sequential weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.

Lemma 2.8. [22] Let {an} be a sequence of non-negative real numbers such
that there exists a subsequence {ani

} of {an} such that ani
< ani+1 for all

i ∈ N. Then there exists a nondecreasing sequence {mk} of N such that
limk→∞ mk = ∞ and the following properties are satisfied by all (sufficiently
large) number k ∈ N:

amk
≤ amk+1 and ak ≤ amk+1.

In fact, mk is the largest number n in the set {1, 2, . . . , k} such that an <
an+1.

The next technical lemma is very useful and used by many authors,
for example Liu [21] and Xu [35]. Furthermore, a variant of Lemma 2.9 has
already been used by Reich in [29].

Lemma 2.9. Let {an} be sequence of non-negative real numbers such that:

an+1 ≤ (1 − αn)an + αnbn,

where {αn} ⊂ (0, 1) and {bn} is a sequence such that
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(a)
∑∞

n=0 αn = ∞;
(b) lim supn→∞ bn ≤ 0.

Then limn→∞ an = 0.

3. Main results

In this section, we introduce the two new extragradient modifications for
solving the VI (1.1). We present the weak and strong convergence of the
schemes under the assumptions.

Condition 3.1. The feasible set C of the VI (1.1) is a nonempty, closed, and
convex subset of the real Hilbert space H.

Condition 3.2. The VI (1.1) associated operator A : C → H is a pseudo-
monotone, sequentially weakly continuous on C and uniformly continuous on
bounded subsets of C.

Condition 3.3. The solution set of the VI (1.1) is nonempty, that is VI(C,A)
�= ∅.

3.1. Weak convergence

Algorithm 3.1.

Initialization: Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1). Let x1 ∈ C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1. Compute
yn = PC(xn − λnAxn),

where λn := γlmn and mn is the smallest non-negative integer m satisfying

γlm〈Axn − Ayn, xn − yn〉 ≤ μ‖xn − yn‖2. (3.1)

If xn = yn or Ayn = 0 then stop and xn is a solution of V I(C,A). Otherwise
Step 2. Compute

xn+1 = PC(xn − βnAyn),

where

βn :=
1 − μ

γ

‖xn − yn‖2
‖Ayn‖2 .

Set n := n + 1 and go to Step 1.

We start the algorithm’s convergence analysis by proving that (3.1)
terminates after finite steps.

Lemma 3.2. Assume that Conditions 3.1–3.3 hold. The Armijo line-search
rule (3.1) is well defined. In addition, we have λn ≤ γ.
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Proof. If xn ∈ V I(C,A) then xn = PC(xn−γAxn) and mn = 0. We consider
the situation xn /∈ V I(C,A) and assume the contrary that for all m we have

γlm〈Axn − APC(xn − γlmAxn), xn − PC(xn − γlmAxn)〉
> μ‖xn − PC(xn − γlmAxn)‖2 (3.2)

By Cauchy–Schwartz inequality, we have

γlm〈Axn − APC(xn − γlmAxn), xn − PC(xn − γlmAxn)〉
≤ γlm‖Axn − APC(xn − γlmAxn)‖‖xn − PC(xn − γlmAxn)‖. (3.3)

Combining (3.2) and (3.3) we find

γlm‖Axn − APC(xn − γlmAxn)‖ > μ‖xn − PC(xn − γlmAxn)‖.

This implies that

‖Axn − APC(xn − γlmAxn)‖ > μ
‖xn − PC(xn − γlmAxn)‖

γlm
. (3.4)

Since xn ∈ C for all n and PC is continuous, we have limm→∞ ‖xn −PC(xn −
γlmAxn)‖ = 0. Since A is uniformly continuous on bounded subsets of C
(Condition 3.2), we get that

lim
m→∞ ‖Axn − APC(xn − γlmAxn)‖ = 0. (3.5)

Combining (3.4) and (3.5) we get

lim
m→∞

‖xn − PC(xn − γlmAxn)‖
γlm

= 0. (3.6)

Assume that zm = PC(xn − γlmAxn) we have

〈zm − xn + γlmAxn, x − zm〉 ≥ 0 ∀x ∈ C.

This implies that

〈zm − xn

γlm
, x − zm〉 + 〈Axn, x − zm〉 ≥ 0 ∀x ∈ C. (3.7)

Taking the limit m → ∞ in (3.7) and using (3.6), we obtain

〈Axn, x − xn〉 ≥ 0 ∀x ∈ C,

which implies that xn ∈ V I(C,A) this is a contraction. �

Remark 3.3. 1. In the proof of Lemma 3.2 we do not use the pseudomono-
tonicity of A.

2. Now we show that if xn = yn then stop and xn is a solution of V I(C,A).
Indeed, we have 0 < λn ≤ γ, which together with Lemma 2.4 we get

0 =
‖xn − yn‖

λn
=

‖xn − PC(xn − λnAxn)‖
λn

≥ ‖xn − PC(xn − γAxn)‖
γ

.

This implies that xn is a solution of V I(C,A).

Lemma 3.4. Assume that Conditions 3.1–3.3 hold and let {xn} be any se-
quence generated by Algorithm 3.1. Then we have

〈Axn, xn − yn〉 ≥ 1
γ

‖xn − yn‖2.
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Proof. Recall one of the metric projection property

‖x − PCy‖2 ≤ 〈x − y, x − PCy〉 for all x ∈ C and y ∈ H.

By denoting y = xn − λnAxn and x = xn, we get

‖xn − PC(xn − λnAxn)‖2 ≤ λn〈Axn, xn − PC(xn − λnAxn)〉,
thus

〈Axn, xn − yn〉 ≥ λ−1
n ‖xn − yn‖2,

which, together with λn ≤ γ we find

〈Axn, xn − yn〉 ≥ 1
γ

‖xn − yn‖2.
�

Lemma 3.5. Assume that Conditions 3.1–3.3 hold and let {xn} be any se-
quence generated by Algorithm 3.1. Then we have

〈Ayn, xn − p〉 ≥ 1 − μ

γ
‖xn − yn‖2.

Proof. Indeed, let p ∈ V I(C,A), since yn ∈ C, we have 〈Ap, yn −p〉 ≥ 0. Due
to the pseudomonotonicity of A, we get

〈Ayn, yn − p〉 ≥ 0. (3.8)

On the other hand, according to Lemma 3.4 we have

〈Axn, xn − yn〉 ≥ 1
λn

‖xn − yn‖2. (3.9)

Now, using (3.1), (3.8) and (3.9), we get

〈Ayn, xn − p〉 = 〈Ayn, xn − yn〉 + 〈Ayn, yn − p〉
≥ 〈Ayn, xn − yn〉
= 〈Axn, xn − yn〉 − 〈Axn − Ayn, xn − yn〉
≥ 1

λn
‖xn − yn‖2 − μ

λn
‖xn − yn‖2

=
1 − μ

λn
‖xn − yn‖2.

Since λn ≤ γ we get

〈Ayn, xn − p〉 ≥ 1 − μ

γ
‖xn − yn‖2.

�

Remark 3.6. From Lemma 3.5 we see that if Ayn = 0 then xn = yn, this
implies that xn is a solution of V I(C,A).

Lemma 3.7. Assume that Conditions 3.1–3.3 hold and let {xn} be any se-
quence generated by Algorithm 3.1. If there exists a subsequence {xnk

} of
{xn} such that {xnk

} converges weakly to z ∈ C and limk→∞ ‖xnk
−ynk

‖ = 0,
then z ∈ V I(C,A).
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Proof. We have ynk
= PC(xnk

− λnk
Axnk

) thus,

〈xnk
− λnk

Axnk
− ynk

, x − ynk
〉 ≤ 0 ∀x ∈ C,

or equivalently
1

λnk

〈xnk
− ynk

, x − ynk
〉 ≤ 〈Axnk

, x − ynk
〉 ∀x ∈ C.

This implies that
1

λnk

〈xnk
−ynk

, x−ynk
〉+〈Axnk

, ynk
−xnk

〉 ≤ 〈Axnk
, x−xnk

〉 ∀x ∈ C. (3.10)

Now, we show that
lim inf
k→∞

〈Axnk
, x − xnk

〉 ≥ 0. (3.11)

For showing this, we consider two possible cases. Suppose first that
lim infk→∞ λnk

> 0. We have {xnk
} is a bounded sequence, A is uniformly

continuous on bounded subsets of C. By Lemma 2.6, we get that {Axnk
} is

bounded. Taking k → ∞ in (3.10) since ‖xnk
− ynk

‖ → 0, we get

lim inf
k→∞

〈Axnk
, x − xnk

〉 ≥ 0.

Now, we assume that lim infk→∞ λnk
= 0. Assume znk

= PC(xnk
− λnk

.l−1

Axnk
), we have λnk

l−1 > λnk
. Applying Lemma 3.5, we obtain

‖xnk
− znk

‖ ≤ 1
l
‖xnk

− ynk
‖ → 0 as k → ∞.

Consequently, znk
⇀ z ∈ C, this implies that {znk

} is bounded, and due to
Condition 3.2, we get that

‖Axnk
− Aznk

‖ → 0 as k → ∞. (3.12)

By the Armijo line-search rule (3.1), we have

λnk
.l−1‖Axnk

−APC(xnk
−λnk

l−1Axnk
)‖ > μ‖xnk

−PC(xnk
−λnk

l−1Axnk
)‖.

That is,
1
μ

‖Axnk
− Aznk

‖ >
‖xnk

− znk
‖

λnk
l−1

. (3.13)

Combining (3.12) and (3.13), we obtain

lim
k→∞

‖xnk
− znk

‖
λnk

l−1
= 0.

Furthermore, we have

〈xnk
− λnk

l−1Axnk
− znk

, x − znk
〉 ≤ 0 ∀x ∈ C.

This implies that
1

λnk
l−1

〈xnk
− znk

, x − znk
〉 + 〈Axnk

, znk
− xnk

〉 ≤ 〈Axnk
, x − xnk

〉 ∀x ∈ C.

(3.14)
Taking the limit k → ∞ in (3.14), we get

lim inf
k→∞

〈Axnk
, x − xnk

〉 ≥ 0.

Therefore, the inequality (3.11) is proved. Next, we show that z ∈ VI(C,A).
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Now we choose a sequence {εk} of positive numbers decreasing and
tending to 0. For each k, we denote by Nk the smallest positive integer such
that

〈Axnj
, x − xnj

〉 + εk ≥ 0 ∀j ≥ Nk, (3.15)

where the existence of Nk follows from (3.11). Since {εk} is decreasing, it is
easy to see that the sequence {Nk} is increasing. Furthermore, for each k,
since {xNk

} ⊂ C we have AxNk
�= 0 and, setting

vNk
=

AxNk

‖AxNk
‖2 ,

we have 〈AxNk
, xNk

〉 = 1 for each k. Now, we can deduce from (3.15) that
for each k

〈AxNk
, x + εkvNk

− xNk
〉 ≥ 0.

Since the fact that A is pseudo-monotone, we get

〈A(x + εkvNk
), x + εkvNk

− xNk
〉 ≥ 0.

This implies that

〈Ax, x−xNk
〉 ≥ 〈Ax−A(x+ εkvNk

), x+ εkvNk
−xNk

〉− εk〈Ax, vNk
〉. (3.16)

Now, we show that limk→∞ εkvNk
= 0. Indeed, we have xnk

⇀ z as k →
∞. Since A is sequentially weakly continuous on C, {Axnk

} converges weakly
to Az. We have that Az �= 0 (otherwise, z is a solution). Since the norm
mapping is sequentially weakly lower semicontinuous, we have

0 < ‖Az‖ ≤ lim inf
k→∞

‖Axnk
‖.

Since {xNk
} ⊂ {xnk

} and εk → 0 as k → ∞, we obtain

0 ≤ lim sup
k→∞

‖εkvNk
‖ = lim sup

k→∞

(
εk

‖Axnk
‖
)

≤ lim supk→∞ εk
lim infk→∞ ‖Axnk

‖ = 0,

which implies that limk→∞ εkvNk
= 0.

Now, letting k → ∞, then the right-hand side of (3.16) tends to zero by
A is uniformly continuous, {xNk

}, {vNk
} are bounded and limk→∞ εkvNk

= 0.
Thus, we get

lim inf
k→∞

〈Ax, x − xNk
〉 ≥ 0.

Hence, for all x ∈ C we have

〈Ax, x − z〉 = lim
k→∞

〈Ax, x − xNk
〉 = lim inf

k→∞
〈Ax, x − xNk

〉 ≥ 0.

By Lemma 2.6, we obtain z ∈ V I(C,A) and the proof is complete. �

Remark 3.8. When the mapping A is monotone, it is not necessary to impose
the sequential weak continuity on A.

Theorem 3.9. Assume that Conditions 3.1–3.3 hold. Then any sequence {xn}
generated by Algorithm 3.1 converges weakly to an element of V I(C,A).

Proof. We divide the proof into two claims.
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Claim 1. We show that

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − (1 − μ)2

γ2

‖xn − yn‖4
‖Ayn‖2 .

Indeed, since PC is nonexpansive we get

‖xn+1 − p‖2 = ‖PC(xn − βnAyn) − PCp‖2 ≤ ‖xn − βnAyn − p‖2
= ‖xn − p‖2 − 2βn〈Ayn, xn − p〉 + β2

n‖Ayn‖2,
which, together with Lemma 3.5 we obtain

‖xn+1 − p‖2 ≤‖xn − p‖2 − 2βn
1 − μ

γ
‖xn − yn‖2 + β2

n‖Ayn‖2. (3.17)

Substituting βn =
1 − μ

γ

‖xn − yn‖2
‖Ayn‖2 into (3.17), we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − 2
(1 − μ)2

γ2

‖xn − yn‖4
‖Ayn‖2 +

(1 − μ)2

γ2

‖xn − yn‖4
‖Ayn‖2

= ‖xn − p‖2 − (1 − μ)2

γ2

‖xn − yn‖4
‖Ayn‖2 .

Claim 2. Now, we show that {xn} converges weakly to an element of
V I(C,A). Thanks to Claim 1, we have

‖xn+1 − p‖ ≤ ‖xn − p‖ ∀p ∈ V I(C,A).

This implies that for all p ∈ V I(C,A) then limn→∞ ‖xn − p‖ exists, thus the
sequence {xn} is bounded. Consequently, {yn} is bounded.

On the other hand, according to Claim 1, we get

(1 − μ)2

γ2

‖xn − yn‖4
‖Ayn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

which implies that

lim
n→∞

‖xn − yn‖4
‖Ayn‖2 = 0. (3.18)

Since {yn} ⊂ C is bounded, A is uniformly continuous on bounded subsets
of C, according to Lemma 2.5 we get {Ayn} is bounded, which together with
(3.18) we get

lim
n→∞ ‖xn − yn‖ = 0. (3.19)

Since {xn} is a bounded sequence, there exists the subsequence {xnk
} of {xn}

such that {xnk
} converges weakly to z ∈ C. It implies from Lemma 3.7 and

(3.19) that z ∈ VI(C,A).
Therefore, we showed that:

(i) For every p ∈ VI(C,A), then limn→∞ ‖xn − p‖ exists;
(ii) Every sequential weak cluster point of the sequence {xn} is in VI(C,A).

By Lemma 2.7 the sequence {xn} converges weakly to an element of VI(C,A).
�
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Remark 3.10. Our result is more general than related results in the literature
and hence might be applied for a wider class of mappings. For example, we
next present the advantage of our method compared with the recent result
[33, Theorem 3.1].

As in Theorem 3.9, A : C → H is assumed to be uniformly continuous
on bounded subsets instead of Lipschitz continuous in [33].

3.2. Strong convergence

In this subsection, we introduce our second extragradient modification which
is based on Halpern method [13] (see also [28]) and hence has a strong con-
vergence property. An additional assumption for the analysis of our method
is the following.

Condition 3.4. Let {αn} be a real sequences in (0, 1) such that

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞.

The proposed algorithm is of the form

Algorithm 3.11.

Initialization: Given γ > 0, l ∈ (0, 1), μ ∈ (0, 1). Let x0 ∈ C be arbitrary

Iterative Steps: Given the current iterate xn, calculate xn+1 as follows:

Step 1. Compute
yn = PC(xn − λnAxn),

where λn := γlmn and mn is the smallest non-negative integer m satisfying

γlm〈Axn − Ayn, xn − yn〉 ≤ μ‖xn − yn‖2.
If xn = yn then stop and xn is a solution of V I(C,A). Otherwise
Step 2. Compute

xn+1 = αnx0 + (1 − αn)zn,

where
zn = PC(xn − βnAyn),

and

βn :=
1 − μ

γ

‖xn − yn‖2
‖Ayn‖2 .

Set n := n + 1 and go to Step 1.

Theorem 3.12. Assume that Conditions 3.1–3.4 hold. Then any sequence {xn}
generated by Algorithm 3.11 converges strongly to p ∈ VI(C,A), where p =
PVI(C,A)x0.

Proof. Similar to the proof of Theorem 3.9, and in order to keep it simple,
we divide the proof into four claims.
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Claim 1. We prove that {xn} is bounded. Indeed, thanks to Claim 1 in the
proof of Theorem 3.9, we have

‖zn − p‖2 ≤ ‖xn − p‖2 − (1 − μ)2

γ2

‖xn − yn‖4
‖Ayn‖2 . (3.20)

This implies that
‖zn − p‖ ≤ ‖xn − p‖. (3.21)

Using (3.21), we have

‖xn+1 − p‖ =‖αnx0 + (1 − αn)zn − p‖
= ‖αn(x0 − p) + (1 − αn)(zn − p)‖
≤ αn‖x0 − p‖ + (1 − αn)‖zn − p‖
≤ αn‖x0 − p‖ + (1 − αn)‖xn − p‖
≤ max{‖x0 − p‖, ‖xn − p‖}
≤ · · · ≤ ‖x0 − p‖.

Thus, the sequence {xn} ⊂ C is bounded. Consequently, the sequences
{yn}, {zn}, {Ayn} are bounded.

Claim 2. We prove that

(1 − μ)2

γ2

‖xn − yn‖4
‖Ayn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnM,

for some M > 0. Indeed, we have

‖xn+1 − p‖2 = ‖αn(x0 − p) + (1 − αn)(zn − p)‖2
≤ (1 − αn)‖zn − p‖2 + 2αn〈x0 − p, xn+1 − p〉
≤ ‖zn − p‖2 + 2αn〈x0 − p, xn+1 − p〉. (3.22)

Substituting (3.20) into (3.23), we get

‖xn+1 − p‖2 ≤ ‖xn − p‖2 − (1 − μ)2

γ2

‖xn − yn‖4
‖Ayn‖2 + 2αn〈x0 − p, xn+1 − p〉.

This implies that

(1 − μ)2

γ2

‖xn − yn‖4
‖Ayn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn〈x0 − p, xn+1 − p〉

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αn‖x0 − p‖‖xn+1 − p‖
≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αnD,

where D := sup{2‖x0 − p‖‖xn+1 − p‖ : n ∈ N}.

Claim 3. We prove that

‖xn+1 − p‖2 ≤ (1 − αn)‖xn − p‖2 + 2αn〈x0 − p, xn+1 − p〉.
Using (3.21) we have

‖xn+1 − p‖2 = ‖αn(x0 − p) + (1 − αn)(zn − p)‖2
≤ (1 − αn)‖zn − p‖2 + 2αn〈x0 − p, xn+1 − p〉
≤ (1 − αn)‖xn − p‖2 + 2αn〈x0 − p, xn+1 − p〉. (3.23)
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Claim 4. Now, we will show that the sequence {‖xn − p‖2} converges to zero
by considering two possible cases on the sequence {‖xn − p‖2}.

Case 1: There exists an N ∈ N such that ‖xn+1 − p‖2 ≤ ‖xn − p‖2 for
all n ≥ N. This implies that limn→∞ ‖xn − p‖2 exists. It implies from Claim
2 that

lim
n→∞ ‖xn − yn‖ = 0. (3.24)

On the other hand,

‖zn − xn‖ = ‖PC(xn − βnAyn) − PCxn‖

≤ ‖xn − βnAyn − xn‖ = βn‖Ayn‖ =
1 − μ

γ

‖xn − yn‖2
‖Ayn‖ .

Using (3.24), it implies that

lim
n→∞ ‖zn − xn‖ = 0.

Since {xn} ⊂ C is a bounded sequence, we assume that there exists a subse-
quence {xnj

} of {xn} such that xnj
⇀ z ∈ C and

lim sup
n→∞

〈x0 − p, xn − p〉 = lim
j→∞

〈x0 − p, xnj
− p〉 = 〈x0 − p, z − p〉. (3.25)

Since limn→∞ ‖xn − yn‖ = 0 and xnj
⇀ z ∈ C, according Lemma 3.7, we get

z ∈ V I(C,A). On the other hand,

‖xn+1 − zn‖ = αn‖x0 − zn‖ → 0 as n → ∞.

Thus

‖xn+1 − xn‖ = ‖xn+1 − zn‖ + ‖zn − xn‖ → 0 as n → ∞. (3.26)

Using (3.26), p = PV I(C,A)x0 and xnk
⇀ z ∈ V I(C,A), we get

lim sup
n→∞

〈x0 − p, xn+1 − p〉 ≤ 〈x0 − p, z − p〉 ≤ 0,

which, together with Claim 3, it implies from Lemma 2.9 that

xn → p as n → ∞.

Case 2: There exists a subsequence {‖xnj
− p‖2} of {‖xn − p‖2} such

that ‖xnj
− p‖2 < ‖xnj+1 − p‖2 for all j ∈ N. In this case, it follows from

Lemma 2.8 that there exists a nondecreasing sequence {mk} of N such that
limk→∞ mk = ∞ and the following inequalities hold for all k ∈ N:

‖xmk
− p‖2 ≤ ‖xmk+1 − p‖2 and ‖xk − p‖2 ≤ ‖xmk+1 − p‖2. (3.27)

According to Claim 2, we have

(1 − μ)2

γ2

‖xmk
− ymk

‖4
‖Aymk

‖2 ≤ ‖xmk
− p‖2 − ‖xmk+1 − p‖2 + αmk

M, ≤ αmk
M.

This implies that
lim
k→∞

‖xmk
− ymk

‖ = 0.

As proved in the first case, we obtain

lim
k→∞

‖zmk
− xmk

‖ = 0
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and
lim
k→∞

‖xmk+1 − xmk
‖ = 0

and
lim sup
k→∞

〈x0 − p, xmk+1 − p〉 ≤ 0. (3.28)

Combining (3.27) and Claim 3, we obtain

‖xmk+1 − p‖2 ≤ (1 − αmk
)‖xmk

− p‖2 + 2αmk
〈x0 − p, xmk+1〉

≤ (1 − αmk
)‖xmk+1 − p‖2 + 2αmk

〈x0 − p, xmk+1 − p〉.
This implies that

‖xmk+1 − p‖2 ≤ 2〈x0 − p, xmk+1 − p〉,
which, together with (3.27) we get

‖xk − p‖2 ≤ ‖xmk+1 − p‖2 ≤ 2〈x0 − p, xmk+1 − p〉. (3.29)

It implies from (3.28) and (3.29) that lim supk→∞ ‖xk − p‖2 = 0, that is
xk → p as k → ∞. �

To end this section, we next present an academic example of variational
inequality problem in an infinite dimensional space, where the cost function
A is pseudo-monotone, L-Lipschitz continuous and sequentially weakly con-
tinuous on C but A fails to be a monotone mapping on H.

Example. Consider the Hilbert space

H = l2 :=

{
u = (u1, u2, . . . , un, . . .) |

∞∑
n=1

|un|2 < +∞
}

equipped with the inner product and induced norm on H:

〈u, v〉 =
∞∑

n=1

unvn and ‖u‖ =
√

〈u, u〉

for any u = (u1, u2, . . . , un, . . .), v = (v1, v2, . . . , vn, . . .) ∈ H.
Consider the set and the mapping:

C = {u = (u1, u2, . . . , ui, . . .) ∈ H | |ui| ≤ 1
i
, i = 1, 2, . . . , n, . . .},

Au =
(

(‖u‖ + α) − 1
‖u‖ + α

)
u,

where α > 1 is a positive real number.
With this C and A, it is easy to see that VI(C,A) = {0} and more-

over, A is pseudo-monotone, sequentially weakly continuous and uniformly
continuous on C but A fails to be Lipschitz continuous on H.

First observe that since α > 1, we get that(
(‖u‖ + α) − 1

‖u‖ + α

)
> 0 ∀u ∈ C.

Now let u, v ∈ C be such that 〈Au, v − u〉 ≥ 0. This implies that
〈u, v − u〉 ≥ 0.
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Consequently,

〈Av, v − u〉 =
(

(‖u‖ + α) − 1
‖u‖ + α

)
〈v, v − u〉

≥
(

(‖u‖ + α) − 1
‖u‖ + α

)
(〈v, v − u〉 − 〈u, v − u〉)

=
(

(‖u‖ + α) − 1
‖u‖ + α

)
‖v − u‖2 ≥ 0,

meaning that A is pseudo-monotone.
Now, since C is compact, the mapping A is uniformly continuous and

sequentially weakly continuous on C.
Finally, we show that A is not Lipschitz continuous on H. Assume to

the contrary that A is Lipschitz continuous on H, i.e., there exists L > 0
such that

‖Au − Av‖ ≤ L‖u − v‖ ∀u, v ∈ H.

Let u = (L, 0, ..., 0, ...) and v = (0, 0, ..., 0, ...), then

‖Au − Av‖ = ‖Au‖ =
(

(‖u‖ + α) − 1
‖u‖ + α

)
‖u‖ =

(
(L + α) − 1

L + α

)
L.

Thus, ‖Au − Av‖ ≤ L‖u − v‖ is equivalent to(
(L + α) − 1

L + α

)
L ≤ L2,

equivalently

L + α ≤ L +
1

L + α
< L + 1,

which implies that α < 1, and this leads to a contraction and thus A is not
Lipschitz continuous on H.

Remark 3.13. It should be emphasized here that the example established in
Section 4 in [33] is not sequentially weakly continuous.

Remark 3.14. Thank to the referee’s comment, we wish to point out that
since the proximity operator of a proper, lower semicontinuous and convex
function is a generalization of the metric projection and our convergence
analysis mainly use the firmly nonexpansiveness of the metric projection,
and it is known that the proximity operator is indeed firmly nonexpansive,
our proposed method can be modified to solve a more general variational
inequalities.

4. Numerical illustrations

In this section, we present an example illustrating the behavior and advan-
tages of our proposed schemes. The numerical example which is the Kojima–
Shindo Nonlinear Complementarity Problem (NCP), see e.g., [27].
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Figure 1. Illustration of Algorithms 3.1, 3.11 and [11, Al-
gorithm 3.1]

Table 1. Algorithms 3.1, 3.11 and [11, Algorithm 3.1]

Algorithms Total line-search iterations CPU time

Algorithms 3.1 7 17.37
Algorithm 3.11 34 33.82
[11, Algorithm 3.1] 11 26.25

Example. In this example, we test our algorithms behavior for solving The
Kojima–Shindo Nonlinear Complementarity Problem (NCP) with n = 4, see
e.g., [27]. The cpu time is measured in seconds using the intrinsic MATLAB
function cpu time. The VI feasible set is C := {x ∈ R

4
+ | x1+x2+x3+x4 = 4}

and A is given as follows:

A(x1, x2, x3, x4) :=

⎡
⎢⎢⎣

3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6
2x2

1 + x1 + x2
2 + 10x3 + 2x4 − 2

3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9
x2
1 + 3x2

2 + 2x3 + 3x4 − 3

⎤
⎥⎥⎦ . (4.1)

The solution if the problem is (
√

6/2, 0, 0, 0.5). In our experiments, we
choose the stopping criteria as ‖xn − yn‖ ≤ 10−3. The projection onto the
feasible set C is performed using CVX version 1.22. Other parameters are:
γ = 0.2, l = 0.3, μ = 0.6, we choose the stopping criterion ||xn − yn|| < 10−5.
In [11, Algorithm 3.1], we choose ε = 0.2, β = 0.5 and α−1 = 0.7.

The starting point for all experiments is x0 = (1, 1, 1, 1). All computa-
tions were performed using MATLAB R2017a on an Intel Core i5-4200U 2.3
GHz running 64-bit Windows. In Fig. 1, the performances of Algorithms 3.1,
3.11 and [11, Algorithm 3.1] are presented.

In Table 1, the complementary data of Fig. 1 is presented.
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5. Conclusions

In this paper, we proposed two extragradient extensions for solving non-
Lipschitzian pseudo-monotone variational inequalities in real Hilbert spaces.
Under suitable and standard conditions, we establish weak and strong con-
vergence theorems of the proposed schemes. Our work extends and gen-
eralizes some existing results in the literature and academic and numeri-
cal experiments demonstrate the behavior and potential applicability of the
methods.
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