
J. Fixed Point Theory Appl. (2019) 21:1
https://doi.org/10.1007/s11784-018-0638-y
Published onlineNovember 21, 2018
c© Springer Nature Switzerland AG 2018

Journal of Fixed Point Theory
and Applications

Coupled fixed point theorems in partially
ordered metric spaces via mixed g-monotone
property

Bipan Hazarika , Reza Arab and Poom Kumam
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1. Introduction

In [9], Bhaskar and Lakshmikantham introduced the notion of a coupled
contraction mapping principle and proved coupled fixed point results for the
mixed monotone property in partially ordered metric spaces. After that, many
authors have carried out further studies on the coupled fixed point, the cou-
pled coincidence point and the coupled common fixed point (see, e.g., [2]–
[17]). Common fixed point theorems for generalized contractions invariably
require a commutativity condition and the continuity of one of the mappings
{Tα : X × X −→ X : α ∈ Λ} or X the property be regular. The purpose of
this work was to prove some coupled common fixed point and common fixed
point theorems for infinite family mappings satisfying different contractive
conditions on the complete partially ordered metric space.

In [15], Lakshmikantham and Ćirić introduced the concept of mixed
g-monotone property as follows:
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Definition 1.1. [15] Let (X,≤) be a partially ordered set and F : X×X −→ X
and g : X −→ X. We say F has the mixed g-monotone property if F is a
non-decreasing g-monotone in its first argument and is a non-increasing g-
monotone in its second argument, that is, for any x, y ∈ X

x1, x2 ∈ X, gx1 ≤ gx2 =⇒ F (x1, y) ≤ F (x2, y),

and
y1, y2 ∈ X, gy1 ≤ gy2 =⇒ F (x, y1) ≥ F (x, y2).

Note that if g is the identity mapping, then F is said to have the mixed
monotone property (see [9]).

Definition 1.2 [15]. An element (x, y) ∈ X×X is called a coupled coincidence
point of a mapping F : X × X −→ X and a mapping g : X −→ X if

F (x, y) = gx, F (y, x) = gy.

Similarly, note that if g is the identity mapping, then (x, y) is called a
coupled fixed point of the mapping F (see [9]).

Definition 1.3 [1]. An element x ∈ X is called a common fixed point of a
mapping F : X × X −→ X and g : X −→ X if

F (x, x) = gx = x. (1.1)

Definition 1.4 [15]. Let X be a nonempty set and F : X × X −→ X and
g : X −→ X. One says F and g are commutative if for all x, y ∈ X,

F (gx, gy) = g(F (x, y)).

Abbas et al. [1] introduced the concept of w-compatibility for a pair of
mappings F : X × X −→ X and g : X −→ X.

Definition 1.5. The mappings F : X × X −→ X and g : X −→ X are
called w-compatible if g(F (x, y)) = F (gx, gy)) whenever gx = F (x, y) and
gy = F (y, x).

2. Main results

Throughout the paper, let Ψ be the family of all functions ψ : [0,∞) −→
[0,∞) satisfying the following conditions:

(a) ψ is continuous,
(b) ψ nondecreasing,
(c) ψ(t) = 0 if and only if t = 0.

We denote by Φ the set of all functions φ : [0,∞) −→ [0,∞) satisfying the
following conditions:

(a) φ is lower semi-continuous,
(b) φ(t) = 0 if and only if t = 0,



Vol. 21 (2019) Coupled fixed point theorems in partially Page 3 of 19 1

and Θ the set of all continuous functions θ : [0,∞) −→ [0,∞) with θ(t) = 0
if and only if t = 0.

Now, we establish some results for the existence of coupled coincidence
point and coupled common fixed point of mappings in the setup of partially
ordered metric spaces. The first result in this paper is the following coupled
coincidence theorem:

Theorem 2.1. Suppose that (X, d,≤) is a partially ordered complete metric
space. Suppose g : X −→ X and {Tα : X × X −→ X : α ∈ Λ} are such
that Tα0 has the mixed g-monotone property and commutes with g on X
such that there exist two elements x0, y0 ∈ X with gx0 ≤ Tα0(x0, y0) and
gy0 ≥ Tα0(y0, x0). Suppose there exist L ≥ 0, ψ ∈ Ψ, φ ∈ Φ and θ ∈ Θ such
that

ψ(d(Tα0(x, y), Tα(u, v))) ≤ ψ(M(x, y, u, v)) − φ(M(x, y, u, v))
+Lθ(N(x, y, u, v)), (2.1)

where

M(x, y, u, v) = max{d(gx, gu), d(gy, gv), d(gx, Tα(x, y)), d(gu, Tα0(u, v)),
d(gy, Tα(y, x)), d(gv, Tα0(v, u)),
d(gx, Tα(u, v)) + d(gu, Tα0(x, y))

2
,

d(gy, Tα(v, u)) + d(gv, Tα0(y, x))
2

},

and

N(x, y, u, v) = min{d(gx, Tα0(x, y)), d(gu, Tα(u, v)), d(gu, Tα0(x, y)), d(gx, Tα(u, v))}.

for all x, y, u, v ∈ X, α ∈ Λ for which gx ≤ gu and gy ≥ gv. Suppose
Tα0(X × X) ⊆ g(X), g is continuous and also suppose either

(i) Tα0 is continuous or
(ii) X has the following property(regular):

(a) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n,
(b) if a non-increasing sequence {yn} → y, then y ≤ yn for all n.

Then {Tα : α ∈ Λ} and g have coupled coincidence point in X.

Proof. By the given assumptions, there exists (x0, y0) ∈ X × X such that
gx0 ≤ Tα0(x0, y0) and gy0 ≥ Tα0(y0, x0). Since Tα0(X × X) ⊆ g(X), we can
define (x1, y1) ∈ X × X such that gx1 = Tα0(x0, y0) and gy1 = Tα0(y0, x0),
then gx0 ≤ Tα0(x0, y0) = gx1 and gy0 ≥ Tα0(y0, x0) = gy1. Also there exists
(x2, y2) ∈ X × X such that gx2 = Tα0(x1, y1) and gy2 = Tα0(y1, x1). Since
Tα0 has the mixed g-monotone property, we have

gx1 = Tα0(x0, y0) ≤ Tα0(x0, y1) ≤ Tα0(x1, y1) = gx2,

and
gy2 = Tα0(y1, x1) ≤ Tα0(y0, x1) ≤ Tα0(y0, x0) = gy1.
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Continuing in this way, we construct two sequences {xn} and {yn} in X such
that

gxn+1 = Tα0(xn, yn) and gyn+1 = Tα0(yn, xn) for all n = 0, 1, 2, . . . (2.2)

for which

gx0 ≤ gx1 ≤ gx2 ≤ · · · ≤ gxn ≤ gxn+1 ≤ . . . ,

gy0 ≥ gy1 ≥ gy2 ≥ · · · ≥ gyn ≥ gyn+1 ≥ . . . . (2.3)

From (2.2) and (2.3) and inequality (2.1) with (x, y) = (xn, yn) and (u, v) =
(xn+1, yn+1), we obtain

ψ(d(gxn+1, gxn+2)) = ψ(d(Tα0(xn, yn), Tα0(xn+1, yn+1)))
≤ ψ(M(xn, yn, xn+1, yn+1)) − φ(M(xn, yn, xn+1, yn+1))

+Lθ(N(xn, yn, xn+1, yn+1)), (2.4)

where

M(xn, yn, xn+1, yn+1) = max{d(gxn, gxn+1), d(gyn, gyn+1), d(gxn, Tα0(xn, yn)),

d(gxn+1, Tα0(xn+1, yn+1)), d(gyn, Tα0(yn, xn)),

d(gyn+1, Tα0(yn+1, xn+1)),

d(gxn, Tα0(xn+1, yn+1)) + d(gxn+1, Tα0(xn, yn))

2
,

d(gyn, Tα0(yn+1, xn+1)) + d(gyn+1, Tα0(yn, xn))

2
}

= max{d(gxn, gxn+1), d(gyn, gyn+1),

d(gxn+1, gxn+2), d(gyn+1, gyn+2),

d(gxn, gxn+2)

2
,
d(gyn, gyn+2)

2
},

and

N(xn, yn, xn+1, yn+1) = min{d(gxn, Tα0(xn, yn)), d(gxn+1, Tα0(xn+1, yn+1)),

d(gxn+1, Tα0(xn, yn)), d(gxn+1, Tα0(xn+1, yn+1))} = 0.

Since
d(gxn, gxn+2)

2
≤ d(gxn, gxn+1) + d(gxn+1, gxn+2)

2
≤ max{d(gxn, gxn+1), d(gxn+1, gxn+2)},

and
d(gyn, gyn+2)

2
≤ d(gyn, gyn+1) + d(gyn+1, gyn+2)

2
≤ max{d(gyn, gyn+1), d(gyn+1, gyn+2)},

then we get

M(xn, yn, xn+1, yn+1) = max{d(gxn, gxn+1), d(gxn+1, gxn+2),
d(gyn, gyn+1), d(gyn+1, gyn+2)},

N(xn, yn, xn+1, yn+1) = 0. (2.5)
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By (2.4) and (2.5), we have

ψ(d(gxn+1, gxn+2)) ≤ ψ(max{d(gxn, gxn+1), d(gxn+1, gxn+2),
d(gyn, gyn+1), d(gyn+1, gyn+2)})
−φ(max{d(gxn, gxn+1), d(gxn+1, gxn+2),
d(gyn, gyn+1), d(gyn+1, gyn+2)}). (2.6)

Similarly, we can show that

ψ(d(gyn+1, gyn+2)) ≤ ψ(max{d(gxn, gxn+1), d(gxn+1, gxn+2),
d(gyn, gyn+1), d(gyn+1, gyn+2)})
−φ(max{d(gxn, gxn+1), d(gxn+1, gxn+2),
d(gyn, gyn+1), d(gyn+1, gyn+2)}). (2.7)

Now denote

δn = max{d(gxn, gxn+1), d(gyn, gyn+1)}. (2.8)

Combining (2.6),(2.7) and the fact that max{ψ(a), ψ(b)} = ψ(max{a, b}) for
a, b ∈ [0,+∞), we have

ψ(δn+1) = max{ψ(d(gxn+1, gxn+2)), ψ(d(gyn+1, gyn+2))}. (2.9)

So, using (2.6),(2.7),(2.8) together (2.9), we obtain

ψ(δn+1) ≤ ψ(max{d(gxn, gxn+1), d(gxn+1, gxn+2),
d(gyn, gyn+1), d(gyn+1, gyn+2)})
−φ(max{d(gxn, gxn+1), d(gxn+1, gxn+2),
d(gyn, gyn+1), d(gyn+1, gyn+2)}). (2.10)

Now we prove that for all n ∈ N,

max{d(gxn, gxn+1), d(gxn+1, gxn+2), d(gyn, gyn+1), d(gyn+1, gyn+2)} = δn,

δn+1 ≤ δn. (2.11)

For this purpose consider the following three cases:
Case 1. If max{d(gxn, gxn+1), d(gxn+1, gxn+2), d(gyn, gyn+1), d(gyn+1,

gyn+2)} = δn, then by (2.10), we have

ψ(δn+1) ≤ ψ(δn) − φ(δn) < ψ(δn), (2.12)

so (2.11) obviously holds.
Case 2. If max{d(gxn, gxn+1), d(gxn+1, gxn+2), d(gyn, gyn+1), d(gyn+1,

gyn+2)} = d(gxn+1, gxn+2) > 0, then by (2.6),

ψ(d(gxn+1, gxn+2)) ≤ ψ(d(gxn+1, gxn+2)) − φ(d(gxn+1, gxn+2))
< ψ(d(gxn+1, gxn+2)),

which is a contradiction.
Case 3. If max{d(gxn, gxn+1), d(gxn+1, gxn+2), d(gyn, gyn+1), d(gyn+1,

gyn+2)} = d(gyn+1, gyn+2) > 0,
then from (2.7),

ψ(d(gyn+1, gyn+2)) ≤ ψ(d(gyn+1, gyn+2)) − φ(d(gyn+1, gyn+2))
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< ψ(d(gyn+1, gyn+2)),

which is again a contradiction.
Thus in all cases (2.11) holds for each n ∈ N. It follows that the sequence
{δn} is a monotone decreasing sequence of non-negative real numbers and
consequently there exists sδ ≥ 0 such that

lim
n→∞ δn = δ. (2.13)

We show that δ = 0. Suppose, on the contrary, that δ > 0. Taking the limit
as n → ∞ in (2.12) and using the properties of the function φ, we get

ψ(δ) ≤ ψ(δ) − φ(δ) < ψ(δ),

which is a contradiction. Therefore δ = 0, that is,

lim
n→∞ δn = lim

n→∞ max{d(gxn, gxn+1), d(gyn, gyn+1)} = 0

which implies that

lim
n→∞ d(gxn, gxn+1) = 0 and lim

n→∞ d(gyn, gyn+1) = 0. (2.14)

Now, we claim that

lim
n,m→∞ max{d(gxn, gxm), d(gyn, gym)} = 0. (2.15)

Assume on the contrary that there exists ε > 0 and subsequences
{gxm(k)}, {gxn(k)} of {gxn} and {gym(k)}, {gyn(k)} of {gyn} with m(k) >
n(k) ≥ k such that

max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))} ≥ ε. (2.16)

Additionally, corresponding to n(k), we may choose m(k) such that it is the
smallest integer satisfying (2.16) and m(k) > n(k) ≥ k. Thus

max{d(gxn(k), gxm(k)−1), d(gyn(k), gym(k)−1)} < ε. (2.17)

Using the triangle inequality and (2.16) and (2.17) we obtain that

ε ≤ d(gxm(k), gxn(k)) ≤ d(gxm(k), gxm(k)−1) + d(gxm(k)−1, gxn(k))
< d(gxm(k), gxm(k)−1) + ε.

Taking the limit as k → ∞ and using (2.14) we obtain

lim
k→∞

d(gxn(k), gxm(k)) = ε. (2.18)

Similarly, we obtain

lim
k→∞

d(gyn(k), gym(k)) = ε. (2.19)

Also

ε ≤ d(gxn(k), gxm(k)) ≤ d(gxn(k), gxm(k)+1) + d(gxm(k)+1, gxm(k))
≤ d(gxn(k), gxm(k)) + d(gxm(k), gxm(k)+1) + d(gxm(k)+1, gxm(k))
≤ d(gxn(k), gxm(k)) + 2 d(gxm(k), gxm(k)+1).

So from (2.14) and (2.18), we have

lim sup
k−→∞

d(gxn(k), gxm(k)+1) = ε. (2.20)
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Similarly, we obtain

lim sup
k−→∞

d(gyn(k), gym(k)+1) = ε. (2.21)

Also

ε ≤ d(gxm(k), gxn(k)) ≤ d(gxm(k), gxn(k)+1) + d(gxn(k)+1, gxn(k))
≤ d(gxm(k), gxn(k)) + d(gxn(k), gxn(k)+1)

+d(gxn(k)+1, gxn(k))
≤ d(gxm(k), gxn(k)) + 2 d(gxn(k), gxn(k)+1).

So from (2.14) and (2.18), we have

lim sup
k−→∞

d(gxm(k), gxn(k)+1) = ε. (2.22)

In a similar way, we obtain

lim sup
k−→∞

d(gym(k), gyn(k)+1) = ε. (2.23)

Also

d(gxn(k)+1, gxm(k)) ≤ d(gxn(k)+1, gxm(k)+1) + d(gxm(k)+1, gxm(k))
≤ d(gxn(k)+1, gxn(k)) + d(gxn(k), gxm(k)+1)

+d(gxm(k)+1, gxm(k))

so from (2.14), (2.20) and (2.22), we have

lim sup
k−→∞

d(gxn(k)+1, gxm(k)+1) = ε. (2.24)

Similarly, we obtain

lim sup
k−→∞

d(gyn(k)+1, gym(k)+1) = ε. (2.25)

lim sup
k−→∞

M(xn(k), yn(k), xm(k), ym(k)) = max{lim sup
k−→∞

d(gxn(k), gxm(k)),

lim sup
k−→∞

d(gyn(k), gym(k)), lim sup
k−→∞

d(gxn(k), gxn(k)+1), lim sup
k−→∞

d(gxm(k), gxm(k)+1),

lim sup
k−→∞

d(gyn(k), gyn(k)+1), lim sup
k−→∞

d(gym(k), gym(k)+1),

1

2
[lim sup
k−→∞

d(gxn(k), gxm(k)+1) + lim sup
k−→∞

d(gxm(k), gxn(k)+1)],

1

2
[lim sup
k−→∞

d(gyn(k), gym(k)+1) + lim sup
k−→∞

d(gym(k), gyn(k)+1)].

So,

lim sup
k−→∞

M(xn(k), yn(k), xm(k), ym(k)) = ε. (2.26)

Similarly, we have

lim inf
k−→∞

M(xn(k), yn(k), xm(k), ym(k)) = ε, (2.27)

and

lim
k→∞

N(xn(k), yn(k), xm(k), ym(k)) = 0. (2.28)
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Since m(k) > n(k) from (2.2), we have

gxn(k) ≤ gxm(k), gyn(k) ≥ gym(k).

Thus

ψ(d(gxn(k)+1, gxm(k)+1)) = ψ(d(Tα0(xn(k), yn(k)), Tα0(xm(k), ym(k))))
≤ ψ(M(xn(k), yn(k), xm(k), ym(k)))

−φ(M(xn(k), yn(k), xm(k), ym(k)))
+Lθ(N(xn(k), yn(k), xm(k), ym(k))),

ψ(d(gyn(k)+1, gym(k)+1)) = ψ(d(Tα0(yn(k), xn(k)), Tα0(ym(k), xm(k))))
≤ ψ(M(xn(k), yn(k), xm(k), ym(k)))

−φ(M(xn(k), yn(k), xm(k), ym(k)))
+Lθ(N(xn(k), yn(k), xm(k), ym(k))).

Since ψ is a nondecreasing function, we have

max{ψ(d(gxn(k)+1, gxm(k)+1)), ψ(d(gyn(k)+1, gym(k)+1))}
= ψ(max{d(gxn(k)+1, gxm(k)+1), d(gyn(k)+1, gym(k)+1)}).

Taking the upper limit as k → ∞, and using (2.25) and (2.26), we get

ψ(ε) = ψ(max{lim sup
k−→∞

d(gxn(k)+1, gxm(k)+1),

lim sup
k−→∞

d(gyn(k)+1, gym(k)+1)})

≤ ψ(lim sup
k−→∞

M(xn(k), yn(k), xm(k), ym(k)))

−φ(lim inf
k−→∞

M(xn(k), yn(k), xm(k), ym(k)))

+Lθ(lim sup
k−→∞

N(xn(k), yn(k), xm(k), ym(k)))

≤ ψ(ε) − φ(ε)
< ψ(ε).

It is a contradiction. Therefore, (2.15) holds and we have

lim
n,m→∞ d(gxn, gxm) = 0 and lim

n,m→∞ d(gyn, gym) = 0.

Since X is a complete metric space, there exist x, y ∈ X such that

lim
n→∞ gxn+1 = lim

n→∞ Tα0(xn, yn) = x and lim
n→∞ gyn+1

= lim
n→∞ Tα0(yn, xn) = y. (2.29)

From the commutativity of Tα0 and g, we have

g(gxn+1) = g(Tα0(xn, yn)) = Tα0(gxn, gyn),
g(gyn+1) = g(Tα0(yn, xn)) = Tα0(gyn, gxn). (2.30)

We now show that gx = Tα0(x, y) and gy = Tα0(y, x). Suppose that the
assumption (i) holds. For all n from the continuity of Tα0 and g, and letting
n → ∞ in (2.30), we get

gx = lim
n→∞ g(gxn+1) = lim

n→∞ g(Tα0(xn, yn)) = lim
n→∞ Tα0(gxn, gyn) = Tα0(x, y),
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gy = lim
n→∞ g(gyn+1) = lim

n→∞ g(Tα0(yn, xn)) = lim
n→∞ Tα0(gyn, gxn) = Tα0(y, x).

Finally, suppose that (ii) holds. Since {gxn} is non-decreasing sequence and
gxn → x and as {gyn} is non-increasing sequence and gyn −→ y, by assump-
tion (ii), we have gxn ≤ x and gyn ≥ y for all n. By (2.30) and g is continuous,
we have

gx = lim
n→∞ g(gxn+1) = lim

n→∞ g(Tα0(xn, yn)) = lim
n→∞ Tα0(gxn, gyn),

gy = lim
n→∞ g(gyn+1) = lim

n→∞ g(Tα0(yn, xn)) = lim
n→∞ Tα0(gyn, gxn).

Now we have

d(gx, Tα0(x, y)) ≤ d(gx, g(gxn+1)) + d(g(gxn+1), Tα0(x, y)).

Taking n → ∞ in the above inequality, using (2.2) we have,

d(gx, Tα0(x, y)) ≤ lim
n→∞ d(gx, g(gxn+1)) + lim

n→∞ d(g(Tα0(xn, yn)), Tα0(x, y))

≤ lim
n→∞ d(Tα0(gxn, gyn), Tα0(x, y)).

Similarly, we can show that

d(gy, Tα0(y, x)) ≤ lim
n→∞ d(Tα0(gyn, gxn), Tα0(y, x)).

Therefore,

ψ(max{d(gx, Tα0(x, y)), d(gy, Tα0(y, x))})
= max{ψ(d(gx, Tα0(x, y))), ψ(d(gy, Tα0(y, x)))}
≤ lim sup

n−→∞
max{ψ(d(Tα0(gxn, gyn), Tα0(x, y))),

ψ(d(Tα0(gyn, gxn), Tα0(y, x)))}
≤ lim sup

n−→∞
ψ(M(gxn, gyn, x, y)) − lim inf

n−→∞ φ(M(gxn, gyn, x, y))

+L lim sup
n−→∞

θ(N(gxn, gyn, x, y))

≤ ψ(max{d(gx, Tα0(x, y)), d(gy, Tα0(y, x))})
−φ(max{d(gx, Tα0(x, y)), d(gy, Tα0(y, x))}),

which implies that d(gx, Tα0(x, y)) = 0 and d(gy, Tα0(y, x)) = 0, that is,

gx = Tα0(x, y) and gy = Tα0(y, x).

Now, we will prove that for any α ∈ Λ, gx = Tα(x, y) and gy = Tα(y, x).
Suppose, to the contrary, that at least one of gx = Tα(x, y) or gy = Tα(y, x)
is not equal. Then there exists an α1 ∈ Λ such that

r = max{d(gx, Tα1(x, y)), d(gy, Tα1(y, x)))} > 0.

Using the property of ψ and (2.1), we have

ψ(r) = ψ(max{d(gx, Tα1(x, y)), d(gy, Tα1(y, x)))})
= max{ψ(d(gx, Tα1(x, y))), ψ(d(gy, Tα1(y, x)))}
≤ ψ(M(x, y, x, y)) − φ(M(x, y, x, y)) + Lθ(N(x, y, x, y)),
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where

M(x, y, x, y)

= M(y, x, y, x) = max
{

d(gx, gx), d(gy, gy), d(gx, Tα1(x, y)), d(gx, Tα0(x, y)),

(gy, Tα1(y, x)), d(gy, Tα0(y, x)),
d(gx, Tα1(x, y)) + d(gx, Tα0(x, y))

2
,
d(gy, Tα1(y, x)) + d(gy, Tα0(y, x))

2

}

= max{d(gx, Tα1(x, y)), d(gy, Tα1(y, x)))} = r,

and

N(x, y, x, y) = N(y, x, y, x) = min{d(gx, Tα0(x, y)), d(gu, Tα1(u, v)),
d(gu, Tα0(x, y)), d(gx, Tα1(u, v))} = 0.

This implies

ψ(r) ≤ ψ(M(x, y, x, y)) − φ(M(x, y, x, y)) + Lθ(N(x, y, x, y))
≤ ψ(r) − φ(r)
< ψ(r),

which is a contradiction. Thus (x, y) is a coupled coincidence point of g and
{Tα : α ∈ Λ}. �

Corollary 2.2. Suppose that (X, d,≤) is a partially ordered complete metric
space. Suppose g : X −→ X and {Tα : X × X −→ X : α ∈ Λ} are such
that Tα0 has the mixed g-monotone property and commutes with g on X
such that there exist two elements x0, y0 ∈ X with gx0 ≤ Tα0(x0, y0) and
gy0 ≥ Tα0(y0, x0). Suppose there exist ψ ∈ Ψ and φ ∈ Φ such that

ψ(d(Tα0(x, y), Tα(u, v))) ≤ ψ(M(x, y, u, v)) − φ(M(x, y, u, v)), (2.31)

where

M(x, y, u, v) = max {d(gx, gu), d(gy, gv), d(gx, Tα(x, y)), d(gu, Tα0(u, v)),
d(gy, Tα(y, x)), d(gv, Tα0(v, u)),

d(gx,Tα(u,v))+d(gu,Tα0 (x,y))

2 ,

d(gy,Tα(v,u))+d(gv,Tα0 (y,x))

2

}

for all x, y, u, v ∈ X, α ∈ Λ for which gx ≤ gu and gy ≥ gv. Suppose
Tα0(X × X) ⊆ g(X), g is continuous and also suppose either

(i) Tα0 is continuous or
(ii) X has the following property:

(a) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n,
(b) if a non-increasing sequence {yn} → y, then y ≤ yn for all n.

Then {Tα : α ∈ Λ} and g have coupled coincidence point in X.

Corollary 2.3. Suppose that (X, d,≤) is a partially ordered complete metric
space. Suppose {Tα : X × X −→ X : α ∈ Λ} are such that Tα0 has the mixed
monotone property on X such that there exist two elements x0, y0 ∈ X with
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x0 ≤ Tα0(x0, y0) and y0 ≥ Tα0(y0, x0). Suppose there exist ψ ∈ Ψ and φ ∈ Φ
such that

ψ(d(Tα0(x, y), Tα(u, v))) ≤ ψ(M(x, y, u, v)) − φ(M(x, y, u, v)), (2.32)

where

M(x, y, u, v) = max
{

d(x, u), d(y, v), d(x, Tα(x, y)), d(u, Tα0(u, v)),

d(y, Tα(y, x)), d(v, Tα0(v, u)),
d(x,Tα(u,v))+d(u,Tα0 (x,y))

2 ,

d(y,Tα(v,u))+d(v,Tα0 (y,x))

2

}
,

for all x, y, u, v ∈ X, α ∈ Λ for which x ≤ u and y ≥ v. Also suppose either
(i) Tα0 is continuous or
(ii) X has the following property:

(a) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n;
(b) if a non-increasing sequence {yn} → y, then y ≤ yn for all n.

Then {Tα : α ∈ Λ} have coupled fixed point in X.

3. Uniqueness of common fixed point

In this section we shall provide some sufficient conditions under which {Tα :
α ∈ Λ} and g have a unique common fixed point. Note that if (X,≤) is a
partially ordered set, then we endow the product X × X with the following
partial order relation, for all (x, y), (z, t) ∈ X × X :

(x, y) ≤ (z, t) ⇐⇒ x ≤ z, y ≥ t.

From Theorem 2.1, it follows that the set C(Tα, g) of coupled coincidences is
nonempty.

Theorem 3.1. By adding to the hypotheses of Theorem 2.1, the condition
for every (x, y) and (z, t) in X × X, there exists a (u, v) ∈ X × X
such that (Tα0(u, v), Tα0(v, u)) is comparable to (Tα0(x, y), Tα0(y, x)) and to
(Tα0(z, t), Tα0(t, z)), and {Tα} and g are w-compatible. Then {Tα} and g have
a unique coupled common fixed point.

Proof. We know, from Theorem 2.1, that there exists at least a coupled coin-
cidence point. Suppose that (x, y) and (z, t) are coupled coincidence points
of Tα and g, that is, Tα(x, y) = gx, Tα(y, x) = gy, Tα(z, t) = gz and
Tα(t, z) = gt. We shall show that gx = gz and gy = gt. By the assumptions,
there exists (u, v) ∈ X × X such that (Tα0(u, v), Tα0(v, u)) is comparable to
(Tα0(x, y), Tα0(y, x)) and to (Tα0(z, t), Tα0(t, z)). Without any restriction of
the generality, we can assume that

(Tα0(x, y), Tα0(y, x)) ≤ (Tα0(u, v), Tα0(v, u)) and

(Tα0(z, t), Tα0(t, z)) ≤ (Tα0(u, v), Tα0(v, u)).

Put u0 = u, v0 = v and choose (u1, v1) ∈ X × X such that

gu1 = Tα0(u0, v0), gv1 = Tα0(v0, u0).
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For n ≥ 1, continuing this process we can construct sequences {gun} and
{gvn} such that

gun+1 = Tα0(un, vn), gvn+1 = Tα0(vn, un) for all n.

Further, set x0 = x, y0 = y and z0 = z, t0 = t and on the same
way define sequences {gxn}, {gyn} and {gzn}, {gtn}. Since (gx, gy) =
(Tα0(x, y), Tα0(y, x)) = (gx1, gy1) and (Tα0(u, v), Tα0(v, u)) = (gu1, gv1) are
comparable, (gx, gy) ≤ (gu, gv). One can show, by induction, that

(gxn, gyn) ≤ (gun, gvn) for all n. (3.1)

Thus from (2.1), we have

ψ(d(gx, gun+1)) = ψ(d(Tα0(x, y), Tα0(un, vn)))
≤ ψ(M(x, y, un, vn)) − φ(M(x, y, un, vn))

+Lθ(N(x, y, un, vn)),

where

M(x, y, un, vn) = max
{

d(gx, gun), d(gy, gvn), d(gx, Tα0(x, y)),

d(gun, Tα0(un, vn)), d(gy, Tα0(y, x)),

d(gvn, Tα0(vn, un)),
d(gx, Tα0(un, vn)) + d(gun, Tα0(x, y))

2
,

d(gy, Tα0(vn, un)) + d(gvn, Tα0(y, x))
2

}

= max{d(gx, gun), d(gy, gvn), d(gy, gvn+1), d(gx, gun+1)}.

It is easy to show that

M(x, y, un, vn) = max{d(gx, gun), d(gy, gvn)},

and

N(x, y, un, vn) = 0.

Hence

ψ(d(gx, gun+1)) ≤ ψ(max{d(gx, gun), d(gy, gvn)})
−φ(max{d(gx, gun), d(gy, gvn)}). (3.2)

Similarly, one can prove that

ψ(d(gy, gvn+1)) ≤ ψ(max{d(gx, gun), d(gy, gvn)})
−φ(max{d(gx, gun), d(gy, gvn)}). (3.3)

Combining (3.2),(3.3) and the fact that max{ψ(a), ψ(b)} = ψ(max{a, b}) for
a, b ∈ [0,∞), we have

ψ(max{d(gx, gun+1), d(gy, gvn+1)})
= max{ψ(d(gx, gun+1)), ψ(d(gy, gvn+1))}
≤ ψ(max{d(gx, gun), d(gy, gvn)})

−φ(max{d(gx, gun), d(gy, gvn)})
≤ ψ(max{d(gx, gun), d(gy, gvn)}). (3.4)



Vol. 21 (2019) Coupled fixed point theorems in partially Page 13 of 19 1

Using the non-decreasing property of ψ, we get

max{d(gx, gun+1), d(gy, gvn+1)} ≤ max{d(gx, gun), d(gy, gvn)},

which implies that max{d(gx, gun), d(gy, gvn)} is a non-increasing sequence.
Hence there exists r ≥ 0 such that

lim
n→∞ max{d(gx, gun), d(gy, gvn)} = r.

Passing the upper limit in (3.4) as n → ∞, we obtain

ψ(r) ≤ ψ(r) − φ(r),

which implies that φ(r) = 0 and then r = 0. We deduce that

lim
n→∞ max{d(gx, gun), d(gy, gvn)} = 0,

which concludes

lim
n→∞ d(gx, gun) = lim

n→∞ d(gy, gvn) = 0. (3.5)

Similarly, one can prove that

lim
n→∞ d(gz, gun) = lim

n→∞ d(gt, gvn) = 0. (3.6)

From (3.5) and (3.6), we have gx = gz and gy = gt. Since gx = Tα(x, y) and
gy = Tα(y, x), by w-compatible of {Tα} and g, we have

g(gx) = g(Tα(x, y)) = Tα(gx, gy), g(gy) = g(Tα(y, x)) = Tα(gy, gx).(3.7)

Denote gx = a and gy = b; then from (3.7),

g(a) = Tα(a, b), g(b) = Tα(b, a). (3.8)

Thus (a, b) is a coupled coincidence point; it follows that ga = gz and gb = gy,
that is,

g(a) = a, g(b) = b. (3.9)

From (3.8) and (3.9),

a = g(a) = Tα(a, b), b = g(b) = Tα(b, a). (3.10)

Therefore, (a, b) is a coupled common fixed point of {Tα} and g. To prove the
uniqueness of the point (a, b), assume that (c, d) is another coupled common
fixed point of Tα and g. Then we have

c = gc = Tα(c, d), d = gd = Tα(d, c).

Since (c, d) is a coupled coincidence point of {Tα} and g, we have gc = gx = a
and gd = gy = b. Thus c = gc = ga = a and d = gd = gb = b, which is the
desired result. �

Since every commuting pair of functions is a w-compatible, we have the
following corollary:

Corollary 3.2. By adding to the hypotheses of Theorem 2.1, the condition
for every (x, y) and (z, t) in X × X, there exists a (u, v) ∈ X × X
such that (Tα0(u, v), Tα0(v, u)) is comparable to (Tα0(x, y), Tα0(y, x)) and to
(Tα0(z, t), Tα0(t, z)), and {Tα} and g are commuting. Then {Tα} and g have
a unique coupled common fixed point.
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Theorem 3.3. In addition to the hypotheses of Theorem 3.1, if gx0 and gy0
are comparable, then {Tα} and g have a unique common fixed point, that is,
there exists x ∈ X such that x = gx = Tα(x, x).

Proof. Following the proof of Theorem 3.1, {Tα} and g have a unique cou-
pled common fixed point (x, y). We only have to show that x = y. Since
gx0 and gy0 are comparable, we may assume that gx0 ≤ gy0. By using the
mathematical induction, one can show that

gxn ≤ gyn for all n ≥ 0, (3.11)

where {gxn} and {gyn} are defined by (2.2). From (2.29), we have

ψ(d(x, y)) = lim sup
n−→∞

ψ(d(gxn+1, gyn+1)) = lim sup
n−→∞

ψ(d(Tα0(xn, yn), Tα0(yn, xn)))

≤ lim sup
n−→∞

ψ(M(xn, yn, yn, xn)) − lim inf
n−→∞ φ(M(xn, yn, yn, xn))

+ lim sup
n−→∞

Lθ(N(xn, yn, yn, xn))

≤ ψ(d(x, y)) − lim inf
n−→∞ φ(Ms(xn, yn, yn, xn))

< ψ(d(x, y)),

a contradiction. Therefore x = y, that is, {Tα} and g have a common fixed
point. �

4. Application of Darbo type coupled fixed point theorem

Suppose E is a real Banach space with the norm ‖ . ‖ . Let B[y, d] be a closed
ball in E centered at y and radius d. If X is a nonempty subset of E , then we
denote X̄ and Conv ConvX the closure and convex closure of X. Moreover,
let ME denote the family of all nonempty and bounded subsets of E and NE
its subfamily consisting of all relatively compact sets. We denote by R the
set of real numbers and R+ = [0,∞) .

Now we recall the definition of a measure of noncompactness.

Definition 4.1 [7]. A function μ : ME → R+ is called a measure of noncom-
pactness in E if it satisfies the following conditions:

(i) the family kerμ = {X ∈ ME : μ (X) = 0} is nonempty and kerμ ⊂ NE .
(ii) X ⊆ Y =⇒ μ (X) ≤ μ (Y ) .
(iii) μ

(
X̄

)
= μ (X) .

(iv) μ (ConvX) = μ (X) .
(v) μ (λX + (1 − λ) Y ) ≤ λμ (X) + (1 − λ) μ (Y ) for λ ∈ [0, 1].
(vi) if Xn ∈ ME ,Xn = X̄n,Xn+1 ⊂ Xn for n = 1, 2, 3, ... and

limn→∞ μ (Xn) = 0, then X∞ =
⋂∞

n=1 Xn �= φ.

The family kerμ is said to be kernel of measure μ. Observe that the
intersection set X∞ from (vi) is a member of the family kerμ. Since μ(X∞) ≤
μ(Xn) for any n, we have μ(X∞) = 0. This gives X∞ ∈ kerμ.

A measure μ is said to be sublinear if it satisfies the following conditions:
(1) μ (λX) = |λ|μ (X) for λ ∈ R.
(2) μ (X + Y ) ≤ μ (Y ) + μ (Y ) .
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A sublinear measure of noncompactness μ satisfying the condition:

μ (X ∪ Y ) = max {μ (λX) , μ (λY )}
and such that kerμ = NE is said to be regular.

For a bounded subset S of a metric space X, the Kuratowski measure
of noncompactness is defined as

α (S) = inf

{
δ > 0 : S =

n⋃
i=1

Si, diam (Si) ≤ δ for 1 ≤ i ≤ n, n ∈ N

}
,

where diam(Si) denotes the diameter of the set Si, that is,

diam (Si) = sup {d(x, y) : x, y ∈ Si} .

We consider the space B = BC(R+ × R+) of real-valued continuous and
bounded functions defined on R+ × R+. It is clear that B is a Banach space
with respect to the norm

‖ x ‖= sup {|x(t, s)| : t, s ≥ 0} , x ∈ B.

Let X be a fixed nonempty and bounded subset of the space B = BC(R+ ×
R+) and τ be a fixed positive number. For x ∈ X and ε > 0, denote by
ωτ (x, ε) the modulus of the continuity function x on the interval [0, τ ], i.e.

ωτ (x, ε) = sup {|x(t, s) − x(u, v)| : t, s, u, v ∈ [0, τ ], |t − u| ≤ ε, |s − v| ≤ ε} .

Further we define

ωτ (X, ε) = sup {ωτ (x, ε) : x ∈ X} .

ωτ
0 (X) = lim

ε→0
ωτ (x, ε)

and

ω0(X) = lim
τ→∞ ωτ

0 (X).

Moreover, for two fixed numbers t, s ∈ R+, let us define the function μ on
the family MB by the following formulae:

μ(X) = ω0(X) + lim
t,s→∞ sup diamX(t, s),

where X(t, s) = {x(t, s) : t, s ∈ R+} and

diamX(t, s) = sup {|x(t, s) − y(t, s)| : x, y ∈ X} .

The function μ is a measure of noncompactness in the space B = BC(R+ ×
R+) (see [6]).

By using Darbo type coupled fixed point theorem discussed in The-
orems 2.2 and 2.3 in [12] and Theorem 3.1 of Das et al. [12], we study the
existence of a solution to the system of following nonlinear functional integral
equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t, s) = e−ts + ln(1+|x(t,s)|)
12+ts + e−ts ln(1+|y(t,s)|)

8

+ ln
(

1 + 1
4

∣∣∣∣
s∫
0

t∫
0

cos(1+vwy(v,w))
ets

∣∣∣∣ dvdw

)

y(t, s) = e−ts + ln(1+|y(t,s)|)
12+ts + e−ts ln(1+|x(t,s)|)

8

+ ln
(

1 + 1
4

∣∣∣∣
s∫
0

t∫
0

cos(1+vwx(v,w))
ets

∣∣∣∣ dvdw

)
(4.1)

Here

f(t, s, x, y, z) = e−ts +
ln(1 + |x(t, s)|)

12 + ts

+
e−ts

8
ln(1 + |y(t, s)|) + ln

(
1 +

|z|
2

)
,

ḡ(t, s, v, w, x(v, w), y(v, w)) =
cos (1 + vwy(v, w))

ets
,

φ1(t, s) = ln
(

1 +
t + s

2

)
, α(t) = t = β(t), ψ2(t) =

t

2
,

where α, β and f are continuous.
We have

|f(t, s, 0, 0, 0)| = e−ts

is bounded and M = 1.
Let t, s ∈ R+, x, y, z, ū, v̄, w̄ ∈ R with |x| ≥ |ū|, |y| ≥ |v̄|. By Mean Value

Theorem on ln
(
1 + |z|

2

)
and ln

(
1 + t+s

2

) ∈ φ̂ (for details of φ̂, see Sect. 2 of
[12]), we get

|f(t, s, x, y, z) − f(t, s, ū, v̄, w̄)|

≤ 1
12 + ts

|ln(1 + |x| − ln(1 + |ū|))| +
e−ts

8
|ln(1 + |y|) − ln(1 + |v̄|)|

+
∣∣∣∣ln

(
1 +

|z|
2

)
− ln

(
1 +

|w̄|
2

)∣∣∣∣
≤ 1

12 + ts

∣∣∣∣ln
(

1 + |x|
1 + |ū|

)∣∣∣∣ +
e−ts

8

∣∣∣∣ln
(

1 + |y|
1 + |v̄|

)∣∣∣∣ +
1
2

||z| − |w̄||

≤ 1
12

∣∣∣∣ln
(

1 + |x|
1 + |ū|

)∣∣∣∣ +
1
8

∣∣∣∣ln
(

1 + |y|
1 + |v̄|

)∣∣∣∣ +
1
2

||z| − |w̄||

=
1
12

∣∣∣∣ln
(

1 +
|x| − |ū|
1 + |ū|

)∣∣∣∣ +
1
8

∣∣∣∣ln
(

1 +
|y| − |v̄|
1 + |v̄|

)∣∣∣∣ +
1
2

||z| − |w̄||

≤ 1
8

ln (1 + |x − ū|) +
1
8

ln (1 + |y − v̄|) +
1
2

||z| − |w̄||

≤ 1
4

ln
(

1 +
|x − ū| + |y − v̄|

2

)
+

1
2

|z − w̄|

=
1
4
φ1 (|x − ū| , |y − v̄|) + ψ2 (|z − w̄|) .
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Clearly ḡ is continuous. Moreover, for each t, s, u, v ∈ R+, and x, y, x1, y1 ∈
R,

|ḡ(t, s, v, w, x(v, w), y(v, w)) − ḡ(t, s, v, w, x1(v, w), y1(v, w))| ≤ 2
ets

.

Therefore,
s∫

0

t∫
0

|ḡ(t, s, v, w, x(v, w), y(v, w)) − ḡ(t, s, v, w, x1(v, w), y1(v, w))| dvdw ≤ 2
ets

.

and

lim
t,s→∞

s∫
0

t∫
0

|ḡ(t, s, v, w, x(v, w), y(v, w)) − ḡ(t, s, v, w, x1(v, w), y1(v, w))| dvdw = 0.

Therefore, ∣∣∣∣∣∣
s∫

0

t∫
0

ḡ(t, s, v, w, x(v, w), y(v, w))dvdw

∣∣∣∣∣∣ ≤ 2ts

ets

for any t, s, v, w ∈ R+ and x, y ∈ R. Thus

G ≤ sup
{

2ts

ets
: t, s ≥ 0

}
=

2
e
.

Now substituting the values of M, G, φ1 and ψ2 in assumption (5) of the
Theorem 3.1 [12], we get the following inequality:

1 + ln(1 + r) +
1
e

≤ r

Consequently, all the conditions of the Theorem 3.1 [12] are satisfied and
hence the system of Eq. (4.1) has at least one solution in B × B.
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[1] Abbas, M., Ali Khan, M., Radenović, S.: Common coupled fixed point theorems
in cone metric spaces for w-compatible mappings. Appl. Math. Comput. 217,
195–202 (2010)



1 Page 18 of 19 B. Hazarika et al. JFPTA

[2] Agarwal, R.P., Sintunavarat, W., Kumam, P.: Coupled coincidence point and
common coupled fixed point theorems lacking the mixed monotone property.
Fixed Point Theory Appl. 2013, 22 (2013)

[3] Arab, R., Rabbani, M.: Coupled coincidence and common fixed point theorems
for mappings in partially ordered metric spaces. Math. Sci. Lett. 3(2), 81–87
(2014)

[4] Arab, R.: A common coupled fixed point theorem for two pairs of w-compatible
mappings in G-metric spaces. Sohag J. Math. 1(1), 37–43 (2014)

[5] Arab, R.: Coupled coincidence point results on partial metric spaces. Sohag J.
Math. 2(1), 23–28 (2015)

[6] Arab, R., Allahyari, R., Haghighi, A.S.: Existence of solutions of infinite sys-
tems of integral equations in two variables via measure of noncompactness.
Appl. Math. Comput. 246, 283–291 (2014)
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