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1. Introduction

Let C and Q be nonempty closed and convex subsets of real p-uniformly
convex and uniformly smooth Banach spaces E and F , respectively. Let A :
E −→ F be a bounded linear operator and A∗ : F ∗ → E∗ be the adjoint of
A. The split feasibility problem (SFP) is formulated as follows:

Find an element x∗ ∈ S = C ∩ A−1(Q) (1.1)

The model of SFP given above was first introduced by Censor and Elfving
[11] for modeling inverse problems. We also know that it plays an important
role in medical image reconstruction and signal processing (see [5,7]). In view
of its applications, several iterative algorithms of solving (1.1) were presented
in [5,7,12,16,18,29–31,33–36] and references therein.

There are some generalizations of the SFP, for example, the multiple-set
SFP (MSSFP) (see [12,22]), the split common fixed point problem (SCFPP)
(see [15,23]), the split variational inequality problem (SVIP) (see [16]), the
split common null point problem (SCNPP) (see [8]) and so on.

In 2014, Wang [37] modified Schopfer’s algorithm [26] and proved strong
convergence for the following multiple-set split feasibility problem (MSSFP):

Find an element x∗ ∈ S =

(
N⋂

i=1

Ci

)⋂ (
N+M⋂

j=N+1

A−1(Qj)

)
, (1.2)
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where Ci and Qj are the nonempty closed convex subsets of two p-uniformly
convex and uniformly smooth Banach spaces E and F , respectively. He de-
fined for each n ∈ N

Tn(x) =

{
ΠCi(n)(x) 1 ≤ i(n) ≤ N,

J∗
q [Jp(x) − tnA∗Jp(I − PQj

)A(x)] N + 1 ≤ i(n) ≤ N + M,

where i : N → I is the cyclic control mapping

i(n) = nmod (N + M) + 1,

and tn satisfies

0 < t ≤ tn ≤
(

q

Cq‖A‖q

)1/(q−1)

, (1.3)

with Cq defined as in Lemma 2.1 and proposed the following algorithm: For
any initial guess x0 = x̄, define {xn} recursively by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
yn = Tn(xn)
Dn = {w ∈ E : Δp(yn, w) ≤ Δp(xn, w)}
En = {w ∈ E : 〈xn − w, Jp(x̄) − Jp(xn)〉 ≥ 0}
xn+1 = ΠDn∩En

(x̄),

(1.4)

where Δp is the Bregman distance with respect to f(x) =
1
p
‖x‖p, ΠC de-

notes the Bregman projection and Jp is the duality mapping. He proved the
following strong convergence theorem.

Theorem 1.1. The sequence {xn}, generated by (1.4), converges strongly to
the Bregman projection ΠS x̄ of x̄ onto the solution set S.

Note that the algorithm (1.4) studied in the above work is not the
parallel one. Therefore, it takes a lot of time in computation when the family
of sets Ci and Qj are sufficiently large.

In 2016, Shehu et al. [27] constructed an iterative scheme for solving the
following problem:

Find an element x∗ ∈ C ∩ A−1(Q) ∩ F (T ). (1.5)

where T is a left Bregman strongly nonexpansive mapping of C into C. If
T = I, the identity map, then F (T ) = C and in this case, the problem (1.5)
reduces to SFP (1.1). They proved the following result.

Theorem 1.2. Let E and F be two p-uniformly convex and uniformly smooth
Banach spaces. Let C and Q be nonempty, closed and convex subsets of E and
F , respectively, A : E → F be a bounded linear operator and A∗ : F ∗ → E∗

be the adjoint of A. Suppose that SFP (1.1) has a nonempty solution set S.
Let T be a left Bregman strongly nonexpansive mapping of C into C such
that F (T ) = F̂ (T ) and F (T ) ∩ S 
= ∅. Let {αn} be a sequence in (0, 1). For
a fixed u ∈ E1, let sequence {xn} be iteratively generated by u1 ∈ E1{

xn = ΠCJq[Jp(un) − tnA∗Jp(I − PQ)A(un)]
un+1 = ΠCJq[αnJp(u) + (1 − αn)JpT (xn)], n ≥ 1.

(1.6)
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Suppose the following conditions are satisfied:
(i) lim

n→∞ αn = 0,

(ii)
∞∑

n=1

αn = ∞,

(iii) 0 < t ≤ tn ≤ k <

(
q

Cq‖A‖q

)1/(q−1)

.

Then {xn} converges strongly to an element x∗ ∈ F (T ) ∩ S, where
x∗ = ΠF (T )∩Su.

In this paper, we study the above works for a more generalized case

S =

(
N⋂

i=1

Ci

)⋂ (
M⋂

j=1

A−1(Qj)

)⋂(
K⋂

k=1

F (Tk)

)

= ∅.

where Ci and Qj are the nonempty closed convex subsets of two p-uniformly
convex and uniformly smooth Banach spaces E and F , respectively, F (Tk)
is the set of fixed point of left Bregman strongly nonexpansive mapping Tk :
E −→ E such that F̂ (Tk) = F (Tk), and A : E −→ F is a bounded linear
operator. We shall introduce a new strongly convergent, parallel and explicit
iterative algorithm with the similar condition (1.3) on the iterative parameter.

The rest of this paper is organized as follows. In Sect. 2, we list some
related facts that will be used in the proof of our result. In Sect. 3, we
introduce a new parallel iterative algorithm and prove a strong convergence
theorem for this algorithm. Finally, in Sect. 4, we give two numerical examples
for illustrating the main result.

2. Preliminaries

In this section, we recall some definitions and results which will be used
later. Let E be a real Banach space with the dual space E∗. For the sake of
simplicity, the norms of E and E∗ are denoted by the symbol ‖.‖ and we use
〈x, f〉 instead of f(x) for f ∈ E∗ and x ∈ E.

The modulus of convexity δE : [0, 2] −→ [0, 1] is defined by

δE(ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε

}
,

for all ε ∈ [0, 1]. The modulus of smoothness ρE : [0,∞) −→ [0,∞) is defined
as

ρE(τ) = sup
{‖x + τy‖ + ‖x − τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
,

for all τ ∈ [0,∞). Recall that a Banach space E is said to be
(i) uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2] and p-uniformly convex

if there exists cp > 0 such that δE(ε) ≥ cpε
p for all ε ∈ (0, 2].

(ii) uniformly smooth if lim
τ→0

ρE(τ)/τ = 0 and q-uniformly smooth if there

is Cq > 0 such that ρE(τ) ≤ Cqτ
q for all τ > 0.
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The Lp space is 2-uniformly convex for 1 < p ≤ 2 and p-uniformly convex
for p ≥ 2. Let 1 < q ≤ 2 ≤ p with 1/p + 1/q = 1. It is well-known that E
is p-uniformly convex if and only if its dual E∗ is q-uniformly smooth (see
[24]).

The duality mapping Jp : E −→ 2E∗
is defined by

Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖p, ‖x∗‖ = ‖x‖p−1}.

It is also well-known that if E is p-uniformly convex and uniformly
smooth, then its dual space E∗ is q-uniformly smooth and uniformly convex.
And in this situation, the duality mapping Jp is one-to-one, single valued and
satisfies Jp = (J∗

q )−1, where J∗
q is the duality mapping of E∗ (see [1,17]).

We have the following lemma:

Lemma 2.1. [32] Let x, y ∈ E. If E is q-uniformly smooth, then there is a
Cq > 0 such that

‖x − y‖q ≤ ‖x‖q − q〈y, Jq(x)〉 + Cq‖y‖q. (2.1)

Let f : E −→ (−∞,+∞] be a convex and Gâteaux differentiable
function. The function Df : domf × int domf −→ [0,+∞), defined by

Δf (y, x) = f(y) − f(x) − 〈y − x,f(x)〉,
is called the Bregman distance with respect to f (see [13]).

If E is a smooth and strictly Banach space and f(x) =
1
p
‖x‖p, then

f(x) = Jp(x) and thus the Bregman distance with respect to f is given by

Δp(x, y) =
1
p
(‖x‖p − ‖y‖p) − 〈y − x, Jp(x)〉

=
1
q
‖x‖p − 〈y, Jp(x)〉 +

1
p
‖y‖p

=
1
q
(‖x‖p − ‖y‖p) − 〈y, Jp(x) − Jp(y)〉.

It is easy to show that, for any x, y, z ∈ E, we have

Δp(x, y) = Δp(x, z) + Δp(z, y) + 〈z − y, Jp(x) − Jp(z)〉, (2.2)

Δp(x, y) + Δp(y, x) = 〈x − y, Jp(x) − Jp(y)〉. (2.3)

We know that if E is p-uniformly convex, then the Bregman distance
has the following property:

τ‖x − y‖p ≤ Δp(x, y) ≤ 〈x − y, Jp(x) − Jp(y)〉, (2.4)

for all x, y ∈ E and for some fixed number τ > 0.
Now, let C be a nonempty closed convex subset of E. The metric pro-

jection

PC(x) := arg min
y∈C

‖x − y‖, x ∈ E,

is the unique minimum point of the norm distance, which can be characterized
by the following variational inequality (see [20]):

〈z − PCx, Jp(x − PCx)〉 ≤ 0, ∀z ∈ C. (2.5)
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The Bregman projection

ΠC(x) := arg min
y∈C

Δp(x, y), x ∈ E,

as the minimum point of the Bregman distance (see [6]). The Bregman pro-
jection can also be characterized by the following variational inequality:

〈z − ΠCx, Jp(x) − Jp(ΠCx)〉 ≤ 0, ∀z ∈ C. (2.6)

It follows that

Δp(ΠCx, z) ≤ Δp(x, z) − Δp(x,ΠCx), ∀z ∈ C. (2.7)

Let C be a convex subset of int domf with f(x) =
1
p
‖x‖p, 2 ≤ p < ∞

and let T be a self-mapping of C. A point p in the closure of C is said to be an
asymptotic fixed point of T (see [14,25]) if C contains a sequence {xn} which
converges weakly to p such that the strong limn→∞ ‖xn − T (xn)‖ = 0. The
set of asymptotic fixed points of T will be denoted by F̂ (T ). The operator
T is called left Bregman strongly nonexpansive (L-BSNE) with respect to a
nonempty F̂ (T ) (see [21]) if

Δp(Tx, p) ≤ Δp(x, p), (2.8)

for all p ∈ F̂ (T ) and x ∈ C, and if whenever {xn} ⊂ C is bounded, p ∈ F̂ (T ),
and

lim
n→∞(Δp(xn, p) − Δp(T (xn), p)) = 0, (2.9)

it follows that
lim

n→∞ Δp(T (xn), xn) = 0. (2.10)

3. Main results

We consider the problem: find an element x† such that

x† ∈ S =

(
N⋂

i=1

Ci

)⋂ (
M⋂

j=1

A−1(Qj)

)⋂(
K⋂

k=1

F (Tk)

)

= ∅. (3.1)

To solve the Problem (3.1), we introduce the following algorithm:

Algorithm 3.1. For any initial guess x0 = x ∈ E, define the sequence {xn}
by

yi,n = ΠCi
xn, i = 1, 2, . . . , N,

Choose in such that Δp(yin,n, xn) = maxi=1,...,N Δp(yi,n, xn), let yn =yin,n,

zj,n = J∗
q [Jp(yn) − tnA∗Jp(I − PQj

)A(yn)], j =1, 2, . . . , M

Choose jn such that Δp(zjn,n, yn) = maxj=1,...,M Δp(zj,n, yn), let zn =zjn,n,

tk,n = Tk(zn), k = 1, 2, . . . ,K,

Choose kn such that Δp(tkn,n, zn) = maxk=1,...,K Δp(tk,n, zn), let tn = tkn,n,
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Hn = {z ∈ E : Δp(tn, z) ≤ Δp(zn, z) ≤ Δp(yn, z) ≤ Δp(xn, z)},

Dn = {z ∈ E : 〈xn − z, Jp(x0) − Jp(xn)〉 ≥ 0},

xn+1 = ΠHn∩Dn
(x0), n ≥ 0,

where, {tn} satisfies the condition (1.3).

First of all, we prove the following propositions.

Proposition 3.1. In the Algorithm 3.1, we have that S ⊂ Hn ∩ Dn for all
n ≥ 0.

Proof. First, it is easy to see that Hn and Dn are closed convex subsets of
E.

Let u ∈ S, we have

Δp(tn, u) = Δp(Tkn
(zn), u) ≤ Δp(zn, u). (3.2)

From the property of the Bregman projection in (2.7), we have

Δp(yn, u) = Δp(ΠCin
(xn), u) ≤ Δp(xn, u). (3.3)

Now, we will show that Δp(zn, u) ≤ Δp(yn, u). Let wn = A(yn) −
PQjn

A(yn). Then we have

zn = J∗
q (Jp(yn) − tnA∗Jp(wn)).

From the definition of Jp and (2.5), we have

〈A(yn) − A(u), Jp(wn)〉 = ‖A(yn) − PQjn
A(yn)‖p

+ 〈PQjn
A(yn) − A(u), Jp(wn)〉

≥ ‖wn‖p.

(3.4)

Thus, from Lemma 2.1 and (3.4), we get that

Δp(zn, u) = Δp(J∗
q (Jp(yn) − tnA∗Jp(wn)), u)

=
1
q
‖Jp(yn) − tnA∗Jp(wn)‖q − 〈u, Jp(yn)〉

+ tn〈A(u), Jp(wn)〉 +
1
p
‖u‖p

≤ 1
q
‖Jp(yn)‖q − tn〈Ayn, Jp(wn)〉 +

Cq(tn‖A‖)q

q
‖Jp(wn)‖q

− 〈u, Jp(yn)〉 + tn〈Au, Jp(wn)〉 +
1
p
‖u‖p

=
1
q
‖yn‖q − 〈u, Jp(yn)〉 +

1
p
‖u‖p + tn〈A(u) − A(yn), Jp(wn)〉

+
Cq(tn‖A‖)q

q
‖wn‖q

= Δp(yn, u) + tn〈A(u) − A(yn), Jp(wn)〉 +
Cq(tn‖A‖)q

q
‖wn‖q

≤ Δp(yn, u) − (tn − Cq(tn‖A‖)q

q
)‖wn‖p.
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From the condition (1.3), we obtain that

Δp(zn, u) ≤ Δp(yn, u). (3.5)

So, from (3.2), (3.3) and (3.5), we get that u ∈ Hn. Hence, S ⊂ Hn for
all n ≥ 0.

Finally, we show that S ⊂ Dn for all n ≥ 0. Indeed, D0 = E, so
S ⊂ D0. Suppose that S ⊂ Dn for some n ≥ 0, then S ⊂ Hn ∩ Dn. Thus,
from xn+1 = ΠHn∩Dn

(x0) and (2.6), we have

〈xn+1 − u, Jp(x0) − Jp(xn+1)〉 ≥ 0,

so that u ∈ Dn+1. By induction, we obtain that S ⊂ Dn for all n ≥ 0. �

Proposition 3.2. In the Algorithm 3.1, we have that xn+1−xn → 0 as n → ∞.

Proof. From the Proposition 3.1, we have that the sequence {xn} is well-
defined.

Fixing u ∈ S. It follows form xn+1 = ΠHn∩Dn
(x0) and (2.7) that

Δp(xn+1, u) ≤ Δp(x0, u). (3.6)

Hence, the sequence {Δp(xn, u)} is bounded. Thus, from (2.4), the sequence
{xn} also is bounded.

Now, from xn+1 ∈ Dn and from the definition of Dn, we have

〈xn − xn+1, Jp(x0) − Jp(xn)〉 ≥ 0. (3.7)

So, we obtain that

〈xn − x0, Jp(x0) − Jp(xn)〉 ≥ 〈xn+1 − x0, Jp(x0) − Jp(xn)〉. (3.8)

Thus, from (2.4), we have

〈xn+1 − x0, Jp(x0) − Jp(xn)〉 ≥ Δp(xn, x0) + Δp(x0, xn). (3.9)

Hence, from (2.3), we get that

−Δp(xn, xn+1) + Δp(xn, x0) + Δp(x0, xn+1) ≥ Δp(xn, x0) + Δp(x0, xn).

This is equivalent to

Δp(x0, xn+1) ≥ Δp(x0, xn) + Δp(xn, xn+1), (3.10)

which implies that the sequence {Δp(x0, xn)} is increasing. Thus, from the
boundedness of {Δp(x0, xn)}, there is the finite limit

a = lim
n→∞ Δp(x0, xn).

So, from (3.10), we obtain that limn→∞ Δp(xn, xn+1) = 0. It follows from
(2.4) that

lim
n→∞ ‖xn+1 − xn‖ = 0.

�

Proposition 3.3. In the Algorithm 3.1, we have the sequences {xn−yn}, {xn−
zn} and {xn − tn} converge to zero as n → ∞.
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Proof. Since xn+1 ∈ Hn, we have

Δp(tn, xn+1) ≤ Δp(zn, xn+1) ≤ Δ(yn, xn+1) ≤ Δ(xn, xn+1).

Thus, from the Proposition 3.2 (Δ(xn, xn+1) → 0), we obtain that

Δp(tn, xn+1) → 0, Δp(zn, xn+1) → 0, Δ(yn, xn+1) → 0.

It follows from (2.4) that

‖xn+1 − tn‖ → 0, ‖xn+1 − zn‖ → 0, ‖xn+1 − yn‖ → 0

which combining with ‖xn+1 − xn‖ → 0, we get that

xn − tn → 0, xn − zn → 0, and xn − yn → 0.

�

Proposition 3.4. In the Algorithm 3.1, we have that ωw(xn) ⊂ S.

Proof. We will prove this proposition by several steps.
Clearly, the ωw(xn) 
= ∅ because the {xn} is bounded. Let x̄ ∈ ωw(xn),

there is a subsequence {xnk
} of {xn} which converges weakly to x̄.

Step 1. x̄ ∈ ⋂K
k=1 F (Tk)

From the Proposition 3.3, we have tn − zn → 0 and it follows that
Δp(tn, zn) → 0. Thus, from the definition of tn, we obtain that Δp(tk,n, zn) →
0, that is Δp(Tk(zn), zn) → 0 for all k = 1, 2, . . . ,K. Therefore, we obtain that
x̄ ∈ F̂ (Tk) = F (Tk) for all k = 1, 2, . . . ,K. This implies that x̄ ∈ ⋂K

k=1 F (Tk).
Step 2. x̄ ∈ ⋂N

i=1 Ci

From Proposition 3.3, we have Δp(yn, xn) → 0. So, it follows from the
definition of yn that Δp(yi,n, xn) → 0 and hence

‖yi,n − xn‖ → 0, (3.11)

for all i = 1, 2, . . . , N .
We need to prove that Δp(x̄,ΠCi

(x̄)) = 0 for all i = 1, 2, . . . , N . Indeed,
from (2.3), (2.6) and (2.4), we have the following estimate

Δp(x̄,ΠCi
(x̄)) ≤ 〈x̄ − ΠCi

x̄, Jp(x̄) − Jp(ΠCi
(x̄))〉

= 〈x̄ − xnk
, Jp(x̄) − Jp(ΠCi

(x̄))〉
+ 〈xnk

− ΠCi
(xnk

), Jp(x̄) − Jp(ΠCi
(x̄))〉

+ 〈ΠCi
(xnk

) − ΠCi
(x̄), Jp(x̄) − Jp(ΠCi

(x̄))〉
≤ 〈x̄ − xnk

, Jp(x̄) − Jp(ΠCi
(x̄))〉

+ 〈xnk
− ΠCi

(xnk
), Jp(x̄) − Jp(ΠCi

(x̄))〉
= 〈x̄ − xnk

, Jp(x̄) − Jp(ΠCi
(x̄))〉

+ 〈xnk
− yi,nk

, Jp(x̄) − Jp(ΠCi
(x̄))〉.

From (3.11), letting k → ∞ yields Δp(x̄,ΠCi
(x̄)) = 0 for all i = 1, 2, . . . , N ,

that is x̄ ∈ Ci for all i = 1, 2, . . . , N or x̄ ∈ ⋂N
i=1 Ci.
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Step 3. x̄ ∈ ⋂M
j=1 A−1Qj

From the Proposition 3.3, we have Δp(zn, yn) → 0. Thus, from the
definition of zn, we get that Δp(zj,n, yn) → 0 and hence we obtain

‖zj,n − yn‖ → 0, (3.12)

for all j = 1, 2, . . . ,M .
Since E is uniformly Banach space, the duality mapping Jp is uniformly

continuous on bounded sets (see [17, Theorem 2.16]) and hence we have

tnA∗Jp(I − PQj
)A(yn) = Jp(yn) − Jp(zj,n) → 0.

Since 0 < t ≤ tn for all n, we obtain

‖A∗Jp(I − PQj
)A(yn)‖ → 0. (3.13)

Let us now fix some u ∈ S, then A(u) ∈ Qj for all j = 1, 2, . . . ,M . It follows
from (2.5) that

‖(I − PQj
)A(ynk

)‖p = 〈(I − PQj
)A(ynk

), Jp(I − PQj
)A(ynk

)〉
= 〈A(ynk

) − A(u), Jp(I − PQj
)A(ynk

)〉
+ 〈A(u) − PQj

A(ynk
), Jp(I − PQj

)A(ynk
)〉

≤ 〈A(ynk
) − A(u), Jp(I − PQj

)A(ynk
)〉

≤ K0‖(I − PQj
)A(ynk

)‖p−1,

which combines with (3.13), we obtain that

‖(I − PQj
)A(ynk

)‖ → 0 (3.14)

for all j = 1, 2, . . . ,M and K0 = ‖A‖(supk ‖ynk
‖ + ‖u‖) < ∞.

Now, from (2.5), we have

‖(I − PQj
)A(x̄)‖p = 〈A(x̄) − PQj

A(x̄), Jp(A(x̄) − PQj
A(x̄))〉

= 〈A(x̄) − A(ynk
), Jp(A(x̄) − PQj

A(x̄))〉
+ 〈A(ynk

) − PQj
A(x̄), Jp(A(x̄) − PQj

A(x̄))〉
+ 〈PQj

A(x̄) − A(ynk
), Jp(A(x̄) − PQj

A(x̄))〉
≤ 〈A(x̄) − A(ynk

), Jp(A(x̄) − PQj
A(x̄))〉

+ 〈A(ynk
) − PQj

A(x̄), Jp(A(x̄) − PQj
A(x̄))〉.

From the continuity of A, xn − yn → 0 and xnk
⇀ x̄, we get that

A(ynk
) ⇀ A(x̄). Hence, letting k → ∞ and using (3.14), we obtain

‖A(x̄) − PQj
A(x̄)‖ = 0,

for all j = 1, 2, . . . ,M , that is A(x̄) ∈ ⋂M
j=1 A−1Qj .

Thus, from Step 1, Step 2 and Step 3, we conclude that x̄ ∈ S. Since x̄
is arbitrary, ωw(xn) ⊂ S. �

Now, we are in position to prove our main result.

Theorem 3.5. In the Algorithm 3.1, we have that the sequence {xn} converges
strongly to x† = ΠS(x0), as n → ∞.
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Proof. Suppose that {xnk
} is a subsequence of {xn} such that xnk

⇀ x∗.
Then, from the Proposition 3.4 we have x∗ ∈ S.

Since xn+1 = ΠHn∩Dn
(x0), xn+1 ∈ Dn. Thus, from ΠS(x0) ∈ S ⊂ Dn,

we have

Δp(xn+1, x0) ≤ Δp(ΠSx0, x0),

which combines with Δp(xn+1, x0) ≥ Δp(xn, x0), we obtain that

Δp(xn, x0) ≤ Δp(ΠSx0, x0), ∀n ≥ 0. (3.15)

Thus, from (2.2), (2.3) and (3.15), we get

Δp(xnk
,ΠS(x0)) = Δp(xnk

, x0) + Δp(x0,ΠS(x0))

+ 〈xnk
− x0, Jp(x0) − Jp(ΠS(x0))〉

≤ Δp(ΠS(x0), x0) + Δp(x0,ΠS(x0))

+ 〈ΠS(x0) − x0, Jp(x0) − Jp(ΠS(x0))〉
+ 〈xnk

− ΠS(x0), Jp(x0) − Jp(ΠS(x0))〉
= 〈xnk

− ΠS(x0), Jp(x0) − Jp(ΠS(x0))〉.
So, we have

lim sup
k→∞

Δp(xnk
,ΠS(x0)) ≤ lim sup

k→∞
〈xnk

− ΠS(x0), Jp(x0) − Jp(ΠS(x0))〉
≤ 〈x∗ − ΠS(x0), Jp(x0) − Jp(ΠS(x0))〉 ≤ 0,

which implies that limk→∞ Δp(xnk
,ΠS(x0)) = 0 and hence xnk

→ ΠS(x0)
thanks to (2.4). By the uniqueness of Bregman projection ΠS(x0), we obtain
that the sequence {xn} converges weakly to ΠS(x0). Now, from (2.4), there
exists a τ > 0 such that

τ‖xn − ΠS(x0)‖ ≤ 〈xn − ΠS(x0), Jp(x0) − Jp(ΠS(x0))〉.
Letting n → ∞, we conclude that xn → x† = ΠS(x0). �

Next, from Theorem 3.5, we have two following corollaries. First, we
have an algorithm for solving the MSFP in two Banach spaces.

Corollary 3.6. Let Ci, i = 1, 2, . . . , N and Qj, j = 1, 2, . . . ,M be the non-
empty closed convex subsets of two p-uniformly convex and uniformly smooth
Banach spaces E and F , respectively. Let A : E → F be a bounded linear op-
erator. Suppose that S =

( ⋂N
i=1 Ci

) ⋂ (⋂M
j=1 A−1(Qj)

) 
= ∅. If the sequence
{tn} satisfies the condition (1.3), then the sequence {xn} generated by x0 ∈ E
and

yi,n = ΠCi
(xn), i = 1, 2, . . . , N,

Choose in such that Δp(yin,n, xn) = maxi=1,...,N Δp(yi,n, xn), let yn =yin,n,

zj,n = J∗
q [Jp(yn) − tnA∗Jp(I − PQj

)A(yn)], j =1, 2, . . . , M

Choose jn such that Δp(zjn,n, yn) = maxj=1,...,M Δp(zj,n, yn), let zn =zjn,n,
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Hn = {z ∈ E : Δp(zn, z) ≤ Δp(yn, z) ≤ Δp(xn, z)},

Dn = {z ∈ E : 〈xn − z, Jp(x0) − Jp(xn)〉 ≥ 0},

xn+1 = ΠHn∩Dn
(x0), n ≥ 0,

converges strongly to x† = ΠS(x0), as n → ∞.

Proof. Apply Theorem 3.5 with Tk(x) = x for all x ∈ E and for all k =
1, 2, . . . , K, we get the proof of this corollary. �

Finally, we have the following result for the problem of finding a common
fixed point of a finite family of L-BSNE operators in Banach spaces.

Corollary 3.7. Let E be a p-uniformly convex and uniformly smooth Banach
space. Let Tk : E → E, k = 1, 2, . . . ,K be the left Bregman strongly nonex-
pansive mappings such that F̂ (Tk) = F (Tk) and S =

⋂K
k=1 F (Tk) 
= ∅. Then

the sequence {xn} generated by x0 ∈ E and

tk,n = Tk(xn), k = 1, 2, . . . ,K,

Choose kn such that Δp(tkn,n, xn)=maxk=1,...,K Δp(tk,n, xn), let tn = tkn,n,

Hn = {z ∈ E : Δp(tn, z) ≤ Δp(xn, z)},

Dn = {z ∈ E : 〈xn − z, Jp(x0) − Jp(xn)〉 ≥ 0},

xn+1 = ΠHn∩Dn
(x0), n ≥ 0,

converges strongly to x† = ΠS(x0), as n → ∞.

Proof. Apply Theorem 3.5 with E ≡ F and Ci = Qj = E for all i =
1, 2, . . . , N and for all j = 1, 2, . . . ,M , and A = I, we get the proof of this
corollary. �

4. Numerical test

Example 4.1. We consider the Problem (3.1) with Ci ⊂ R
n and Qj ⊂ R

m

which are defined by

Ci = {x ∈ R
N : 〈aC

i , x〉 ≤ bC
i },

Qj = {x ∈ R
M : 〈aQ

j , x〉 ≤ bQ
j },

where aC
i ∈ R

N , aQ
j ∈ R

M and bC
i , bQ

j ∈ R for all i = 1, 2, . . . , N and for all
j = 1, 2, . . . ,M , Tk is metric projection from R

N onto Sk with

Sk = {x ∈ R
n : ‖x − Ik‖2 ≤ R2

k},

for all k = 1, 2, . . . ,K, and A is bounded linear operator from R
N into R

M

with its matrix which has the elements are randomly generated in [2, 4].
Next, we take the randomly generated values of the coordinates of aC

i ,
aQ

j in [1, 3] and bC
i , bQ

j in [2,4], the center Ik in [−1, 1] and the radius Rk of
Sk in [2, 10], respectively.

Clearly, the S =
( ⋂N

i=1 Ci

) ⋂ ( ⋂M
j=1 A−1(Qj)

) ⋂ ( ⋂K
k=1 F (Tk)

) 
= ∅,
because 0 ∈ S.
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Table 1. Table of numerical results for Example 4.1

Stop condition: TOLn < 10−5 Stop condition: TOLn < 10−6

No. TOLn n No. TOLn n

1 9.731910437302011e−006 525 1 9.822579488456307e−007 2692
2 9.723805875618304e−006 382 2 9.883943056654116e−007 1084
3 9.740930951261035e−006 594 3 9.991787341354400e−007 1878
4 9.817880940634140e−006 793 4 9.821636271493920e−007 1922
5 9.773956068159787e−006 250 5 9.984864719310806e−007 1644

Now, we will test the Algorithm 3.1, with the initial x0 ∈ R
N where

its coordinates are also randomly generated in [−5, 5], N = 20, M = 40,

N = 50, M = 100, K = 200 and tn =
1

2‖A‖2 . After five attempts with

randomized data, we obtain the following table of results (see Table 1).

Remark 4.2. In the above example, the function TOL is defined by

TOLn =
1
N

N∑
i=1

‖xn − PCi
xn‖2 +

1
M

M∑
j=1

‖Axn − PQj
Axn‖2

+
1
K

K∑
k=1

‖xn − Tkxn‖2,

for all n ≥ 1. Note that, if at the nth step, TOLn = 0 then xn ∈ S that is,
xn is a solution of this problem.

Example 4.3. We take E = F = L2([0, 1]) with the inner product

〈f, g〉 =
∫ 1

0

f(t)g(t)dt

and the norm

‖f‖ =

(∫ 1

0

f2(t)dt

)1/2

,

for all f, g ∈ L2([0, 1]).
Now, let

Ci = {x ∈ L2([0, 1]) : 〈ai, x〉 = bi},

where ai(t) = ti−1, bi =
1

i + 1
for all i = 1, 2, . . . , N and t ∈ [0, 1],

Qj = {x ∈ L2([0, 1]) : 〈cj , x〉 ≥ dj},

in which cj(t) = t + j, dj =
1
4

for all j = 1, 2, . . . ,M and t ∈ [0, 1], and

Tk = PSk
,

in here Sk = {x ∈ L2([0, 1]) : ‖x − Ik‖ ≤ k + 1}, with Ik(t) = t + k for all
k = 1, 2, . . . , K and t ∈ [0, 1].
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Table 2. Table of numerical results for Example 4.3

Stop condition: ‖xn+1 − xn‖ < err
tn = 1, x0(t) = t2 tn = 1, x0(t) = exp(t)

err ‖xn+1 − xn‖ n err ‖xn+1 − xn‖ n

10−2 9.923267213e−003 128 10−2 9.069246165e−003 125
10−3 9.909406522e−004 2159 10−3 9.953384192e−004 1091
10−4 9.983270545e−005 47,840 10−4 9.979431075e−005 11,352

0 500 1000 1500 2000 2500
10−3

10−2

10−1

100

Number of interations

||x
n+

1−x
n||

x0(t)=exp(t)

x0(t)=t2

Figure 1. The behavior of ‖xn+1 − xn‖ with the stop con-
dition ‖xn+1 − xn‖ < 10−3

Let us assume that

A : L2([0, 1]) −→ L2([0, 1]), (Ax)(t) =
x(t)
2

.

We consider the problem of finding an element x† such that

x† ∈ S =

(
N⋂

i=1

Ci

)⋂(
M⋂

j=1

A−1(Qj)

)⋂ (
K⋂

k=1

F (Tk)

)
. (4.1)

It is easy to see that S 
= ∅, because x(t) = t ∈ S.
We have

ΠCi
(x) = PCi

(x) =
bi − 〈ai, x〉

‖ai‖2 ai + x,

PQj
(x) = max

{
0,

dj − 〈cj , x〉
‖cj‖2

}
cj + x,
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Figure 2. The behavior of xn(t) with the stop condition
‖xn+1 − xn‖ < 10−2
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The solution x*(t)=t
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Figure 3. The behavior of xn(t) with the stop condition
‖xn+1 − xn‖ < 10−3

and

Tk(x) =

⎧⎨
⎩

x, if ‖x − Ik‖ ≤ k + 1,

Ik +
k + 1

‖x − Ik‖ (x − Ik), otherwise.

Using Algorithm 3.1 with N = 10, M = 20 and K = 40, we obtain the
following table of numerical results.

The behavior of ‖xn+1 − xn‖ in Table 2 is described in the Fig. 1.
The behaviors of the approximation solution xn(t) in both of the cases

‖xn+1 − xn‖ < 10−2 and ‖xn+1 − xn‖ < 10−3 are presented in Figs. 2 and 3.
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Figure 4. The behavior of xn(t) with the stop condition
‖xn+1 − xn‖ < 10−7

Table 3. Table of numerical results for Problem (4.2)

Stop condition: ‖xn+1 − xn‖ < err
Algorithm (1.6) Algorithm (3.1)

err ‖xn+1 − xn‖ n err ‖xn+1 − xn‖ n

10−6 9.814293000e−007 18 10−6 7.160416379e−007 23
10−7 9.750563778e−008 56 10−7 9.075352447e−008 26
10−8 9.976658166e−009 174 10−8 3.552713678e−015 30

Now, we consider a special case of problem (4.1) as follows:

Find an element x† ∈ C ∩ A−1(Q) ∩ F (T ), (4.2)

where C = C2, Q = Q2 and T = T2.

Applying algorithms (1.6) and (3.1) with tn = 1 and αn =
1
n

for all

n ≥ 1, and u(t) = x0(t) = exp(t2 + 1) for all t ∈ [0, 1], we get the following
table of numerical results.

Figure 4 show the behaviors of the approximation solutions xn(t) for
the case ‖xn+1 − xn‖ < 10−7 in Table 3.
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