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1. Introduction

Let C be a nonempty closed convex subset of a real Banach space E. Let
f : C×C → � be a bifunction with f(x, x) = 0 for all x ∈ C. The equilibrium
problem (shortly, EP) for f on C is stated as follows:

Find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C. (EP)

Let us denote by EP(f, C) the solution set of problem EP. Mathemat-
ically, problem EP is a generalization of many mathematical models includ-
ing variational inequality problems, fixed point problems, optimization prob-
lems and Nash equilibrium problems [5,34]. In recent years, problem EP has
received a lot of attention by many authors and some notable methods have
been proposed for solving problem EP such as: gap function methods [31],
auxiliary problem principle methods [30] and proximal point methods [33,35].
One of the most popular methods for solving problem EP is the proximal-
like method [15]. This method is based on the auxiliary problem principle
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introduced by Cohen [13] and extended by Mastroeni to problem EP in a real
Banach space [30]. Recently, the convergence of the proximal point method
has been further investigated and extended in [37] under the assumptions that
the function f is pseudomonotone and satisfies a Lipschitz-type condition on
C. Let us recall here that f is pseudomonotone on C if

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C

and that f satisfies the Lipschitz-type condition on C if there exist two con-
stants c1, c2 > 0 such that, for all x, y ∈ C,

f(x, y) + f(y, z) ≥ f(x, z) − c1||x − y||2 − c2||y − z||2. (1)

The methods studied in [37] are also called the extragradient methods
due to the results obtained by Korpelevich in [27]. In Euclidean spaces, the
extragradient method [15,37] generates two iterative sequences {xn} and {yn}
defined for each integer n by{

yn = arg min {ρf(xn, y) + G(xn, y) : y ∈ C} ,

xn+1 = arg min {ρf(yn, y) + G(xn, y) : y ∈ C} ,

where x0 ∈ C, ρ is a suitable parameter and G(x, y) is the Bregman distance
function defined on C×C. In recent years, the extragradient method has been
widely and intensively investigated in Hilbert spaces by several authors, see
for instance [3,10,18–23,36,43,44,48,49]. In Banach spaces, approximations
of solutions to problem EP are frequently based on the resolvent Jrf of the
monotone bifunction f . More precisely, given x0 ∈ C, a sequence {xn} is
generated by the iteration xn+1 = Jrf (xn) where Jrf (x), with x ∈ E and
r > 0, is the unique solution of the following regularized equilibrium problem
(REP):

Find z ∈ C such that: f(z, y) +
1
r

〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C. (2)

Here, J : E → 2E∗
is the normalized duality mapping on E. A disad-

vantage of using the resolvent Jrf is that the non-linear inequality (2) seems
to be more difficult to solve numerically than the extragradient iteration.
Another advantage of the extragradient method is that it can also be used
for the more general class of pseudomonotone bifunctions.
Let S : C → C be a mapping whose fixed point set is denoted by Fix(S),
i.e., Fix(S) = {x ∈ C : S(x) = x}. The problem of finding a common solu-
tion of an equilibrium problem and a fixed point problem is a task arising
in various fields of applicable mathematics, sciences, engineering and econ-
omy, see for example [14,26]. This happens, in particular, in practical models
when the constraint set of the problem is expressed as the fixed point set of a
mapping, see for instance [24,28,29]. Several methods for solving this prob-
lem in Banach spaces can be found, for instance, in [9,38,41,45,46,50,53].
Most of them use a hybrid method for solving simultaneously a regularized
equilibrium problem and a fixed point problem. The aim of these methods
is to construct closed convex subsets of the feasible set and to compute the
sequence of iterates by projecting the starting point x0 onto intersections
of these subsets. For example, in uniformly smooth and uniformly convex
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Banach spaces, Takahashi and Zembayashi [45] introduced the following iter-
ative scheme which is called the shrinking projection method:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C0 := C chosen arbitrarily,

yn = J−1(αnJxn + (1 − αn)JSxn),
un ∈ C such that f(un, y) + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)} ,

xn+1 = ΠCn+1(x0), n ≥ 0,

(3)

where S is a relatively nonexpansive mapping, f is monotone, φ is the Lya-
punov functional and ΠCn+1 denotes the generalized projection onto the
set Cn+1. Under suitable assumptions on the sequences {αn} and {rn}, the
authors proved that the sequence {xn} generated by (3) converges strongly
to the projection of x0 onto the set EP(f, C) ∩ Fix(S). On the other hand, a
class of more general mappings than the class of relatively nonexpansive map-
pings is the class of quasi-φ-nonexpansive (or relatively quasi-nonexpansive)
mappings. This class has been widely studied in recent years, see, e.g.,
[28,29,38,53]. Hence, we have naturally the following question:

Question: Is it possible to construct strongly convergent algorithms in Banach
spaces for solving pseudomonotone equilibrium problems and fixed point prob-
lems for quasi-φ- nonexpansive mappings without using the resolvent of the
bifunction and the hybrid (outer approximation) or shrinking projection meth-
ods?

To answer this question, motivated by the results obtained in [37,40,49] and
the Halpern iteration in [17], we propose two new iterative methods for
finding a common solution of an equilibrium problem for pseudomonotone
bifunctions and a fixed point problem for quasi-φ-nonexpansive mappings
in Banach spaces. The first algorithm combines the extended extragradient
method with the Halpern iteration. The strong convergence of the iterations
is proved under the φ-Lipschitz-type assumption of the equilibrium bifunc-
tion. To avoid this slightly strong assumption, we use the linesearch technique
to design the second algorithm having the same strong convergence to the
first one.
This paper is organized as follows: In Sect. 2, we recall some definitions and
preliminary results used in the next sections. Section 3 presents the Halpern
extragradient method and proves its convergence. In Sect. 4, we establish the
convergence of the Halpern linesearch algorithm. Finally, in Sect. 5, we study
and develop several numerical experiments to illustrate the convergence of
the proposed algorithms following the choice of stepsizes and parameters.

2. Preliminaries

In this section, we recall some definitions and results which will be used later.
We begin with several concepts and properties of a Banach space, see [2,16]
for more details.

Definition 2.1. A Banach space E is called



131 Page 4 of 32 D. V. Hieu and J. J. Strodiot JFPTA

(i) strictly convex if the unit sphere S1(0) = {x ∈ X : ||x|| ≤ 1} is strictly
convex, i.e., the inequality ||x + y|| < 2 holds for all x, y ∈ S1(0), x �= y;

(ii) uniformly convex if for any given ε > 0 there exists δ = δ(ε) > 0 such
that for all x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ = ε the inequality
‖x + y‖ ≤ 2(1 − δ) holds;

(iii) smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(4)

exists for all x, y ∈ S1(0);
(iv) uniformly smooth if the limit (4) exists uniformly for all x, y ∈ S1(0).

The modulus of convexity of E is the function δE : [0, 2] → [0, 1] defined
by

δE(ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x − y‖ = ε

}
for all ε ∈ [0, 2]. Note that E is uniformly convex if and only if δE(ε) > 0 for
all 0 < ε ≤ 2 and δE(0) = 0.
Let p > 1. A uniformly convex Banach space E is said to be p-uniformly
convex if there exists some constant c > 0 such that

δE(ε) ≥ cεp.

It is well known that the spaces Lp, lp and W p
m are p-uniformly convex

when p > 2 and 2-uniformly convex when 1 < p ≤ 2. Furthermore, any
Hilbert space H is uniformly smooth and 2-uniformly convex.

Let E be a real Banach space with its dual E∗. The dual product of
f ∈ E∗ and x ∈ E is denoted by 〈x, f〉 or 〈f, x〉. For the sake of simplicity,
the norms of E and E∗ are denoted by the same symbol ‖ ·‖. The normalized
duality mapping J : E → 2E∗

is defined by

J(x) =
{

f ∈ E∗ : 〈f, x〉 = ‖x‖2 = ‖f‖2
}

.

We have the following properties, see for instance [12,39]:
(i) If E is a smooth, strictly convex, and reflexive Banach space, then the

normalized duality mapping J : E → 2E∗
is single-valued, one-to-one,

and onto;
(ii) If E is a reflexive and strictly convex Banach space, then J−1 is norm

to weak ∗ continuous;
(iii) If E is a uniformly smooth Banach space, then J is uniformly continuous

on each bounded subset of E;
(iv) A Banach space E is uniformly smooth if and only if E∗ is uniformly

convex.
Next, we assume that E is a smooth, strictly convex, and reflexive

Banach space. In the sequel, we always use φ : E ×E → [0,∞) to denote the
Lyapunov functional defined by

φ(x, y) = ‖x‖2 − 2 〈x, Jy〉 + ‖y‖2 ,∀x, y ∈ E.

From the definition of φ, it is easy to show that φ has the following properties:
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(i) For all x, y, z ∈ E,

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2 . (5)

(ii) For all x, y, z ∈ E,

φ(x, y) = φ(x, z) + φ(z, y) + 2 〈z − x, Jy − Jz〉 . (6)

Particularly, when x = y, we have 〈y − z, Jy − Jz〉 = 1
2φ(y, z)+ 1

2φ(z, y).
(iii) For all x, y, z ∈ E and λ ∈ [0, 1],

φ(x, J−1(λJy + (1 − λ)Jz)) ≤ λφ(x, y) + (1 − λ)φ(x, z). (7)

Throughout this paper, we assume that C is a nonempty closed convex subset
of E.
Let S : C → C be a mapping with the fixed point set Fix(S). A point
p ∈ C is called an asymptotic fixed point [11] of S if there exists a sequence
{xn} ⊂ C converging weakly to p and such that ||xn − S(xn)|| → 0. The set
of asymptotic fixed points of S is denoted by F̂ (S). A mapping S : C → C
is called:
(i) nonexpansive if ||S(x) − S(y)|| ≤ ||x − y|| for all x, y ∈ C;
(ii) relatively nonexpansive [6] if Fix(S) �= ∅, Fix(S) = F̂ (S) and

φ(x∗, S(x)) ≤ φ(x∗, x), ∀x∗ ∈ Fix(S), x ∈ C;

(iii) quasi-φ-nonexpansive if Fix(S) �= ∅ and

φ(x∗, S(x)) ≤ φ(x∗, x), ∀x∗ ∈ Fix(S), x ∈ C;

(iv) demiclosed at zero if for any sequence {xn} ⊂ C converging weakly
to x such that {xn − S(xn)} converges strongly to 0, one has x ∈ C and
x ∈ Fix(S).
The fixed point set Fix(S) of a relatively nonexpansive mapping S in a
strictly convex and smooth Banach space is closed and convex [32, Proposi-
tion 2.4]. Since the proof in [32, Proposition 2.4] does not use the assump-
tion Fix(S) = F̂ (S), this conclusion is still true for the class of quasi-φ-
nonexpansive mappings.
We have the following results.

Lemma 2.1. [51] Let E be a uniformly convex Banach space and r > 0. Then,
there exists a strictly increasing, continuous and convex function g : [0, 2r] →
[0,+∞) such that g(0) = 0 and

||λx + (1 − λ)y||2 ≤ λ||x||2 + (1 − λ)||y||2 − λ(1 − λ)g(||x − y||),
for all λ ∈ [0, 1] and x, y ∈ Br = {z ∈ E : ||z|| ≤ r}.
Lemma 2.2. [25] Let E be an uniformly convex Banach space and r̄ > 0.
Then, there exists a strictly increasing, continuous and convex function ḡ :
[0, 2r̄] → [0,+∞) such that ḡ(0) = 0 and ḡ(||x − y||) ≤ φ(x, y) for all x, y ∈
Br̄ = {z ∈ E : ||z|| ≤ r̄}.
Lemma 2.3. [1] Let {xn} and {yn} be two sequences in an uniformly convex
and uniformly smooth real Banach space E. If φ(xn, yn) → 0 and either {xn}
or {yn} is bounded, then ‖xn − yn‖ → 0 as n → ∞.
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Lemma 2.4. [7,51] Let E be a 2—uniformly convex and smooth Banach space.
Then, for all x, y ∈ E, we have

||x − y|| ≤ 2
c2

||Jx − Jy||,
where 1

c (0 < c ≤ 1) is the 2—uniformly convex constant of E.

Lemma 2.5. [7,8] Let E be a 2—uniformly convex and smooth Banach space.
Then, there exists τ > 0 such that

〈x − y, Jx − Jy〉 ≥ τ ||x − y||2, ∀x, y ∈ E.

The generalized projection ΠC : E → C is defined by

ΠC(x) = arg min
y∈C

φ(x, y).

If E is a Hilbert space, then φ(x, y) = ||x − y||2. Thus, the generalized
projection ΠC is the metric projection PC . In what follows, we need the
following properties of the functional φ and the generalized projection ΠC .

Lemma 2.6. [1] Let E be a smooth, strictly convex, and reflexive Banach space
and C a nonempty closed convex subset of E. Then, the following conclusions
hold:
(i) φ(x,ΠC(y)) + φ(ΠC(y), y) ≤ φ(x, y),∀x ∈ C, y ∈ E;
(ii) if x ∈ E, z ∈ C, then z = ΠC(x) iff 〈y − z, Jx − Jz〉 ≤ 0,∀y ∈ C;
(iii) φ(x, y) = 0 iff x = y.

Let E be a real Banach space. In [1], Alber studied the function V : E×E∗ →
� defined by

V (x, x∗) = ||x||2 − 2 〈x, x∗〉 + ||x∗||2.
Then, from the definition of the Lyapunov functional φ(x, y), it follows that

V (x, x∗) = φ(x, J−1x∗).

Lemma 2.7. [1] Let E be a reflexive, strictly convex and smooth Banach space
with its dual E∗. Then

V (x, x∗) + 2
〈
J−1x − x∗, y∗〉 ≤ V (x, x∗ + y∗), ∀x ∈ E, x∗, y∗ ∈ E∗.

In the sequel, we use the following definitions:
The normal cone NC to a set C at the point x ∈ C is defined by

NC(x) = {x∗ ∈ E∗ : 〈x − y, x∗〉 ≥ 0, ∀y ∈ C} .

Let g : C → � be a function. The subdifferential of g at x is defined by

∂g(x) = {w ∈ E∗ : g(y) − g(x) ≥ 〈w, y − x〉 , ∀y ∈ C} .

Remark 2.1. It follows easily from the definitions of the subdifferential and
φ(x, y) that

∂1φ(x, y) := ∂φ(., y)(x) = {2(Jx − Jy)} .

We have the following result, see [47, Section 7.2, Chapter 7] for more details.
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Lemma 2.8. Let C be a nonempty convex subset of a Banach space E and
g : C → � ∪ {+∞} be a convex, subdifferentiable and lower semicontinu-
ous function. Furthermore, the function g satisfies the following regularity
condition:

Either int(C) �= ∅ or g is continuous at a point in C.

Then, x∗ is a solution to the following convex optimization problem
min {g(x) : x ∈ C} if and only if 0 ∈ ∂g(x∗) + NC(x∗), where ∂g(.) denotes
the subdifferential of g and NC(x∗) is the normal cone to C at x∗.

We also need the following two technical lemmas to prove the strong conver-
gence of the proposed algorithms.

Lemma 2.9. [42,52] Let {an} be a sequence of nonnegative real numbers. Sup-
pose that

an+1 ≤ (1 − γn)an + γnδn

for all n ≥ 0, where the sequences {γn} in (0, 1) and {δn} in � satisfy the
conditions: limn→∞ γn = 0,

∑∞
n=1 γn = ∞ and lim supn→∞ δn ≤ 0. Then

limn→∞ an = 0.

Lemma 2.10. [28, Remark 4.4] Let {εn} be a sequence of non-negative real
numbers. Suppose that for any integer m, there exists an integer p such that
p ≥ m and εp ≤ εp+1. Let n0 be an integer such that εn0 ≤ εn0+1 and define,
for all integer n ≥ n0,

τ(n) = max {k ∈ N : n0 ≤ k ≤ n, εk ≤ εk+1} .

Then, 0 ≤ εn ≤ ετ(n)+1 for all n ≥ n0. Furthermore, the sequence {τ(n)}n≥n0

is non-decreasing and tends to +∞ as n → ∞.

3. Halpern extragradient method

In this section, we introduce an algorithm for finding a solution of an equi-
librium problem which is also a solution of a fixed point problem. The algo-
rithm combines the extragradient method with the Halpern iteration. The
algorithm is designed as follows:

Algorithm 3.1. (Halpern extragradient method).
Initialization. Choose x0, u ∈ C. The sequences {λn}, {αn}, {βn} satisfy
Condition C below.
Step 1. Solve successively the two optimization problems

yn = arg min
{

λnf(xn, y) +
1
2
φ(y, xn) : y ∈ C

}
,

zn = arg min
{

λnf(yn, y) +
1
2
φ(y, xn) : y ∈ C

}
.

Step 2. Compute xn+1=ΠC

(
J−1(αnJu+(1−αn)(βnJzn+(1 − βn)JSzn))

)
.
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Some explicit formulas for computing J and J−1 in the Banach spaces lp, Lp

and W p
m can be found in [2, page 36]. In order to establish the convergence

of Algorithm 3.1, we consider the following conditions for the bifunction f ,
the mapping S and the parameter sequences {λn}, {αn}, {βn}.
Condition A:

A0. Either int(C) �= ∅ or for each x ∈ C, the function f(x, ·) is continuous
at a point in C.
A1. f is pseudomonotone on C and f(x, x) = 0 for all x ∈ C.
A2. f is φ-Lipschitz-type continuous on C, i.e., there exist two positive con-
stants c1, c2 such that

f(x, y) + f(y, z) ≥ f(x, z) − c1φ(x, y) − c2φ(y, z), ∀x, y ∈ C.

A3. lim supn→∞ f(xn, y) ≤ f(x, y) for each sequence {xn} converging weakly
to x ∈ C and for all y ∈ C.
A4. f(x, ·) is convex and subdifferentiable on C for every x ∈ C.
Condition B:

B1. S is a quasi-φ-nonexpansive mapping.
B2. I − S is demiclosed at zero.
Condition C:

C1. 0 < λ ≤ λn ≤ λ < min
{

1
2c1

, 1
2c2

}
.

C2. {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑∞

n=1 αn = ∞.
C3. {βn} ⊂ (0, 1), 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

It is easy to show that the solution set EP(f, C) is closed and convex
when f satisfies conditions A1, A3 and A4. Since the fixed point set Fix(S) of
S is closed and convex under condition B1, the solution set F := EP(f, C) ∩
Fix(S) is also closed and convex.
In this paper, we assume that the solution set F := EP(f, C) ∩ Fix(S) is
nonempty, with the consequence that the generalized projection ΠF (u) exists
and is unique for all u ∈ E.

Let us mention here that when E is a Hilbert space, the φ-Lipschitz-type
condition of f becomes the Lipchitz-type condition introduced by Mastroeni
in [30].

In the following three lemmas, we assume that the nonempty closed
convex set C is a subset of a uniformly smooth and uniformly convex Banach
space E.

Lemma 3.1. Let {xn}, {yn} and {zn} be the sequences generated by Algorithm
3.1. Then, the followings hold for all x∗ ∈ EP(f, C), y ∈ C and n ≥ 0.

(i) λnf(yn, y) ≥ 〈Jyn−Jxn, yn−zn〉 + 〈Jzn − Jxn, zn − y〉−c1λnφ(yn, xn)
− c2λnφ(zn, yn).

(ii) φ(x∗, zn) ≤ φ(x∗, xn) − (1 − 2λnc1)φ(yn, xn) − (1 − 2λnc2)φ(zn, yn).

Proof. Let n be fixed.
(i) From the definition of yn and Lemma 2.8, we have

0 ∈ λn∂2f(xn, yn) +
1
2
∂1φ(yn, xn) + NC(yn).
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Thus, there exist w ∈ ∂2f(xn, yn) and w̄ ∈ NC(yn) such that

λnw + Jyn − Jxn + w̄ = 0.

Hence,

〈Jyn − Jxn, yn − y〉 = λn 〈w, y − yn〉 + 〈w̄, y − yn〉 , ∀y ∈ C.

This together with the definition of NC implies that

〈Jyn − Jxn, yn − y〉 ≤ λn 〈w, y − yn〉 , ∀y ∈ C.

Since w ∈ ∂2f(xn, yn), we have

f(xn, y) − f(xn, yn) ≥ 〈w, y − yn〉 , ∀y ∈ C.

From the last two inequalities, we obtain

λn (f(xn, y) − f(xn, yn)) ≥ 〈Jyn − Jxn, yn − y〉 , ∀y ∈ C. (8)

Substituting y = zn into the last inequality, we obtain

λn (f(xn, zn) − f(xn, yn)) ≥ 〈Jyn − Jxn, yn − zn〉 .

From the φ-Lipschitz-type condition of f , we have

f(yn, zn) ≥ f(xn, zn) − f(xn, yn) − c1φ(yn, xn) − c2φ(zn, yn).

Two last inequalities imply that

λnf(yn, zn) ≥ 〈Jyn − Jxn, yn − zn〉 − c1λnφ(yn, xn) − c2λnφ(zn, yn). (9)

Similarly to inequality (8), from the definition of zn, we obtain

λn (f(yn, y) − f(yn, zn)) ≥ 〈Jzn − Jxn, zn − y〉 ,∀y ∈ C. (10)

Thus,

λnf(yn, y) ≥ λnf(yn, zn) + 〈Jzn − Jxn, zn − y〉 ,∀y ∈ C.

This together with inequality (9) comes to the desired conclusion.
(ii) Substituting y = x∗ into (10), we obtain

λn (f(yn, x∗) − f(yn, zn)) ≥ 〈Jzn − Jxn, zn − x∗〉 .

Since x∗ ∈ EP(f, C), f(x∗, yn) ≥ 0. It follows from the pseudomonotonicity
of f that f(yn, x∗) ≤ 0. This together with the last inequality implies that

〈Jzn − Jxn, x∗ − zn〉 ≥ λnf(yn, zn). (11)

It follows from relations (9) and (11) that

2 〈Jzn − Jxn, x∗ − zn〉 ≥ 2 〈Jyn − Jxn, yn − zn〉 − 2c1λnφ(yn, xn)
−2c2λnφ(zn, yn).

This together with relation (6) leads to the desired conclusion. Lemma 3.1 is
proved. �

Next, we will prove the boundedness of all the sequences generated by Algo-
rithm 3.1.

Lemma 3.2. The sequences {xn}, {yn}, {zn} and {Szn} are bounded.
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Proof. Put tn = J−1(βnJzn +(1−βn)JSzn). Thus, xn+1 = ΠC

(
J−1(αnJu+

(1 − αn)Jtn)
)
. It follows from Lemma 2.6(i) and relation (7) that, for all

x∗ ∈ F := EP(f, C) ∩ Fix(S),

φ(x∗, xn+1) = φ(x∗,ΠC

(
J−1(αnJu + (1 − αn)Jtn)

)
)

≤ φ(x∗, J−1(αnJu + (1 − αn)Jtn))
≤ αnφ(x∗, u) + (1 − αn)φ(x∗, tn). (12)

From relation (7), the property of S and Lemma 3.1(ii),

φ(x∗, tn) = φ(x∗, J−1(βnJzn + (1 − βn)JSzn))
≤ βnφ(x∗, zn) + (1 − βn)φ(x∗, Szn)
≤ βnφ(x∗, zn) + (1 − βn)φ(x∗, zn)
= φ(x∗, zn) ≤ φ(x∗, xn). (13)

It follows from (12) and (13) that

φ(x∗, xn+1) ≤ αnφ(x∗, u) + (1 − αn)φ(x∗, xn)
≤ max {φ(x∗, u), φ(x∗, xn)}
≤ · · ·
≤ max {φ(x∗, u), φ(x∗, x0)} .

This implies that the sequence {φ(x∗, xn)} is bounded. Thus, from (13), we
also obtain the boundedness of the sequences {φ(x∗, zn)} and {φ(x∗, tn)}.
Since φ(x∗, Szn) ≤ φ(x∗, zn) for all n, the sequence {φ(x∗, Szn)} is bounded.
This together with relation (5) implies that the sequences {xn}, {zn}, {Szn}
are bounded. The boundedness of the sequence {yn} follows from Lemma
3.1(ii), the hypothesis of λn and relation (5). This completes the proof of
Lemma 3.2. �
It follows from Lemma 3.2 that there exists r > 0 such that {xn} , {yn} , {zn} ,
{Szn} ⊂ Br = {z ∈ E : ||z|| ≤ r} for all n ≥ 0. From Lemma 2.1 and the def-
inition of J , there exists a strictly increasing, continuous and convex function
g : [0, 2r] → [0,+∞) such that g(0) = 0 and for all n ≥ 0,

||βnJzn+(1−βn)JSzn||2 ≤ βn||zn||2+(1−βn)||Szn||2−βn(1−βn)g(||Jzn−JSzn||).
(14)

Put wn = J−1(αnJu + (1 − αn)Jtn) and x† = ΠF (u), where tn = J−1(βnJzn +
(1 − βn)JSzn), and

Tn = (1 − 2λnc1)φ(yn, xn) + (1 − 2λnc2)φ(zn, yn) + βn(1 − βn)g(||Jzn − JSzn||).
(15)

From Lemma 3.2 and the conditions on {λn} and {βn}, we deduce that the
sequence {Tn} is bounded. Thus, there exists M > 0 such that

M = sup
n≥0

{
φ(x†, u) + Tn

}
. (16)

We have the following result which plays an important role in proving the
strong convergence of Algorithm 3.1.

Lemma 3.3. (i) Tn ≤ φ(x†, xn) − φ(x†, xn+1) + αnM for all n.
(ii) φ(x†, xn+1) ≤ (1 − αn)φ(x†, xn) + 2αn

〈
wn − x†, Ju − Jx†〉 for all n.
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Proof. From the definitions of tn, φ, relation (14) and the property of S, we
have

φ(x†, tn) = ||x†||2 − 2
〈
x†, Jtn

〉
+ ||tn||2.

= ||x†||2 − 2
〈
x†, βnJzn + (1 − βn)JSzn

〉
+ ||βnJzn + (1 − βn)JSzn||2.

≤ ||x†||2 − 2
〈
x†, βnJzn + (1 − βn)JSzn

〉
+ βn||zn||2 + (1 − βn)||Szn||2

−βn(1 − βn)g(||Jzn − JSzn||)
= βnφ(x†, zn) + (1 − βn)φ(x

†, Szn) − βn(1 − βn)g(||Jzn − JSzn||)
≤ βnφ(x†, zn) + (1 − βn)φ(x

†, zn) − βn(1 − βn)g(||Jzn − JSzn||)
= φ(x†, zn) − βn(1 − βn)g(||Jzn − JSzn||).

This together with relation (12) with x∗ = x† and Lemma 3.1 (ii) with
x∗ = x† implies that

φ(x†, xn+1) ≤ αnφ(x†, u) + (1 − αn)
[
φ(x†, zn) − βn(1 − βn)g(||Jzn − JSzn||)

]
≤ αnφ(x†, u)+(1−αn)

[
φ(x†, xn)−(1−2λnc1)φ(yn, xn)−(1−2λnc2)φ(zn, yn)

− βn(1 − βn)g(||Jzn − JSzn||)]
= αnφ(x†, u) + (1 − αn)

[
φ(x†, xn) − Tn

]
= (1 − αn)φ(x

†, xn) + αn

[
φ(x†, u) + Tn

]
− Tn

≤ φ(x†, xn) + Mαn − Tn.

Hence, we obtain the desired conclusion.
(ii) Note that xn+1 = ΠCwn where wn = J−1(αnJu + (1 − αn)Jtn). From
Lemmas 2.6(i), 2.7, the definitions of φ and V , and relation (7), we obtain

φ(x†, xn+1) = φ(x†,ΠCwn) ≤ φ(x†, wn)

= φ(x†, J−1(αnJu + (1 − αn)Jtn))

= V (x†, αnJu + (1 − αn)Jtn)

≤ V (x†, αnJu + (1 − αn)Jtn − αn(Ju − Jx†))

−2
〈
J−1(αnJu + (1 − αn)Jtn) − x†,−αn(Ju − Jx†)

〉
= V (x†, αnJx† + (1 − αn)Jtn) + 2αn

〈
wn − x†, Ju − Jx†〉

= φ(x†, J−1
(
αnJx† + (1 − αn)Jtn

)
) + 2αn

〈
wn − x†, Ju − Jx†〉

≤ αnφ(x†, x†) + (1 − αn)φ(x†, tn) + 2αn

〈
wn − x†, Ju − Jx†〉

≤ (1 − αn)φ(x†, xn) + 2αn

〈
wn − x†, Ju − Jx†〉 .

Now, we prove the first main result. �

Theorem 3.1. Let C be a nonempty closed convex subset of an uniformly
smooth and uniformly convex Banach space E. Assume that Conditions A,
B and C are satisfied and that the solution set F := EP(f, C) ∩ Fix(S) is
nonempty. Then, the sequences {xn}, {yn}, {zn} generated by Algorithm 3.1
converge strongly to ΠF (u).
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Proof. We use the two inequalities of Lemma 3.3 to prove Theorem 3.1.
Recalling the first inequality in that lemma, we have, for all n, that

Tn ≤ φ(x†, xn) − φ(x†, xn+1) + αnM, (17)

where Tn and M are defined, respectively, by (15) and (16), and x† = ΠF (u).
Then, we consider two cases.
Case 1. There exists n0 ≥ 0 such that the sequence

{
φ(x†, xn)

}
is nonin-

creasing.
In this case, the limit of

{
φ(x†, xn)

}
exists. Thus, from (17) and αn → 0, we

have limn→∞ Tn = 0. From the definition of Tn and the hypotheses on λn

and βn, we obtain

φ(yn, xn) → 0, φ(zn, yn) → 0, g(‖Jzn − JSzn‖) → 0, as n → ∞. (18)

Thus, from Lemmas 2.1, 2.3 and 3.2 we have, when n → ∞, that

||xn − yn|| → 0, ||zn − yn|| → 0, ||Jzn − JSzn|| → 0, (19)

and so ||xn − zn|| → 0 by the triangle inequality. Since J and J−1 are uni-
formly continuous on each bounded subset of E and E∗ (resp.), we obtain

||Jxn − Jyn|| → 0, ||Jxn − Jzn|| → 0, ||zn − Szn|| → 0, as n → ∞. (20)

Since {zn} ⊂ C is bounded, there exists a subsequence {zm} of {zn} con-
verging weakly to p ∈ C such that

lim sup
n→∞

〈
zn − x†, Ju − Jx†〉 = lim

m→∞
〈
zm − x†, Ju − Jx†〉 . (21)

From ||zn − Szn|| → 0 as n → ∞, and the demi-closedness at zero of S, we
have that p ∈ Fix(S). From Lemma 3.1(i), relations (18), (20), the hypothesis
on λn and (A3) and noting that yn ⇀ p as n → ∞, we obtain that

0 ≤ lim sup
n→∞

f(yn, y) ≤ f(p, y), ∀y ∈ C.

Thus, p ∈ EP(f, C) and p ∈ F := EP(f, C) ∩ Fix(S). From (21), x† = ΠF u
and Lemma 2.6 (ii), we have

lim sup
n→∞

〈
zn − x†, Ju − Jx†〉 = lim

m→∞
〈
p − x†, Ju − Jx†〉 ≤ 0. (22)

From wn = J−1(αnJu + (1 − αn)Jtn), αn → 0 and the boundedness of
{Ju − Jtn}, we obtain

||Jwn − Jtn|| = αn||Ju − Jtn|| → 0, as n → ∞.

Since J−1 is uniformly continuous on each bounded subset of E∗, we deduce
that ||wn − tn|| → 0 as n → ∞. From tn = J−1(βnJzn + (1 − βn)JSzn) and
(20), we have

||Jtn − JSzn|| = βn||Jzn − JSzn|| → 0, as n → ∞.

Thus, ||tn − Szn|| → 0 and, from (19), it follows that ||tn − zn|| → 0. Hence,
||wn −zn|| → 0 because ||wn − tn|| → 0 . This together with (22) implies that

lim sup
n→∞

〈
wn − x†, Ju − Jx†〉 = lim sup

n→∞

〈
zn − x†, Ju − Jx†〉 ≤ 0. (23)

Thus, from Lemmas 2.9 and 3.3 (ii), we obtain φ(x†, xn) → 0 or xn → x†.
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Case 2. There exists a subsequence
{
φ(x†, xni

)
}

of
{
φ(x†, xn)

}
such that

φ(x†, xni
) ≤ φ(x†, xni+1) for all i ≥ 0.

In that case, it follows from Lemma 2.10 that

φ(x†, xτ(n)) ≤ φ(x†, xτ(n)+1), φ(x†, xn) ≤ φ(x†, xτ(n)+1), ∀n ≥ n0, (24)

where τ(n) = max
{
k ∈ N : n0 ≤ k ≤ n, φ(x†, xk) ≤ φ(x†, xk+1)

}
. Further-

more, the sequence {τ(n)}n≥n0
is non-decreasing and τ(n) → +∞ as n → ∞.

From relations (17), (24), and ατ(n) → 0, we have

Tτ(n) ≤ φ(x†, xτ(n)) − φ(x†, xτ(n)+1) + ατ(n)M ≤ ατ(n)M → 0 as n → ∞.

From the definition of Tτ(n) and the hypotheses on λτ(n) and βτ(n), we obtain

φ(yτ(n), xτ(n)) → 0, φ(zτ(n), yτ(n))→0, g(||Jzτ(n)−JSzτ(n)||)→0 as n→∞.
(25)

Thus, from Lemmas 2.1, 2.3 and 3.2 we have, when n → ∞, that

||xτ(n) − yτ(n)|| → 0, ||zτ(n) − yτ(n)|| → 0, ||Jzτ(n) − JSzτ(n)|| → 0, (26)

and so ||xτ(n) − zτ(n)|| → 0. Since J and J−1 are uniformly continuous on
each bounded subset of E and E∗ (resp.),

||Jxτ(n)−Jyτ(n)||→0, ||Jxτ(n)−Jzτ(n)||→0, ||zτ(n)−Szτ(n)||→0 as n → ∞.
(27)

Since
{
zτ(n)

} ⊂ C is bounded, there exists a subsequence
{
zτ(m)

}
of

{
zτ(n)

}
converging weakly to p ∈ C such that

lim sup
n→∞

〈
zτ(n) − x†, Ju − Jx†〉 = lim

m→∞
〈
zτ(m) − x†, Ju − Jx†〉 . (28)

By arguing as in Case 1, we have p ∈ F and

lim sup
n→∞

〈
wτ(n) − x†, Ju − Jx†〉 = lim sup

n→∞

〈
zτ(n) − x†, Ju − Jx†〉 ≤ 0.

(29)
From Lemma 3.3(ii), one has

φ(x†, xτ(n)+1) ≤ (1 − ατ(n))φ(x†, xτ(n)) + 2ατ(n)

〈
wτ(n) − x†, Ju − Jx†〉 ,

(30)
which, from relation (24), implies that

ατ(n)φ(x
†, xτ(n)) ≤ φ(x†, xτ(n)) − φ(x†, xτ(n)+1) + 2ατ(n)

〈
wτ(n) − x†, Ju − Jx†〉

≤ 2ατ(n)

〈
wτ(n) − x†, Ju − Jx†〉 .

Thus, it follows from ατ(n) > 0 that φ(x†, xτ(n)) ≤ 2
〈
wτ(n) − x†, Ju − Jx†〉.

This together with (29) implies that lim supn→∞ φ(x†, xτ(n)) ≤ 0 or
limn→∞ φ(x†, xτ(n)) = 0. Thus, one obtains from (30) and ατ(n) → 0 that
φ(x†, xτ(n)+1) → 0. Since φ(x†, xn) ≤ φ(x†, xτ(n)+1) for all n ≥ n0 by relation
(24), one has that φ(x†, xn) → 0 and thus that xn → x† as n → ∞. This
completes the proof of Theorem 3.1. �
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4. Halpern linesearch method

The convergence of Algorithm 3.1 is established under hypothesis A2 of φ-
Lipschitz-type condition of the bifunction f depending on two constants c1
and c2. In some cases, these constants are not known or difficult to approxi-
mate. In this section, we use the linesearch technique to avoid this assump-
tion. We also assume that the Banach space E is uniformly smooth and
2-uniformly convex with the constant c defined as in Lemma 2.4. Without
assuming hypothesis A2, however, we have to slightly strengthen hypothesis
A3. More precisely, we assume that the mapping S satisfies Condition B and
the bifunction f satisfies the following condition.
Condition D: Assumptions A0, A1, A4 hold and
A3a. f is jointly weakly continuous on the product Δ × Δ where Δ is an
open convex set containing C, in the sense that if x, y ∈ Δ and {xn} , {yn}
are two sequences in Δ converging weakly to x and y, respectively, then
f(xn, yn) → f(x, y).
It is easy to see that condition A3a implies condition A3. So the solution set
EP(f, C) is closed and convex. Furthermore, the fixed point set Fix(S) of S
being closed and convex, the solution set F = EP(f, C)∩Fix(S) is also closed
and convex. As Section 3, we assume that the solution set F is nonempty.
Consequently, the generalized projection ΠF (u) exists and is unique for all
u ∈ E.
On the other hand, we have to use some other parameters ν, γ, α, and since f
is not assumed to satisfy condition A2, we have to consider another hypothesis
on the sequence {λn}. More precisely, we introduce the following condition:
Condition E: The sequences {αn}, {βn} satisfy C2, C3 and
C1a. {λn} ⊂ [λ, 1], where λ ∈ (0, 1].
C4. ν ∈ (0, c2

2 ), γ ∈ (0, 1), α ∈ (0, 1).
Now, we are in a position to formulate the second algorithm:

Algorithm 4.1. (Halpern linesearch method).
Initialization. Choose x0, u ∈ C, the parameters ν, γ, α and the sequences
{αn}, {βn} and {λn} such that Condition E above is satisfied .
Step 1. Solve the optimization problem

yn = arg min
{

λnf(xn, y) +
1
2
φ(y, xn) : y ∈ C

}
.

Step 2. If yn = xn, then set zn = xn. Otherwise
Step 2.1. Find m the smallest nonnegative integer such that{

zm,n = (1 − γm)xn + γmyn,

f(zm,n, xn) − f(zm,n, yn) ≥ α
2λn

φ(yn, xn).

Step 2.2. Set ρn = γm and zn = zm,n.
Step 3. Choose gn ∈ ∂2f(zn, xn) and compute wn = ΠCJ−1(Jxn − σngn),
where σn = νf(zn,xn)

||gn||2 if yn �= xn and σn = 0 otherwise.
Step 4. Compute xn+1 = ΠCJ−1 (αnJu+(1−αn)(βnJwn+(1 − βn)JSwn)).
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To prove the strong convergence of this algorithm, we need the following
lemmas where we assume that the nonempty closed convex set C is a subset
of a uniformly smooth and 2-uniformly convex Banach space E.

Lemma 4.1. Suppose that yn �= xn for some n ≥ 0. Then, for each n,
(i) The linesearch corresponding to xn and yn (Step 2.1) is well defined.
(ii) f(zn, xn) > 0.
(iii) 0 /∈ ∂2f(zn, xn).

Proof. Repeating the proof as in [48, Proposition 4.1] and replacing ||xn −
yn||2 by φ(yn, xn), we obtain the desired conclusion. �

Lemma 4.2. Let f : Δ × Δ be a bifunction satisfying conditions A3a − A4.
Let x, z ∈ Δ and let {xn} and {zn} be two sequences in Δ converging weakly
to x, z, respectively. Then, for any ε > 0, there exist η > 0 and nε > 0 such
that

∂2f(zn, xn) ⊂ ∂2f(z, x) +
ε

η
B

for every n ≥ nε, where B denotes the closed unit ball in E.

Proof. See, e.g., [48, Proposition 4.3]. �

In the sequel, let us denote tn = J−1(βnJwn + (1 − βn)JSwn) where wn is
defined as in Step 3 of Algorithm 4.1. Then, it follows from the definition of
xn+1 that

xn+1 = ΠCJ−1(αnJu + (1 − αn)Jtn).

Next, we prove the boundedness of the sequences generated by Algorithm
4.1.

Lemma 4.3. (i) The sequences {xn}, {wn}, {tn}, {Swn} generated by Algo-
rithm 4.1 are bounded.

(ii) If {xnk
} is a subsequence of {xn} converging weakly to x ∈ C, then the

subsequences {ynk
}, {znk

} and {gnk
} are bounded.

Proof. (i) Let n be fixed. By arguing as in relations (12) and (13), we have

φ(x∗, xn+1) ≤ αnφ(x∗, u) + (1 − αn)φ(x∗, tn). (31)
φ(x∗, tn) ≤ φ(x∗, wn). (32)

From Lemmas 2.6(i), 2.7 and the definitions of φ and V , we obtain succes-
sively that

φ(x∗, wn) = φ(x∗, ΠC(J−1(Jxn − σngn)))

≤ φ(x∗, J−1(Jxn − σngn)) − φ(ΠC(J−1(Jxn − σngn)), J
−1(Jxn − σngn)))

= V (x∗, Jxn − σngn) − φ(wn, J−1(Jxn − σngn)))

≤ V (x∗, Jxn − σngn + σngn) − 2
〈
J−1(Jxn − σngn) − x∗, σngn

〉
−φ(wn, J−1(Jxn − σngn)))

= φ(x∗, xn) − 2
〈
J−1(Jxn − σngn) − x∗, σngn

〉 − φ(wn, J−1(Jxn − σngn)))

= φ(x∗, xn) − 2σn 〈xn − x∗, gn〉 − 2
〈
J−1(Jxn − σngn) − xn, σngn

〉
−φ(wn, J−1(Jxn − σngn))). (33)
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Since x∗ ∈ EP(f, C), we have that f(x∗, zn) ≥ 0. Then, it follows from
the pseudomonotonicity of f that f(zn, x∗) ≤ 0. Consequently, from the
definition of gn and σn, we have the following inequalities:

〈xn − x∗, gn〉 ≥ f(zn, xn) − f(zn, x∗) ≥ f(zn, xn) =
σn||gn||2

ν
. (34)

From Lemma 2.4, we can write

− 2
〈
J−1(Jxn − σngn) − xn, σngn

〉
= 2

〈
J−1(Jxn − σngn) − xn,−σngn

〉
≤ 2||J−1(Jxn − σngn) − xn||||σngn||
≤ 4

c2
||JJ−1(Jxn − σngn) − Jxn||||σngn||

=
4σ2

n

c2
||gn||2. (35)

Combining relations (33)–(35) and the hypothesis on ν, we obtain that

φ(x∗, wn) ≤ φ(x∗, xn)−
(
2

ν
− 4

c2

)
σ2

n||gn||2−φ(wn, J−1(Jxn−σngn))) ≤ φ(x∗, xn).

(36)
Consequently, from relations (31), (32) and (36), deduce that

φ(x∗, xn+1) ≤ αnφ(x∗, u) + (1 − αn)φ(x∗, tn)
≤ αnφ(x∗, u) + (1 − αn)φ(x∗, wn)
≤ αnφ(x∗, u) + (1 − αn)φ(x∗, xn)
≤ max {φ(x∗, u), φ(x∗, xn)}
≤ · · ·
≤ max {φ(x∗, u), φ(x∗, x0)}

Thus, the sequence {φ(x∗, xn)} is bounded and it follows from rela-
tions (36) and (32) that the sequences {φ(x∗, wn)} and {φ(x∗, tn)} are also
bounded. Moreover, from the property of S, we have that φ(x∗, Swn) ≤
φ(x∗, wn) for all n ≥ 0. Thus, the sequence {φ(x∗, Swn)} is bounded. This
together with relation (5) gives the desired conclusion.
(ii) Firstly, we show that the sequence {ynk

} is bounded. Without loss of
generality, we can suppose that ynk

�= xnk
for all k. Now let k be fixed and

define the function Tk by

Tk(y) = λnk
f(xnk

, y) +
1
2
φ(y, xnk

), y ∈ C.

The subdifferential of Tk at y is given by

∂Tk(y) = λnk
∂2f(xnk

, y) +
1
2
∂1φ(y, xnk

).

Note that 1
2∂1φ(y, xnk

) = {Jy − Jxnk
}. Furthermore, for all y1, y2 ∈ C

and s(y1) ∈ ∂Tk(y1), s(y2) ∈ ∂Tk(y2), it is easy to see that there exists w1 ∈
∂2f(xnk

, y1) and w2 ∈ ∂2f(xnk
, y2) such that s(y1) = λnk

w1 + Jy1 − Jxnk
,

s(y2) = λnk
w2 + Jy2 − Jxnk

and

〈s(y2) − s(y1), y2 − y1〉 = λnk
〈w2 − w1, y2 − y1〉 + 〈Jy2 − Jy1, y2 − y1〉 .

(37)
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From w1 ∈ ∂2f(xnk
, y1) and w2 ∈ ∂2f(xnk

, y2), we have

f(xnk
, y2) − f(xnk

, y1) ≥ 〈w1, y2 − y1〉 .

f(xnk
, y1) − f(xnk

, y2) ≥ 〈w2, y1 − y2〉 .

Adding both sides of the last two inequalities, we obtain

〈w2 − w1, y2 − y1〉 ≥ 0. (38)

From relations (37), (38) and Lemma 2.5, there exists τ > 0 such that

〈s(y2) − s(y1), y2 − y1〉 ≥ τ ||y2 − y1||2. (39)

Note that 0 ∈ ∂Tk(ynk
)+NC(ynk

) by definition of ynk
and Lemma 2.8. Thus,

there exists s(ynk
) ∈ ∂Tk(ynk

) such that −s(ynk
) ∈ NC(ynk

), i.e.,

〈−s(ynk
), y − ynk

〉 ≤ 0, ∀y ∈ C.

Substituting y = xnk
into the last inequality, we have 〈s(ynk

), xnk
− ynk

〉 ≥ 0.
Hence, it follows from (39) with y2 = xnk

and y1 = ynk
that

〈s(xnk
), xnk

− ynk
〉 ≥ 〈s(ynk

), xnk
− ynk

〉 + τ ||xnk
− ynk

||2 ≥ τ ||xnk
− ynk

||2.
(40)

Thus
||xnk

− ynk
|| ≤ 1

τ
||s(xnk

)|| for every s(xnk
) ∈ ∂Tk(xnk

). (41)

Since 1
2∂1φ(xnk

, xnk
) = 0, ∂Tk(xnk

) = λnk
∂2f(xnk

, xnk
). Moreover, it follows

from xnk
⇀ x and Lemma 4.2 that , for any ε > 0, there exist η > 0 and

k0 > 0 such that

∂2f(xnk
, xnk

) ⊂ ∂2f(x, x) +
ε

η
B

for every k ≥ k0, where B denotes the closed unit ball in E. Thus, we can
conclude from the boundedness of ∂2f(x, x) and the hypothesis on λnk

and
(41) that the sequence {||xnk

− ynk
||} is bounded. Since the sequence {xnk

}
is bounded, the sequence {ynk

} is also bounded. Thus, it follows from the
definition of znk

that the sequence {znk
} is also bounded. Hence, there exists

a subsequence of {znk
}, again denoted by {znk

}, converging weakly to z. It
also follows from xnk

⇀ x, znk
⇀ z and Lemma 4.2 that, for any ε > 0, there

exist η > 0 and k0 > 0 such that

∂2f(znk
, xnk

) ⊂ ∂2f(z, x) +
ε

η
B

for every k ≥ k0, where B denotes the closed unit ball in E. Since gnk
∈

∂2f(znk
, xnk

) and since B and ∂2f(z, x) are bounded, we also obtain that
the sequence {gnk

} is bounded. This completes the proof of Lemma 4.3. �

It follows from Lemma 4.3(i) that there exists r > 0 such that the
sequences {xn}, {wn}, {tn} and {Swn} are all contained in the ball Br =
{z ∈ E : ||z|| ≤ r} for all n ≥ 0. From Lemma 2.1 and the definition of J ,
there exists a strictly increasing, continuous and convex function g : [0, 2r] →
[0,+∞) such that g(0) = 0, and the following inequality holds for all n ≥ 0

||βnJwn+(1−βn)JSwn||2 ≤ βn||wn||2+(1−βn)||Swn||2−βn(1−βn)g(||Jwn−JSwn||).
(42)
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Lemma 4.4. Let {xnk
} be a subsequence of the sequence {xn} converging

weakly to x̄ ∈ C. Assume that

σnk
||gnk

||→0, φ(wnk
, J−1(Jxnk

−σnk
gnk

)))→0, g(||Jwnk
−JSwnk

||) → 0
(43)

as k → ∞. Then, x̄ ∈ F := EP(f, C) ∩ Fix(S).

Proof. From the property of function g and hypothesis (43), we have that
||Jwnk

− JSwnk
|| → 0, and since J−1 is uniformly continuous on each

bounded set, we can write

||wnk
− Swnk

|| → 0. (44)

Then, it follows from (43), Lemma 4.3(i) that the sequences {σnk
gnk

}, {xnk
},

{wnk
} are bounded. Since J and J−1 are uniformly continuous on every

bounded set of E and E∗ (resp.), the sequence
{
J−1(Jxnk

− σnk
gnk

)
}

is also
bounded. Thus, there exists r̄ > 0 such that for all k,{

J−1(Jxnk
− σnk

gnk
)
}

, {wnk
} ⊂ Br̄ = {z ∈ E : ||z|| ≤ r̄} .

By Lemma 2.2, there exists a strictly increasing, continuous and convex func-
tion ḡ : [0, 2r̄] → [0,+∞) such that ḡ(0) = 0 and

ḡ(||wnk
− J−1(Jxnk

− σnk
gnk

)||) ≤ φ(wnk
, J−1(Jxnk

− σnk
gnk

)), for all k.

Thus, from (43), we obtain ḡ(||wnk
− J−1(Jxnk

− σnk
gnk

)||) → 0 as k → ∞.
It follows from the property of ḡ that ||wnk

− J−1(Jxnk
− σnk

gnk
)|| → 0.

Since J is uniformly continuous on every bounded set, ||Jwnk
−JJ−1(Jxnk

−
σnk

gnk
)|| = ||Jwnk

−(Jxnk
−σnk

gnk
)|| → 0. This together with σnk

||gnk
|| → 0

implies that ||Jwnk
− Jxnk

|| → 0. Thus,

||wnk
− xnk

|| → 0 as k → ∞ (45)

because J is uniformly continuous on every bounded set. Since xnk
⇀ x̄,

we have that wnk
⇀ x̄ ∈ C. This together with the demi-closedness at zero

of S and (44) implies that x̄ ∈ Fix(S). Now, we show that x̄ ∈ EP(f, C).
Since xnk

⇀ x̄ ∈ C, we obtain from Lemma 4.3 that the sequences {ynk
},

{znk
} and {gnk

} are bounded. Before proving the main result, we show that
||xnk

−ynk
|| → 0. Without loss of generality, we can assume that xnk

�= ynk
for

all k ≥ 0. Thus, it follows from Lemma 4.1 that gnk
�= 0 and f(znk

, xnk
) > 0.

From the definition of σnk
, we have

νf(znk
, xnk

) = σnk
||gnk

||2 = (σnk
||gnk

||)||gnk
|| → 0 as k → ∞

where we have used, for each k, hypothesis (43) and the boundedness of the
sequence {gnk

}. Thus, from ν > 0,

f(znk
, xnk

) → 0 as k → ∞. (46)

Since f(znk
, ·) is convex for each k, we can write

0 = f(znk
, znk

) = f(znk
, (1 − ρnk

)xnk
+ ρnk

ynk
)

≤ (1 − ρnk
)f(znk

, xnk
) + ρnk

f(znk
, ynk

).
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Thus, ρnk
[f(znk

, xnk
) − f(znk

, ynk
)] ≤ f(znk

, xnk
) for each k and it fol-

lows from the linesearch step (Step 2.1) that ρnk
α

2λn
φ(ynk

, xnk
) ≤ f(znk

, xnk
).

Hence, from (46) and the hypotheses on α and λnk
, we obtain

ρnk
φ(ynk

, xnk
) → 0 as k → ∞. (47)

In the case when lim supk→∞ ρnk
> 0, we obtain from (47) thatφ(ynk

, xnk
) →

0. Thus, from Lemma 2.3, ||ynk
−xnk

|| → 0. In the case when limk→∞ ρnk
= 0,

let {mk} be the sequence of the smallest positive integers such that

f(znk
, xnk

) − f(znk
, ynk

) ≥ α

2λnk

φ(ynk
, xnk

), for all k (48)

where znk
= (1 − γmk)xnk

+ γmkynk
. From ρnk

= γmk → 0, we can conclude
that mk > 1. From the linesearch inequality, we have

f(z̄nk
, xnk

) − f(z̄nk
, ynk

) <
α

2λnk

φ(ynk
, xnk

), for each k (49)

where z̄nk
= (1 − γmk−1)xnk

+ γmk−1ynk
. So, it follows from the definition

of ynk
that (see 8)

λnk
(f(xnk

, y) − f(xnk
, ynk

)) ≥ 〈Jynk
− Jxnk

, ynk
− y〉 , ∀y ∈ C,∀k. (50)

Hence, choosing y = xnk
, we obtain that

− λnk
f(xnk

, ynk
) ≥ 〈Jynk

− Jxnk
, ynk

− xnk
〉 =

1

2
φ(ynk

, xnk
) +

1

2
φ(xnk

, ynk
)

≥ 1

2
φ(ynk

, xnk
)

(51)

where the equality follows from relation (6). Then, combining relations (49)
and (51), we obtain for each k

f(z̄nk
, xnk

) − f(z̄nk
, ynk

) <
α

2λnk

φ(ynk
, xnk

) ≤ −αf(xnk
, ynk

), (52)

Since the sequence {ynk
} is bounded, without loss of generality, we can

assume that ynk
→ ȳ. Then, it follows from xnk

⇀ x̄, the definition of
z̄nk

and γmk−1 → 0 that z̄nk
⇀ x̄. Passing to the limit in (52) as k → ∞ and

using conditions A3a and A1, we obtain

− f(x̄, ȳ) ≤ −αf(x̄, ȳ), (53)

which implies that f(x̄, ȳ) ≥ 0 because α ∈ (0, 1). Taking the limit in (51)
and using the hypothesis on λnk

, we get

lim
k→∞

φ(ynk
, xnk

) ≤ −2 lim
k→∞

λnk
f(xnk

, ynk
) ≤ −2λf(x̄, ȳ) ≤ 0.

Hence, limk→∞ φ(ynk
, xnk

) = 0 which thanks to Lemma 2.3 implies that
||xnk

− ynk
|| → 0 as k → ∞. Consequently, x̄ = ȳ. Now, passing to the

limit in (50), noting that xnk
, ynk

, znk
⇀ x̄ and using condition A1 and the

hypothesis on λnk
, we get f(x̄, y) ≥ 0 for all y ∈ C, i.e., x̄ ∈ EP(f, C). Lemma

4.4 is proved. �
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Let n be fixed and consider un = J−1 (αnJu + (1 − αn)Jtn) where tn =
J−1(βnJwn + (1 − βn)JSwn). From the definition of xn+1, we have xn+1 =
ΠC(un). Let x† = ΠF (x0) and

T̄n =

(
2

ν
− 4

c2

)
σ2

n||gn||2+φ(wn, J−1(Jxn−σngn)))+βn(1−βn)g(||Jwn−JSwn||).
(54)

Using the same development as in Lemma 3.3, we have the following result.

Lemma 4.5. The following inequalities hold for each n:
(i) (1 − αn)T̄n ≤ φ(x†, xn) − φ(x†, xn+1) + αnφ(x†, u)
(ii) φ(x†, xn+1) ≤ (1 − αn)φ(x†, xn) + 2αn

〈
un − x†, Ju − Jx†〉.

Proof. Let n be fixed. From the definition of tn, φ and relation (42), we have

φ(x†, tn) = ||x†||2 − 2
〈
x†, Jtn

〉
+ ||tn||2.

= ||x†||2 − 2
〈
x†, βnJwn + (1 − βn)JSwn

〉
+ ||βnJwn + (1 − βn)JSwn||2.

≤ ||x†||2 − 2
〈
x†, βnJwn + (1 − βn)JSwn

〉
+ βn||wn||2 + (1 − βn)||Swn||2

−βn(1 − βn)g(||Jwn − JSwn||)
= βnφ(x†, wn) + (1 − βn)φ(x

†, Swn) − βn(1 − βn)g(||Jwn − JSwn||)
≤ βnφ(x†, wn) + (1 − βn)φ(x

†, wn) − βn(1 − βn)g(||Jwn − JSwn||)
= φ(x†, wn) − βn(1 − βn)g(||Jwn − JSwn||).

This together with relation (36) implies that

φ(x†, tn) ≤ φ(x∗, xn) −
(

2
ν

− 4
c2

)
σ2

n||gn||2 − φ(wn, J−1(Jxn − σngn)))

−βn(1 − βn)g(||Jwn − JSwn||).
= φ(x∗, xn) − T̄n.

Thus, it follows from (31) and the definition of T̄n that

φ(x∗, xn+1) ≤ αnφ(x∗, u) + (1 − αn)
(
φ(x∗, xn) − T̄n

)
= αnφ(x∗, u) + (1 − αn)φ(x∗, xn) − (1 − αn)T̄n

≤ αnφ(x∗, u) + φ(x∗, xn) − (1 − αn)T̄n.

So conclusion (i) is true. Conclusion (ii) can be proven as in
Lemma 3.3(ii). �

Now, we prove the second main result.

Theorem 4.1. Let C be a nonempty closed convex subset of an uniformly
smooth and 2-uniformly convex Banach space E. Assume that Conditions B,
D and E hold and that the solution set F := EP(f, C) ∩ Fix(S) is nonempty.
Then, the sequence {xn} generated by Algorithm 4.1 converges strongly to
ΠF (u).

Proof. Recall the first inequality in Lemma 4.5 as:

(1 − αn)T̄n ≤ φ(x†, xn) − φ(x†, xn+1) + αnφ(x†, u), (55)

where x† = ΠF (u) and T̄n is defined by (54).
We consider two cases.
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Case 1. There exists n0 ≥ 0 such that the sequence
{
φ(x†, xn)

}
is nonin-

creasing.
In that case, the limit of

{
φ(x†, xn)

}
exists. Thus, from Lemma 4.5 (i) and

αn → 0, we have that limn→∞ T̄n = 0. From the definition of T̄n and the
hypotheses on ν and βn, we obtain when n → ∞, that

σn||gn|| → 0, φ(wn, J−1(Jxn − σngn))) → 0, g(||Jwn − JSwn||) → 0. (56)

Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} converging

weakly to p such that

lim sup
n→∞

〈
xn − x†, Ju − Jx†〉 = lim

k→∞
〈
xnk

− x†, Ju − Jx†〉 . (57)

Since C is closed and convex in the uniformly smooth and uniformly convex
Banach space E, the set C is weakly closed. Thus, from {xnk

} ⊂ C and
xnk

⇀ p, we obtain p ∈ C. It follows from (56) with n = nk and Lemma 4.4
that p ∈ EP (f, C) ∩ Fix(S). From (56), by arguing as in Lemma 4.4 (see
45), we also obtain

||wn − xn|| → 0 as n → ∞. (58)

Thus, from (71), x† = ΠF u and Lemma 2.6 (ii), we can write

lim sup
n→∞

〈
xn − x†, Ju − Jx†〉 =

〈
p − x†, Ju − Jx†〉 ≤ 0. (59)

Since un = J−1(αnJu + (1 − αn)Jtn) for each n, we obtain that

||Jun − Jtn|| = αn||Ju − Jtn|| → 0, as n → ∞
because αn → 0 and the sequence {||Ju − Jtn||} is bounded. Since J−1 is
uniformly continuous on each bounded subset of E∗, we deduce that

||un − tn|| → 0 as n → ∞. (60)

From tn = J−1(βnJwn + (1 − βn)JSwn), we have that Jtn − JSwn =
βn(Jwn − JSwn). Thus, it follows from relation (56) that

||Jtn−Jwn|| ≤ ||Jtn−JSwn||+||JSwn−Jwn||=(1+βn)||Jwn−JSwn|| → 0

when n → ∞. Consequently, ||tn−wn|| → 0 and from (72) and (60), it follows
that

||xn − un|| → 0 as n → ∞. (61)

This together with (59) implies that

lim sup
n→∞

〈
un − x†, Ju − Jx†〉 = lim sup

n→∞

〈
xn − x†, Ju − Jx†〉 ≤ 0. (62)

Thus, from Lemma 2.9 and Lemma 4.5(ii) we obtain φ(x†, xn) → 0 and
xn → x† as n → ∞.
Case 2. There exists a subsequence

{
φ(x†, xni

)
}

of
{
φ(x†, xn)

}
such that

φ(x†, xni
) ≤ φ(x†, xni+1) for all i ≥ 0.

In that case, it follows from Lemma 2.10 that

φ(x†, xτ(n)) ≤ φ(x†, xτ(n)+1), φ(x†, xn) ≤ φ(x†, xτ(n)+1), ∀n ≥ n0. (63)
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where τ(n) = max
{
k ∈ N : n0 ≤ k ≤ n, φ(x†, xk) ≤ φ(x†, xk+1)

}
. Further-

more, the sequence {τ(n)}n≥n0
is non-decreasing and τ(n) → +∞ as n → ∞.

From (55) and Lemma 4.5(i), we can write

(1 − ατ(n))T̄τ(n) ≤ φ(x†, xτ(n)) − φ(x†, xτ(n)+1) + ατ(n)φ(x
†, u) ≤ ατ(n)φ(x

†, u) → 0,

when n → ∞, which implies that T̄τ(n) → 0 because ατ(n) → 0. From
the definition of T̄τ(n) and the hypotheses on ν and βτ(n), we obtain, when
n → ∞,

στ(n)||gτ(n)|| → 0, φ(wτ(n), J
−1(Jxτ(n)−στ(n)gτ(n)))) → 0, g(||Jwτ(n)−JSwτ(n)||) → 0.

(64)
From (64) and by arguing as in Lemma 4.4 (see 45), we obtain

||xτ(n) − wτ(n)|| → 0 as n → ∞. (65)

Since
{
xτ(n)

} ⊂ C is bounded, there exists a subsequence
{
xτ(m)

}
of

{
zτ(n)

}
converging weakly to p ∈ C such that

lim sup
n→∞

〈
xτ(n) − x†, Ju − Jx†〉 = lim

m→∞
〈
xτ(m) − x†, Ju − Jx†〉 . (66)

From (64) with n = m, Lemma 4.4 and xτ(m) ⇀ p ∈ C, we obtain p ∈ F .
Moreover, from (66), we have

lim sup
n→∞

〈
xτ(n) − x†, Ju − Jx†〉 =

〈
p − x†, Ju − Jx†〉 ≤ 0, (67)

where the last inequality follows from x† = ΠF (u) and Lemma 2.6 (ii). From
(64), (65) and by arguing as in Case 1, we also obtain that ||uτ(n)−xτ(n)|| → 0
¡hen n → ∞ (see 61). This together with (67) implies that

lim sup
n→∞

〈
uτ(n) − x†, Ju − Jx†〉 = lim sup

n→∞

〈
xτ(n) − x†, Ju − Jx†〉 ≤ 0,

(68)
From Lemma 4.5 (ii), one has for each n that

φ(x†, xτ(n)+1) ≤ (1 − ατ(n))φ(x†, xτ(n)) + 2ατ(n)

〈
uτ(n) − x†, Ju − Jx†〉 ,

(69)
which, from relation (63), implies that

ατ(n)φ(x
†, xτ(n)) ≤ φ(x†, xτ(n)) − φ(x†, xτ(n)+1) + 2ατ(n)

〈
uτ(n) − x†, Ju − Jx†〉

≤ 2ατ(n)
〈
uτ(n) − x†, Ju − Jx†〉

.

Thus, it follows from ατ(n) > 0 that φ(x†, xτ(n)) ≤ 2
〈
uτ(n) − x†, Ju−

Jx†〉 for each n. This together with (68) implies that lim supn→∞ φ(x†, xτ(n))
≤ 0 or limn→∞ φ(x†, xτ(n)) = 0. Thus, it follows from (69) and ατ(n) → 0
that φ(x†, xτ(n)+1) → 0 as n → ∞. Since φ(x†, xn) ≤ φ(x†, xτ(n)+1) for all
n ≥ n0, we have that φ(x†, xn) → 0 and xn → x† as n → ∞. This completes
the proof of Theorem 4.1. �
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5. Computational experiments

In this section, we consider two numerical examples, one in finite dimensional
space and another in infinite dimensional space, to illustrate the convergence
of Algorithms 3.1 and 4.1.

Example 1. Let E = �m and C be a box defined by C =
{
x ∈ �m : −1 ≤

xi ≤ 1, i = 1, . . . , m
}
. Define the bifunction f on C × C by

f(x, y) = 〈Px + Qy + q, y − x〉 , for all x, y ∈ C,

where q ∈ �m and P, Q are two matrices of order m such that Q is symmetric
positive semidefinite and Q−P is negative semidefinite. Since φ(x, y) = ||x−
y||2, it follows from the properties of P and Q that the bifunction f satisfies
conditions A and D with two φ-Lipschitz-type constants c1 = c2 = ||P−Q||/2,
see, e.g., [19, Section 5].
Let g : �m → � be a convex function such that lev≤g :={x ∈ �m : g(x)≤0} �=
∅. Define the subgradient projection relative to g as follows:

S(x) =

{
x − g(x)

||z(x)||2 z(x) if g(x) > 0

x otherwise ,

where z(x) ∈ ∂g(x). Since φ(x, y) = ||x − y||2, the mapping S is quasi-
φ-nonexpansive and demiclosed at zero, see, e.g., [4, Lemma 3.1]. Besides,
Fix(S) = lev≤g . From Algorithms 3.1 and 4.1, φ(x, y) = ||x − y||2 and the
definition of f , we need to solve the following optimization problem

min
{

1
2
yTHny + bTny : −1 ≤ yi ≤ 1, i = 1, . . . , m

}
, (70)

where Hn = 2λnQ + I and bn = λn(Pxn − Qxn + q) − xn or bn = λn(Pyn −
Qyn+q)−xn. Problem (70) can be solved effectively by Matlab Optimization
Toolbox. Since J is the identity mapping I, all the projections onto C can be
rewritten equivalently as quadratic convex optimization problems over the
polydedral convex set C and they are also solved similarly to problem (70).
All the programs are written in Matlab 7.0 and computed on a PC Desktop
Intel(R) Core(TM) i5-3210M CPU @ 2.50 GHz, RAM 2.00 GB.

In all the experiments below, we work in the Euclidean space �10, (m = 10)
and choose g(x) = max {0, 〈c, x〉 + d}, where d ∈ �− is a negative real number
generated randomly and uniformly in [−m, 0], c is a vector in �m with its
entries being generated randomly and uniformly in [1,m] and c̄ ∈ ∂g(x)
(if 〈c, x〉 = −d) was chosen randomly. The vector q is the zero vector and
the two matrices P, Q are generated randomly such that Q is symmetric
positive semidefinite and Q − P negative semidefinite1. The starting point
is x0 = (1, 1, . . . , 1)T and the anchor in the Halpern iteration is u = x0.
Note that the normalized duality mapping J = I and the constant c in

1We randomly choose λ1k ∈ [−m, 0], λ2k ∈ [0, m], k = 1, . . . , m. We set Q̂1, Q̂2 as
two diagonal matrices with eigenvalues {λ1k}m

k=1 and {λ2k}m
k=1, respectively. Then, we

construct a positive semidefinite matrix Q and a negative semidefinite matrix T using

random orthogonal matrices with Q̂2 and Q̂1, respectively. Finally, we set P = Q − T
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Figure 1. Behavior of Dn = ||xn+1 − xn||2 for Algorithms
3.1 with αn = 1

n+1 , βn = 1
2 for Example 1. Execution times

for stepsizes λn are 207.32; 187.09; 187.40; 189.85; 191.03
(resp)

Lemma 2.4 is 1. The fixed parameters are chosen in all the experiments as
ν = 0.25, βn = 0.5 and γ = α = 0.5. We study numerical behaviors of
the proposed algorithms on a test problem for different parameters αn and
stepsizes λn.

We use the sequence Dn = ||xn+1 − xn||2, n = 0, 1, 2, . . . to illustrate
the convergence of the algorithms. Figures 1 and 2, 3 and 4 describe the
results for Algorithms 3.1, 4.1, respectively. Only the 5000 first iterations have
been taken into account. In these figures, the x-axes represent the number of
iterations (# iterations) while the y-axes represent the values of Dn.
In Fig. 1, the performance of Algorithm 3.1 is reported following the choice of
the stepsizes λn. From this figure, we see that the behavior of Algorithm 3.1
is the best one with λn = 1

2.01c1
. It seems to be that the smaller the stepsize

λn is, the slower the convergence of Algorithm 3.1 is.
Figure 2 shows the results for Algorithm 3.1 following the choice of the param-
eters αn. It seems that it is with αn = 1

n+1 that the convergence is the best
one.
Figure 3 reports the results obtained by Algorithm 4.1 with different stepsizes
λn. In this algorithm, we do not need the information on the two φ-Lipschitz-
type constants c1 and c2. The convergence of Algorithm 4.1 is the same for
stepsizes λn = 1 and λn = 0.1. The sequence Dn with λn = 0.5 is not
monotone decreasing while it is the case for the other values of λn.
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Figure 2. Behavior of Dn = ||xn+1 − xn||2 for Algorithms
3.1 with λn = 1

5c1
, βn = 1

2 for Example 1. Execution times
for parameters αn are 182.72; 205.04; 209.77; 218.63; 229.55
(resp)

Figure 4 shows the results of Algorithm 4.1 for different values of the
parameter αn. From this figure, we see that the convergence of Dn with
αn = 1

(n+1)0.01 is the best one when n → ∞.

Example 2. Let E = L2[0, 1] with the inner product 〈x, y〉 =
∫ 1

0
x(t)y(t)dt

and the induced norm ||x||2 =
∫ 1

0
x(t)2dt for all x, y ∈ L2[0, 1]. Let C be the

unit ball B[0, 1] and the equilibrium bifunction f is of the form f(x, y) =
〈Ax, y − x〉 with the operator A : H → H defined by

A(x)(t) =
∫ 1

0

[x(t) − F1(t, s)f1(x(s))] ds + g1(t), x ∈ H, t ∈ [0, 1], (71)

and the mapping S : H → H is given by

S(x)(t) =
∫ 1

0

F2(t, s)f2(x(s))ds + g2(t), x ∈ H, t ∈ [0, 1], (72)

where

F1(t, s) =
2tset+s

e
√

e2 − 1
, f1(x) = cos x, g1(t) =

2tet

e
√

e2 − 1
,

F2(t, s) =
√

21
7

(t + s), f2(x) = exp(−x2), g2(t) = −
√

21
7

(
t +

1
2

)
.



131 Page 26 of 32 D. V. Hieu and J. J. Strodiot JFPTA

0 10 20 30 40 50
10−12

10−10

10−8

10−6

10−4

10−2

100

# iterations × 100

D
n=|

|x
n+

1−x
n||2  (I

n 
Lo

g−
S

ca
le

)
λn=1.0

λn=0.5

λn=0.1

λn=0.05

λn=0.01

Figure 3. Behavior of Dn = ||xn+1 − xn||2 for Algorithms
4.1 with αn = 1

n+1 , βn = 1
2 , ν = 0.25, γ = α = 0.5 for Exam-

ple 1. Execution times for stepsizes λn are 264.06; 261.75;
255.67; 281.71; 290.14 (resp)

We choose here g1(t) and g2(t) such that x∗ = 0 is the solution of the
problem. We also have here that φ(x, y) = ||x − y||2 and J = I. Set
Si(x)(t) =

∫ 1

0
Fi(t, s)fi(x(s))ds, i = 1, 2, and we see that the mappings

Si, i = 1, 2 are Fréchet differentiable and ||S′
i(x)h|| ≤ ||x||||h|| for all

x, h ∈ H. Thus, a straightforward computation implies that f is pseu-
domonotone and satisfies the φ-Lipschitz-type condition with c1 = c2 = 1,
and U is quasi-φ-nonexpansive. All the optimization problems in the algo-
rithms become the projections on C which is inherently explicit. All integrals
in (71), (72) and others are computed by the trapezoidal formula with the
stepsize τ = 0.001. Since the solution of the problem is known, we use the
sequence Fn = ||xn − x∗||2, n = 0, 1, 2, . . . to show the behavior of the algo-
rithms. The starting point is x0(t) = t + 0.5 cos t. The numerical results for
some different parameters are described in Figs. 5 and 6 for Algorithms 3.1
and 4.1, respectively.

From the above results, we see that the execution times of the Halpern
linesearch algorithm are greater than those of the Halpern extragradient algo-
rithm. This is not surprising because for each iteration in the linesearch
algorithm, we have to find the smallest integer steplength, which is time
consuming. Of course, the advantage of Algorithm 4.1 is not to require the
φ-Lipschitz-type condition of cost bifunction.



Vol. 20 (2018) Strong convergence theorems for EPs and... Page 27 of 32 131

0 10 20 30 40 50
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

# iterations × 100

D
n=|

|x
n+

1−x
n||2  (I

n 
Lo

g−
S

ca
le

)
αn=1/(n+1)

αn=1/(n+1)0.5

αn=1/(n+1)0.1

αn=1/(n+1)0.05

αn=1/(n+1)0.01

Figure 4. Behavior of Dn = ||xn+1 − xn||2 for Algorithms
4.1 with λn = 1, βn = 1

2 ν = 0.25, γ = α = 0.5 for Example
1. Execution times for parameters αn are 261.50; 285.99;
328.72; 331.84; 334.77 (resp)
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Figure 5. Behavior of Fn = ||xn − x∗||2 for Algorithms 3.1
with αn = 1

n+1 , βn = 1
2 for Example 2. Execution times for

parameters αn are 61.72, 67.58, 60.43, 68.60, 66.22 (resp)
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Figure 6. Behavior of Fn = ||xn − x∗||2 for Algorithms 4.1
with αn = 1

n+1 , βn = 1
2 , ν = 0.25, γ = α = 0.5. Execution

times for parameters αn are 146.99, 145.48, 162.67, 164.62,
185.19 (resp)

6. Conclusions

In this paper, we have proposed two strong convergence algorithms for solv-
ing a pseudomonotone equilibrium problem involving a fixed point problem
for a quasi-φ-nonexpansive mapping in Banach spaces, namely, the Halpern
extragradient method and the Halpern linesearch method. The convergence
theorems have been established with or without the φ-Lipschitz-type condi-
tion imposed on bifunctions. The paper can help us in the design and analysis
of practical algorithms and also in the improvement of existing methods for
solving equilibrium problems in Banach spaces. Several numerical experi-
ments on two test problems for different stepsizes and parameters are also
performed to illustrate the convergence of the proposed algorithms.
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