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Abstract. In this paper, we introduce the F-metric space concept, which
generalizes the metric space notion. We define a natural topology τF in
such spaces and we study their topological properties. Moreover, we
establish a new version of the Banach contraction principle in the set-
ting of F-metric spaces. Several examples are presented to illustrate our
study.
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1. Introduction

A metric on a nonempty set X is a mapping d : X × X → [0,+∞) satisfying
the following properties:

(i) d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x).
(iii) d(x, y) ≤ d(x, z) + d(z, y).
If d is a metric on X, then the pair (X, d) is said to be a metric space.
The theory of metric spaces is the general theory which underlies several
branches of mathematical analysis, such as real analysis, complex analysis,
and multidimensional calculus.

In recent years, many interesting generalizations (or extensions) of the
metric space concept appeared. Czerwik [3] introduced the notion of a b-
metric. Khamsi and Hussain [9] reintroduced this notion under the name
metric-type. In [4], Fagin et al. introduced the notion of s-relaxedp metric.
Note that any s-relaxedp metric is a b-metric, but the converse is not true
in general (see [10]). Gähler [5] introduced the notion of a 2-metric, which
is a mapping defined on the product set X × X × X, and satisfying certain
conditions. Gähler claimed that a 2-metric is a generalization of the usual no-
tion of a metric. However, different authors showed that no relations between
these two concepts exist (see, for example [7]). A more appropriate notion
of generalized metric space was introduced by Mustafa and Sims [12] under
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the name G-metric space. In [2], Branciari suggested a new generalization of
the metric notion by replacing the triangle inequality (iii) by a more general
one involving four points. Matthews [11] introduced the notion of a partial
metric as a part of the study of denotational semantics of dataflow networks.
Recently, we introduced [8] the concept of JS-metric, where the triangle in-
equality is replaced by a lim sup-condition. For more details about the above
cited concepts and other generalizations of the metric notion, we refer the
reader to the nice book [10] by Kirk and Shahzad.

In this paper, we introduce a new generalization of the metric space
notion, which we call an F-metric space. We compare our concept with ex-
isting generalizations from the literature. Next, we define a natural topology
τF on these spaces, and we study their topological properties. Moreover, a
new version of the Banach contraction principle is established in the setting
of F-metric spaces.

The paper is organized as follows. In Sect. 2, the concept of F-metric
spaces is introduced. We show that any metric space is an F-metric space
but the converse is not true in general, which confirms that our concept is
more general than the standard metric concept. Moreover, we compare our
proposed notion with previous generalizations of metric spaces. More pre-
cisely, we show that any s-relaxedp-metric space is an F-metric space (see
Example 2.2). Further, we provide an example of an F-metric space that can-
not be an s-relaxedp-metric space (see Example 2.4), which confirms that the
class of F-metric spaces is larger than the class of s-relaxedp-metric spaces. A
comparison with b-metric spaces is also considered. We show that there exist
F-metric spaces that are not b-metric spaces (see Example 2.2) and there
exist b-metric spaces that are not F-metric spaces (see Proposition 2.1). In
Sect. 3, we introduce the notion of F-metric boundedness, which is used
to provide a characterization of F-metrics (see Theorem 3.1). In Sect. 4, a
topology τF is introduced on F-metric spaces using the concept of balls. It
is well-known that in standard metric spaces, the closed ball is closed with
respect to the topology defined via balls (or equivalently the sequential topol-
ogy). In our situation, we do not know whether closed balls are closed with
respect to τF . However, we provide a sufficient condition so that any closed
ball is closed with respect to τF (see Proposition 4.3). Additional topolog-
ical properties are also discussed, such as compactness and completeness.
In Sect. 5, we establish the Banach contraction principle in the setting of
F-metric spaces (see Theorem 5.1).

2. A generalized metric space

Let F be the set of functions f : (0,+∞) → R satisfying the following condi-
tions:

(F1) f is non-decreasing, i.e., 0 < s < t =⇒ f(s) ≤ f(t).
(F2) For every sequence {tn} ⊂ (0,+∞), we have

lim
n→+∞ tn = 0 ⇐⇒ lim

n→+∞ f(tn) = −∞.
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We generalize the concept of metric spaces as follows:

Definition 2.1. Let X be a nonempty set, and let D : X × X → [0,+∞) be a
given mapping. Suppose that there exists (f, α) ∈ F × [0,+∞) such that

(D1) (x, y) ∈ X × X, D(x, y) = 0 ⇐⇒ x = y.
(D2) D(x, y) = D(y, x), for all (x, y) ∈ X × X.
(D3) For every (x, y) ∈ X × X, for every N ∈ N, N ≥ 2, and for every

(ui)N
i=1 ⊂ X with (u1, uN ) = (x, y), we have

D(x, y) > 0 =⇒ f(D(x, y)) ≤ f

(
N−1∑
i=1

D(ui, ui+1)

)
+ α.

Then D is said to be an F-metric on X, and the pair (X,D) is said to be an
F-metric space.

Observe that any metric on X is an F-metric on X. Indeed, if d is a
metric on X, then it satisfies (D1) and (D2). On the other hand, by the
triangle inequality, for every (x, y) ∈ X × X, for every N ∈ N, N ≥ 2, and
for every (ui)N

i=1 ⊂ X with (u1, uN ) = (x, y), we have

d(x, y) ≤
N−1∑
i=1

d(ui, ui+1),

which yields,

d(x, y) > 0 =⇒ ln (d(x, y)) ≤ ln

(
N−1∑
i=1

d(ui, ui+1)

)
.

Then d satisfies (D3) with f(t) = ln t, t > 0, and α = 0.
In the following, some examples of F-metric spaces which are not metric

spaces are presented.

Example 2.1. Let X = N, and let D : X × X → [0,+∞) be the mapping
defined by

D(x, y) =
{

(x − y)2, if (x, y) ∈ [0, 3] × [0, 3],
|x − y|, if (x, y) 
∈ [0, 3] × [0, 3], (2.1)

for all (x, y) ∈ X × X. It can be easily seen that D satisfies (D1) and (D2).
However, D doesn’t satisfy the triangle inequality, since

d(1, 3) = 4 > 1 + 1 = d(1, 2) + d(2, 3).

Hence, D is not a metric on X. Further, let us fix a certain (x, y) ∈ X × X
such that D(x, y) > 0. Let (ui)N

i=1 ⊂ X, where N ∈ N, N ≥ 2, and (u1, uN ) =
(x, y). Let

I = {i = 1, 2, . . . , N − 1 : (ui, ui+1) ∈ [0, 3] × [0, 3]}
and

J = {1, 2, . . . , N − 1}\I.
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Therefore, we have

N−1∑
i=1

D(ui, ui+1) =
∑
i∈I

D(ui, ui+1) +
∑
j∈J

D(uj , uj+1)

=
∑
i∈I

(ui+1 − ui)2 +
∑
j∈J

|uj+1 − uj |.

Next, we discuss two possible cases.
Case 1: If (x, y) 
∈ [0, 3] × [0, 3]. In this case, we have

D(x, y) = |x − y|

≤
N−1∑
i=1

|ui+1 − ui|

=
∑
i∈I

|ui+1 − ui| +
∑
j∈I

|uj+1 − uj |.

On the other hand, observe that

|ui+1 − ui| ≤ (ui+1 − ui)2, i ∈ I.

Therefore, we deduce that

D(x, y) ≤
∑
i∈I

(ui+1 − ui)2 +
∑
j∈J

|uj+1 − uj |

=
N−1∑
i=1

D(ui, ui+1).

Case 2: If (x, y) ∈ [0, 3] × [0, 3]. In this case, we have

D(x, y) = |x − y|2
≤ 3|x − y|

≤ 3

⎛
⎝∑

i∈I

|ui+1 − ui| +
∑
j∈J

|uj+1 − uj |
⎞
⎠

≤ 3

(∑
i∈I

|ui+1 − ui|2 +
∑
i∈J

|uj+1 − uj |
)

= 3
N−1∑
i=1

D(ui, ui+1).

Next, combining the above cases, we deduce that for every (x, y) ∈ X × X,
for every N ∈ N, N ≥ 2, and for every (ui)N

i=1 ⊂ X with (u1, uN ) = (x, y),
we have

D(x, y) > 0 =⇒ D(x, y) ≤ 3
N−1∑
i=1

D(ui, ui+1), (2.2)
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which yields

D(x, y) > 0 =⇒ ln(D(x, y)) ≤ ln

(
N−1∑
i=1

D(ui, ui+1)

)
+ ln 3.

This proves that D satisfies (D3) with f(t) = ln t, t > 0, and α = ln 3. Then
D is an F-metric on X.

Example 2.2. (The class of s-relaxedp metrics) Let d : X × X → [0,+∞) be
an s-relaxedp metric on X (see [4]), i.e., d satisfies (D1), (D2), and
(S) There exists K ≥ 1 such that for every (x, y) ∈ X ×X, for every N ∈ N,

N ≥ 2, and for every (ui)N
i=1 ⊂ X with (u1, uN ) = (x, y), we have

d(x, y) ≤ K

N−1∑
i=1

d(ui, ui+1).

Then d satisfies (D3) with f(t) = ln t, t > 0, and α = lnK. As a consequence,
any s-relaxedp metric on X is an F-metric on X.

Remark 2.1. Note that from (2.2), the mapping D defined by (2.1) is an
s-relaxedp metric on X with K = 3.

Example 2.3. (The class of bounded 2-metric spaces) Let σ : X × X × X →
[0,+∞) be a mapping satisfying the following conditions:
(σ1) (a, b) ∈ X × X, a 
= b =⇒ ∃ c ∈ X : σ(a, b, c) 
= 0.
(σ2) For all (a, b, c) ∈ X × X × X, σ(a, b, c) = 0 if and only if at least two

elements from {a, b, c} are equal.
(σ3) (a, b, c) ∈ X ×X ×X =⇒ σ(a, b, c) = σ(u, v, w), where {u, v, w} is any

permutation of {a, b, c}.
(σ4) For all (a, b, c) ∈ X × X × X, we have

σ(a, b, c) ≤ σ(a, b, d) + σ(b, c, d) + σ(c, a, d).

Then σ is called a 2-metric on X, and (X,σ) is called a 2-metric space (see [5]).
Moreover, suppose that supx,y,z∈X σ(x, y, z) < +∞. In this case, (X,σ) is said
to be a bounded 2-metric space. Define the mapping Dσ : X × X → [0,+∞)
by

Dσ(x, y) = sup
a∈X

σ(a, x, y), (x, y) ∈ X × X.

It was proved in [1] that Dσ is an s-relaxedp metric on X with K = 2.
Therefore, Dσ is an F-metric on X.

The next example shows that the class of F-metrics is larger than the
class of s-relaxedp metrics.

Example 2.4. Let X = N, and let D : X × X → [0,+∞) be the mapping
defined by

D(x, y) =
{

exp (|x − y|) , if x 
= y,
0, if x = y,

(2.3)

for all (x, y) ∈ X × X. It can be easily seen that D satisfies (D1) and (D2).
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First, let us prove that D cannot be an s-relaxedp metric. We argue by
contradiction, by supposing that D satisfies the condition (S) of Example 2.2
with a certain K ≥ 1. Therefore, we have

D(2n, 0) ≤ K (D(2n, n) + D(n, 0)) , n ∈ N
∗,

that is,

exp(n) ≤ 2K, n ∈ N
∗.

Passing to the limit as n → +∞, we obtain a contradiction. Therefore, D is
not an s-relaxedp metric.

Next, we shall prove that D belongs to the class of F-metrics. Let

f(t) =
−1
t

, t > 0.

It can be easily seen that f ∈ F . In order to check (D3), let us fix (x, y) ∈
X ×X with D(x, y) > 0. For every N ∈ N, N ≥ 2, and for every (ui)N

i=1 ⊂ X
with (u1, uN ) = (x, y), we have

1 + f

(
N−1∑
i=1

D(ui, ui+1)

)
− f(D(x, y))

= 1 − 1∑
i=1:N−1, ui+1 �=ui

exp (|ui+1 − ui|) +
1

exp (|x − y|)

≥ 1 − 1 +
1

exp (|x − y|)
≥ 0.

Therefore, we have

f(D(x, y)) ≤ f

(
N−1∑
i=1

D(ui, ui+1)

)
+ 1.

This proves that D satisfies (D3) with f(t) = −1
t , t > 0, and α = 1. Then D

is an F-metric.

It was proved in [4] (see also [10]) that there is a b-metric space that is
not an s-relaxedp metric space for any K ≥ 1. We shall prove an analogous
result for the case of F-metric spaces. First, recall that a mapping d : X×X →
[0,+∞) is said to be a b-metric on X if it satisfies (D1), (D2), and

(S)′ There exists K ≥ 1 such that

d(x, y) ≤ K (d(x, z) + d(z, y)) , (x, y, z) ∈ X × X × X.

Observe that (S) =⇒ (S)′. Therefore, any s-relaxedp metric is a b-metric.
However, as we mentioned before, the converse is not true in general.

Proposition 2.1. There is a b-metric space that is not an F-metric space.

Proof. Let X = [0, 1], and let d : X × X → [0,+∞) be the mapping defined
by

d(x, y) = (x − y)2, (x, y) ∈ X × X.
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It can be easily seen (see, for example [10]) that d is a b-metric on X with
constant K = 2. Suppose that there exists (f, α) ∈ F × [0,+∞) such that d
satisfies (D3). Let n ∈ N

∗, and let

ui =
i

n
, i = 0, 2, . . . , n.

By (D3), we have

f(d(0, 1)) ≤ f (d(0, u1) + d(u1, u2) + · · · + d(un−1, 1)) + α, n ∈ N
∗,

i.e.,

f(1) ≤ f

(
1
n

)
+ α, n ∈ N

∗.

On the other hand, by (F2), we have

lim
n→+∞ f

(
1
n

)
+ α = −∞,

which is a contradiction. �

Remark 2.2. We proved in Example 2.4 that the mapping D defined by (2.3)
is an F-metric on X but it is not an s-relaxedp metric. It can be easily seen
that D is not also a b-metric on X.

3. Characterization of F -metrics

In this section, we introduce the concept of F-metric boundedness, which
will be used later to give a characterization of F-metrics.

Definition 3.1. Let X be a nonempty set, and let D : X × X → [0,+∞) be
a given mapping satisfying (D1) and (D2). We say that the pair (X,D) is
F-metric bounded with respect to (f, α) ∈ F × [0,+∞), if there exists a
metric d on X such that

(x, y) ∈ X × X, D(x, y) > 0 =⇒ f(d(x, y)) ≤ f(D(x, y)) ≤ f(d(x, y)) + α.

(3.1)

We have the following result:

Theorem 3.1. Let X be a nonempty set, and let D : X × X → [0,+∞) be
a given mapping satisfying (D1) and (D2). Let (f, α) ∈ F × [0,+∞), and
suppose that f is continuous from the right. Then the following statements
are equivalent:

(i) (X,D) is an F-metric on X with (f, α) defined above.
(ii) (X,D) is F-metric bounded with respect to (f, α).

Proof. (i) =⇒ (ii): Assume that (X,D) is an F-metric on X with respect
to (f, α). Let us define the mapping d : X × X → [0,+∞) by

d(x, y) = inf

{
N−1∑
i=1

D(ui, ui+1) : N ∈ N, N ≥ 2, (ui)
N
i=1 ⊂ X, (u1, uN ) = (x, y)

}
,
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for all (x, y) ∈ X×X. We shall prove that d is a metric on X. Since D(x, x) =
0, for all x ∈ X, it follows from the definition of d that

d(x, x) = 0, x ∈ X.

Now, let (x, y) ∈ X × X be such that x 
= y. Suppose that d(x, y) = 0. Let
ε > 0, by the definition of d, there exist N ∈ N, N ≥ 2, and (ui)N

i=1 ⊂ X
with (u1, uN ) = (x, y) such that

N−1∑
i=1

D(ui, ui+1) < ε.

By (F1), we obtain

f

(
N−1∑
i=1

D(ui, ui+1)

)
≤ f(ε). (3.2)

On the other hand, by (D3), we have

f(D(x, y)) ≤ f

(
N−1∑
i=1

D(ui, ui+1)

)
+ α. (3.3)

Using (3.2) and (3.3), we obtain

f(D(x, y)) ≤ f(ε) + α, ε > 0.

But, using (F2), we have

lim
ε→0+

(f(ε) + α) = −∞,

which is a contradiction. Therefore, we have d(x, y) > 0. From the definition
of d and (D2), it can be easily seen that d(x, y) = d(y, x), for all (x, y) ∈
X ×X. In order to check the triangle inequality, let x, y, and z be three given
points in X, and let ρ > 0. By the definition of d, there exist two chains of
points x = u1, u2, . . . , un = y and y = un, un+1, . . . , um = z such that

n−1∑
i=1

D(ui, ui+1) < d(x, y) + ρ

and
m−1∑
i=n

D(ui, ui+1) < d(y, z) + ρ.

Adding the above inequalities, we obtain

d(x, z) ≤
m−1∑
i=1

D(ui, ui+1) < d(x, y) + d(y, z) + 2ρ, ρ > 0.

Passing to the limit as ρ → 0+, we get

d(x, z) ≤ d(x, y) + d(y, z).
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As a consequence, we deduce that d is a metric on X. Next, we shall prove
that d satisfies (3.1). Let (x, y) ∈ X × X be such that D(x, y) > 0. From the
definition of d, it is clear that

d(x, y) ≤ D(x, y),

which implies from (F1) that

f(d(x, y)) ≤ f(D(x, y)). (3.4)

Let ε > 0. By the definition of d, there exist N ∈ N, N ≥ 2, and (ui)N
i=1 ⊂ X

with (u1, uN ) = (x, y) such that

N−1∑
i=1

D(ui, ui+1) < d(x, y) + ε.

By (F1), we obtain

f

(
N−1∑
i=1

D(ui, ui+1)

)
≤ f(d(x, y) + ε).

Using (D3) and the above inequality, we get

f(D(x, y)) ≤ f(d(x, y) + ε) + α, ε > 0.

Passing to the limit as ε → 0+, and using the right continuity of f , we obtain

f(D(x, y)) ≤ f(d(x, y)) + α. (3.5)

By (3.4) and (3.5), we have

f(d(x, y)) ≤ f(D(x, y)) ≤ f(d(x, y)) + α.

Then (3.1) is satisfied and (X,D) is F-metric bounded with respect to (f, α).
(ii) =⇒ (i): Suppose that (X,D) is F-metric bounded with respect to (f, α),
that is, there exists a certain metric d on X such that (3.1) is satisfied. We
have just to prove that D satisfies (D3). Let (x, y) ∈ X × X be such that
D(x, y) > 0. Let N ∈ N, N ≥ 2, and (ui)N

i=1 ⊂ X with (u1, uN ) = (x, y).
Since d is a metric on X, the triangle inequality yields

d(x, y) ≤
N−1∑
i=1

d(ui, ui+1). (3.6)

On the other hand, using (F1) and the fact that

(u, v) ∈ X × X, D(u, v) > 0 =⇒ f(d(u, v)) ≤ f(D(u, v)),

we deduce that

d(u, v) ≤ D(u, v), (u, v) ∈ X × X. (3.7)

By (3.6) and (3.7), we obtain

d(x, y) ≤
N−1∑
i=1

D(ui, ui+1),
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which implies by (F1) that

f(d(x, y)) + α ≤ f

(
N−1∑
i=1

D(ui, ui+1)

)
+ α.

Using the above inequality and the fact that

f(D(x, y)) ≤ f(d(x, y)) + α,

we deduce that

f(D(x, y)) ≤ f

(
N−1∑
i=1

D(ui, ui+1)

)
+ α.

Therefore, (D3) is satisfied and (X,D) is an F-metric on X. �

Remark 3.1. Observe that from the proof of Theorem 3.1, the right continuity
assumption imposed on f is used only to prove that (i) =⇒ (ii). However,
for any f ∈ F , we have (ii) =⇒ (i).

4. Topological F -metric spaces

In this section, we discuss a natural topology defined on F-metric spaces.

Definition 4.1. Let (X,D) be an F-metric space. A subset O of X is said to
be F-open if for every x ∈ O, there is some r > 0 such that B(x, r) ⊂ O,
where

B(x, r) = {y ∈ X : D(x, y) < r}.

We say that a subset C of X is F-closed if X\C is F-open. We denote by τF
the family of all F-open subsets of X.

The following result can be proved easily:

Proposition 4.1. Let (X,D) be an F-metric space. Then τF is a topology on
X.

Proposition 4.2. Let (X,D) be an F-metric space. Then, for any nonempty
subset A of X, the following statements are equivalent:

(i) A is F-closed.
(ii) For any sequence {xn} ⊂ A, we have

lim
n→+∞ D(xn, x) = 0, x ∈ X =⇒ x ∈ A.

Proof. Assume that A is F-closed, and let {xn} be a sequence in A such that

lim
n→+∞ D(xn, x) = 0, (4.1)

where x ∈ X. Suppose that x ∈ X\A. Since A is F-closed, X\A is F-
open. Therefore, there exists some r > 0 such that B(x, r) ⊂ X\A, i.e.
B(x, r) ∩ A = ∅. On the other hand, by (4.1), there exists some N ∈ N such
that

D(xn, x) < r, n ≥ N,



Vol. 20 (2018) On a new generalization of metric spaces Page 11 of 20 128

i.e.

xn ∈ B(x, r), n ≥ N.

Hence, xN ∈ B(x, r)∩A, which leads to a contradiction. Therefore, we deduce
that x ∈ A, and (i) =⇒ (ii) is proved. Conversely, assume that (ii) is
satisfied. Let x ∈ X\A. We have to prove that there is some r > 0 such
that B(x, r) ⊂ X\A. We argue by contradiction by supposing that for every
r > 0, there exists xr ∈ B(x, r) ∩ A. This implies that for any n ∈ N

∗, there
exists xn ∈ B(x, 1

n ) ∩ A. Then

{xn} ⊂ A, lim
n→+∞ D(xn, x) = 0.

By (ii), this implies that x ∈ A, which is a contradiction with x ∈ X\A.
Hence, A is F-closed, and (ii) =⇒ (i). �

Proposition 4.3. Let (X,D) be an F-metric space, a ∈ X, and r > 0. We
denote by B(a, r) the subset of X defined by

B(a, r) = {x ∈ X : D(a, x) ≤ r}.

Suppose that for every sequence {xn} ⊂ X, we have
lim

n→+∞
D(xn, x) = 0, x ∈ X =⇒ D(x, y) ≤ lim sup

n→+∞
D(xn, y), y ∈ X. (4.2)

Then B(a, r) is F-closed.

Proof. Let {xn} ⊂ B(a, r) be a sequence such that

lim
n→+∞ D(xn, x) = 0,

for a certain x ∈ X. From Proposition 4.2, we have to prove that x ∈ B(a, r).
By the definition of B(a, r), we have

D(xn, a) ≤ r, n ∈ N.

Passing to the supremum limit as n → +∞ and using (4.2), we obtain

D(x, a) ≤ lim sup
n→+∞

D(xn, a) ≤ r,

which yields x ∈ B(a, r). Therefore, B(a, r) is F-closed. �

Remark 4.1. Proposition 4.3 provides only a sufficient condition ensuring
that B(a, r) is F-closed. An interesting problem consists to find a necessary
and sufficient condition under which B(a, r) is F-closed.

Definition 4.2. Let (X,D) be an F-metric space. Let A be a nonempty subset
of X. We denote by A the closure of A with respect to the topology τF , i.e.
A is the intersection of all F-closed subsets of X containing A. Clearly, A is
the smallest F-closed subset which contains A.

Proposition 4.4. Let (X,D) be an F-metric space. Then, for any nonempty
subset A of X, we have

x ∈ A, r > 0 =⇒ B(x, r) ∩ A 
= ∅.
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Proof. Let (f, α) ∈ F × [0,+∞) be such that (D3) is satisfied. Let us define
the set

A′ = {x ∈ X : for any r > 0, there exists a ∈ A : D(x, a) < r}.

By (D1), it can be easily seen that A ⊂ A′. Next, we shall prove that A′ is
F-closed. Let {xn} be a sequence in A′ such that

lim
n→+∞ D(xn, x) = 0, x ∈ X. (4.3)

Let r > 0. By (F2), there exists some δr > 0 such that

0 < t < δr =⇒ μ(t) < μ(r) − α. (4.4)

On the other hand, by (4.3), there exists some N ∈ N such that

D(xn, x) <
δr

3
, n ≥ N.

Since xN ∈ A′, there exists a ∈ A such that

D(xN , a) <
δr

3
.

If D(x, a) > 0, by (D3), we have

f(D(x, a)) ≤ f(D(x, xN ) + D(xN , a)) + α ≤ f

(
2δr

3

)
+ α.

But by (4.4), since 2δr
3 < δr, we obtain

f

(
2δr

3

)
< f(r) − α.

Hence,

f(D(x, a)) < f(r),

which implies from (F1) that D(x, a) < r. Therefore, in all cases, we have

D(x, a) < r,

which yields x ∈ A′. Then by Proposition 4.2, A′ is F-closed, which contains
A. Then A ⊂ A′, which yields the desired result. �

Definition 4.3. Let (X,D) be an F-metric space. Let {xn} be a sequence in
X. We say that {xn} is F-convergent to x ∈ X if {xn} is convergent to x with
respect to the topology τF , i.e. for every F-open subset Ox of X containing
x, there exists some N ∈ N such that xn ∈ Ox, for all n ≥ N . In this case,
we say that x is the limit of {xn}.

The following result follows immediately from the above definition and
the definition of τF :

Proposition 4.5. Let (X,D) be an F-metric space. Let {xn} be a sequence in
X, and x ∈ X. The following statements are equivalent:

(i) {xn} is F-convergent to x.
(ii) limn→+∞ D(xn, x) = 0.
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The next result shows that the limit of an F-convergent sequence is
unique.

Proposition 4.6. Let (X,D) be an F-metric space. Let {xn} be a sequence in
X. Then

(x, y) ∈ X × X, lim
n→+∞ D(xn, x) = lim

n→+∞ D(xn, y) = 0 =⇒ x = y.

Proof. Let (x, y) ∈ X × X be such that

lim
n→+∞ D(xn, x) = lim

n→+∞ D(xn, y) = 0.

Suppose that x 
= y, i.e. (from (D1)) D(x, y) > 0. By (D3), there exists
(f, α) ∈ F × [0,+∞) such that

f(D(x, y)) ≤ f(D(x, xn) + D(xn, y)) + α, for all n.

On the other hand, using (D2) and (F2), we have

lim
n→+∞ f(D(x, xn)+D(xn, y))+α = lim

n→+∞ f(D(xn, x)+D(xn, y)) + α = −∞,

which is a contradiction. Therefore, we have x = y. �

Definition 4.4. Let (X,D) be an F-metric space. Let {xn} be a sequence in
X.

(i) We say that {xn} is F-Cauchy, if

lim
n,m→+∞ D(xn, xm) = 0.

(ii) We say that (X,D) is F-complete, if every F-Cauchy sequence in X is
F-convergent to a certain element in X.

Example 4.1. Let X = N, and let D : X × X → [0,+∞) be the mapping
defined by (2.3). It was shown in Example 2.4 that (X,D) is an F-metric
space with f(t) = −1

t , t > 0, and α = 1. We shall prove that (X,D) is a
F-complete. Let {xn} ⊂ X be an F-Cauchy sequence. This means that

lim
n,m→+∞ D(xn, xm) = 0.

Therefore, there exists N ∈ N such that

D(xn, xm) <
1
2
, n,m ≥ N.

Suppose that for some n,m ≥ N , we have xn 
= xm. By the definition of D,
and using the above inequality, we obtain

1 ≤ D(xn, xm) = exp(|xn − xm|) <
1
2
,

which is a contradiction. Then, we deduce that

xn = xN , n ≥ N,

which implies that

lim
n→+∞ D(xn, xN ) = 0,

i.e., {xn} is F-convergent to xN . As a consequence, (X,D) is F-complete.



128 Page 14 of 20 M. Jleli and B. Samet JFPTA

Proposition 4.7. Let (X,D) be an F-metric space. If {xn} ⊂ X is
F-convergent, then it is F-Cauchy.

Proof. Let (f, α) ∈ F × [0,+∞) be such that (D3) is satisfied. Let x ∈ X be
such that

lim
n→+∞ D(xn, x) = 0. (4.5)

Let ε > 0 be fixed. By (F2), we know that there exists some δ > 0 such that

0 < t < δ =⇒ f(t) < f(ε) − α. (4.6)

On the other hand, by (4.5), there exists some N ∈ N such that

D(xn, x) + D(xm, x) < δ, n,m ≥ N. (4.7)

Let n,m ≥ N . We discuss two cases.
Case 1: If xm = xn. In this case, by (D1), we have

D(xn, xm) = 0 < ε.

Case 2: If xm 
= xn. In this case, from (4.7), we have

0 < D(xn, x) + D(xm, x) < δ.

Therefore, by (4.6), we have

f(D(xn, x) + D(xm, x)) < f(ε) − α.

Now, using (D3), we obtain

f(D(xn, xm)) ≤ f(D(xn, x) + D(xm, x)) + α < f(ε),

which implies from (F1) that

D(xn, xm) < ε.

As a consequence, we have

D(xn, xm) < ε, n,m ≥ N,

which yields

lim
n,m→+∞ D(xn, xm) = 0,

i.e. {xn} is F-Cauchy. �

Next, we discuss the compactness on F-metric spaces.

Definition 4.5. Let (X,D) be an F-metric space. Let A be a nonempty subset
of X. We say that A is F-compact if A is compact with respect to the topology
τF on X.

Proposition 4.8. Let (X,D) be an F-metric space. Let A be a nonempty sub-
set of X. Then, the following statements are equivalent:

(i) A is F-compact.
(ii) For any sequence {xn} ⊂ A, there exist a subsequence {xnk

} of {xn}
and x ∈ A such that

lim
k→+∞

D(xnk
, x) = 0.
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Proof. Suppose that A is F-compact. It can be easy seen that any decreasing
sequence of nonempty F-closed subsets of A have a nonempty intersection.
Let {xn} be a sequence in A. For every n ∈ N, let

Cn = {xm : m ≥ n}.

Observe that Cn+1 ⊂ Cn, for every n ∈ N, which yields {Cn}n∈N is a de-
creasing sequence of nonempty F-closed subsets of A. Therefore, there is
some x that belongs to

⋂
n∈N

Cn. Next, let ε > 0 be fixed. Since x ∈ C0, by
Proposition 4.4, there exist n0 ≥ 0 and xn0 ∈ A such that D(xn0 , x) < ε.
continuing this process, for any k ∈ N, there exist nk ≥ k and xnk

∈ A such
that D(xnk

, x) < ε. Therefore, we have

lim
k→+∞

D(xnk
, x) = 0.

On the other hand, since A is F-compact, then it is F-closed, and x ∈ A.
Then we proved that (i) =⇒ (ii). Conversely, suppose that (ii) is satisfied.
Let (f, α) ∈ F × [0,+∞) be such that (D3) is satisfied. First, we claim that

∀ r > 0, ∃ (xi)i=1,...,n ⊂ A : A ⊂
⋃

i=1,...,n

B(xi, r). (4.8)

We argue by contradiction, by supposing that there exists r > 0 such that
for any finite number of elements (xi)i=1,...,n ⊂ A, we have

A 
⊂
⋃

i=1,...,n

B(xi, r).

Let x1 ∈ A be an arbitrary element. Then

A 
⊂ B(x1, r),

i.e. there exists x2 ∈ A such that

D(x1, x2) ≥ r.

Again, we have

A 
⊂ B(x1, r) ∪ B(x2, r),

i.e. there exists x3 ∈ A such that

D(xi, x3) ≥ r, i = 1, 2.

Continuing this process, by induction, we can construct a sequence {xn} ⊂ A
such that

D(xn, xm) ≥ r, n,m ∈ N
∗.

Observe that in this case, it is not possible to extract from {xn} any F-Cauchy
subsequence, so (from Proposition 4.7), any F-convergent subsequence. Then
we obtain a contradiction with (ii), which proves (4.8). Next, let {Oi}i∈I be
an arbitrary family of F-open subsets of X such that

A ⊂
⋃
i∈I

Oi. (4.9)

We claim that

∃ r0 > 0 : ∀x ∈ A, ∃ i ∈ I : B(x, r0) ⊂ Oi. (4.10)
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We argue by contradiction by supposing that for any r > 0, there exists
xr ∈ A such that B(xr, r) 
⊂ Oi, for all i ∈ I. In particular, for all n ∈ N

∗,
there exists xn ∈ A such that B

(
xn, 1

n

) 
⊂ Oi, for all i ∈ I. By (ii), we can
extract a subsequence {xnk

} from {xn} such that

lim
k→+∞

D(xnk
, x) = 0, (4.11)

for a certain x ∈ A. On the other hand, by (4.9), there exists some j ∈ I such
that x ∈ Oj . Since Oj is an F-open subset of X, there exists some r0 > 0

such that B(x, r0) ⊂ Oj . Next, for any nk ∈ N
∗, and for any z ∈ B

(
xnk

, 1
nk

)
,

we have

D(x, z) > 0 =⇒ f(D(x, z)) ≤ f(D(x, xnk
) + D(xnk

, z)) + α

< f

(
D(x, xnk

) +
1
nk

)
+ α.

By (4.11) and (F2), there exists K ∈ N
∗ such that

f

(
D(x, xnk

) +
1
nk

)
< f(r0) − α, k ≥ K,

which yields

D(x, z) > 0 =⇒ f(D(x, z)) < f(r0).

Therefore, by (F1), we obtain

D(x, z) < r0.

Thus we have

B

(
xnk

,
1
nk

)
⊂ B(x, r0), nk ∈ N

∗,

which implies

B

(
xnk

,
1
nk

)
⊂ Oj , nk ∈ N

∗.

Observe that we obtain a contradiction with the fact that B
(
xn, 1

n

) 
⊂ Oi, for
all i ∈ I. Then (4.10) holds. Further, by (4.8), there exists (xp)p=1,...,n ⊂ A
such that

A ⊂
⋃

p=1,...,n

B(xp, r0).

But by (4.10), for any p = 1, . . . , n, there exists i(p) ∈ I such that B(xp, r0) ⊂
Oi(p), which yields

A ⊂
⋃

p=1,...,n

Oi(p).

Therefore, A is F-compact, and (ii) =⇒ (i). �
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Definition 4.6. Let (X,D) be an F-metric space. Let A be a nonempty subset
of X. The subset A is called sequentially F-compact, if for any sequence
{xn} ⊂ A, there exist a subsequence {xnk

} of {xn} and x ∈ A such that

lim
k→+∞

D(xnk
, x) = 0.

Definition 4.7. Let (X,D) be an F-metric space. Let A be a nonempty subset
of X. The subset A is called F-totally bounded, if

∀ r > 0, ∃ (xi)i=1,...,n ⊂ A : A ⊂
⋃

i=1,...,n

B(xi, r).

From the proof of Proposition 4.8, we deduce the following result:

Proposition 4.9. Let (X,D) be an F-metric space. Let A be a nonempty sub-
set of X. Then

(i) A is F-compact if and only if A is sequentially F-compact.
(ii) If A if F-compact, then A is F-totally bounded.

5. Banach contraction principle on F -metric spaces

In this section, we establish a new version of the Banach contraction principle
in the setting of F-metric spaces.

Theorem 5.1. Let (X,D) be an F-metric space, and let g : X → X be a given
mapping. Suppose that the following conditions are satisfied:

(i) (X,D) is F-complete.
(ii) There exists k ∈ (0, 1) such that

D(g(x), g(y)) ≤ kD(x, y), (x, y) ∈ X × X.

Then g has a unique fixed point x∗ ∈ X. Moreover, for any x0 ∈ X, the
sequence {xn} ⊂ X defined by

xn+1 = g(xn), n ∈ N, (5.1)

is F-convergent to x∗.

Proof. First, observe that g has at most one fixed point. Indeed, if (u, v) ∈
X × X are two fixed points of g with u 
= v, i.e.

D(u, v) > 0, g(u) = u, g(v) = v,

then from (ii), we have

D(u, v) = D(g(u), g(v)) ≤ kD(u, v) < D(u, v),

which is a contradiction.
Next, let (f, α) ∈ F × [0,+∞) be such that (D3) is satisfied. Let ε > 0

be fixed. By (F2), there exists δ > 0 such that

0 < t < δ =⇒ f(t) < f(ε) − α. (5.2)

Let x0 ∈ X be an arbitrary element. Let {xn} ⊂ X be the sequence defined by
(5.1). Without restriction of the generality, we may suppose that D(x0, x1) >
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0. Otherwise, x0 will be a fixed point of g. It can be easily seen that from
(ii), we have

D(xn, xn+1) ≤ knD(x0, x1), n ∈ N,

which yields
m−1∑
i=n

D(xi, xi+1) ≤ kn

1 − k
D(x0, x1), m > n.

Since

lim
n→+∞

kn

1 − k
D(x0, x1) = 0,

there exists some N ∈ N such that

0 <
kn

1 − k
D(x0, x1) < δ, n ≥ N. (5.3)

Hence, by(5.2) and (F1), we have

f

(
m−1∑
i=n

D(xi, xi+1)

)
≤ f

(
kn

1 − k
D(x0, x1)

)
< f(ε) − α, m > n ≥ N.

(5.4)

Using (D3) and (5.4), we obtain

D(xn, xm) > 0, m > n ≥ N =⇒ f(D(xn, xm))

≤ f

(
m−1∑
i=n

D(xi, xi+1)

)
+ α < f(ε),

which implies by (F1) that

D(xn, xm) < ε, m > n ≥ N.

This proves that {xn} is F-Cauchy. Since (X,D) is F-complete, there exists
x∗ ∈ X such that {xn} is F-convergent to x∗, i.e.

lim
n→+∞ D(xn, x∗) = 0. (5.5)

We shall prove that x∗ is a fixed point of g. We argue by contradiction by
supposing that D(g(x∗), x∗) > 0. By (D3), we have

f(D(g(x∗), x∗)) ≤ f(D(g(x∗), g(xn)) + D(g(xn), x∗)) + α, n ∈ N.

Using (ii) and (F1), we obtain

f(D(g(x∗), x∗)) ≤ f(kD(x∗, xn) + D(xn+1, x
∗)) + α, n ∈ N.

On the other hand, using (F2) and (5.5), we have

lim
n→+∞ f(kD(x∗, xn) + D(xn+1, x

∗)) + α = −∞,

which is a contradiction. Therefore, we have D(g(x∗), x∗) = 0, i.e. g(x∗) = x∗.
As a consequence, x∗ ∈ X is the unique fixed point of g. �
Corollary 5.1. Let (X,D) be an F-metric space, and (f, α) ∈ F × [0,+∞) be
such that (D3) is satisfied. Let g : B(x0, r) → X be a given mapping, where
x0 ∈ X and r > 0. Suppose that the following conditions are satisfied:
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(i) (4.2) is satisfied.
(ii) (X,D) is F-complete.
(iii) There exists k ∈ (0, 1) such that

D(g(x), g(y)) ≤ kD(x, y), (x, y) ∈ B(x0, r) × B(x0, r).

(iv) There exists 0 < ε < r such that

f (kε + D(x0, g(x0))) ≤ f(ε) − α.

Then g has a fixed point.

Proof. Let 0 < ε < r be such that (iv) is satisfied. First, we shall prove that

g(B(x0, ε)) ⊂ B(x0, ε). (5.6)

Let x ∈ B(x0, ε), i.e.

D(x0, x) ≤ ε.

Suppose that D(g(x), x0) > 0. By (D3), we have

f(D(g(x), x0)) ≤ f(D(g(x), g(x0)) + D(g(x0), x0)) + α.

Using (F1), (iii), and (iv), we obtain

f(D(g(x), x0)) ≤ f(kD(x, x0) + D(g(x0), x0)) + α

≤ f(kε + D(g(x0), x0)) + α

≤ f(ε).

Hence, by (F1), we have D(g(x), x0) ≤ ε, which yields g(x) ∈ B(x0, ε).
Therefore, we proved (5.6). Further, the mapping g : B(x0, ε) → B(x0, ε) is
well-defined, and satisfies the Banach contraction condition. On the other
hand, since (4.2) is satisfied, by Proposition 4.3, we know that B(x0, ε) is
F-closed, so from (i), it is F-complete. Finally the result follows from Theo-
rem 5.1. �

Remark 5.1. In [6] (Chapter 1, page 2), Goebel and Reich established the
Banach contraction principle in the setting of metric spaces using an ele-
gant approach. The main idea in this approach is based on an application
of Cantor’s theorem. An open problem is whether Cantor’s theorem can be
extended to the setting of F-metric spaces.
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