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Abstract. Let (M, g) be a smooth compact Riemannian manifold of di-
mension n ≥ 6, ξ0 ∈ M , and we are concerned with the following Hardy–
Sobolev elliptic equations:

− Δgu + h(x)u =
u2∗(s)−1−ε

dg(x, ξ0)s
, u > 0 in M, (0.1)

where Δg = divg(∇) is the Laplace–Beltrami operator on M , h(x) is
a C1 function on M , ε is a sufficiently small real parameter, 2∗(s) :=
2(n−s)

n−2
is the critical Hardy–Sobolev exponent with s ∈ (0, 2), and dg

is the Riemannian distance on M . Performing the Lyapunov–Schmidt
reduction procedure, we obtain the existence of blow-up families of pos-
itive solutions of problem (0.1).
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1. Introduction

Let (M, g) be a smooth compact Riemannian manifold of dimension n ≥ 6
without boundary. Given ξ0 ∈ M , we consider the asymptotically critical
Hardy–Sobolev elliptic equation

− Δgu + h (x)u =
u2∗(s)−1−ε

dg (x, ξ0)
s , u > 0 in M, (1.1)

where Δg = divg(∇) is the Laplace–Beltrami operator on M , h(x) is a C1

function on M , ε is a small real parameter, dg is the Riemannian distance
on (M, g), and 2∗(s) := 2(n−s)

n−2 is the critical Hardy–Sobolev exponent with
s ∈ (0, 2) in the following sense: let H2

1 (M) be the completion of C∞(M)
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for the norm defined by (2.1); the Sobolev space H2
1 (M) is continuously

embedded in the weighted Lebesgue space Lp(M,dg(·, ξ0)−s) if and only if
1 ≤ p ≤ 2∗(s), and this embedding is compact if and only if 1 ≤ p < 2∗(s).

In the case s = 0, problem (1.1) is related to the well-known Yamabe
problem. That is, if h ≡ n−2

4(n−1)Scalg, where Scalg is the scalar curvature
of the manifold, Eq. (1.1) with s = 0 and ε = 0 is intensively studied as
the Yamabe equation whose positive solutions u are such that the scalar
curvature of the conformal metric u2∗−2g is constant (See, [1,16,17]). On
the other hand, Micheletti, Pistoia, and Vétois in [13] showed that for giving
any C1−stable critical point of h(ξ0) − n−2

4(n−1)Scalg(ξ0), there exists a single
peak solution for problem (1.1) with s = 0. In [3], the author considered the
existence of multi-peak solutions which are separate from each other for (1.1)
with s = 0. Sign-changing bubble towers solutions has been established by
Pistoia and Vétois in [14].

In the case s �= 0, there are many studies on Hardy–Sobolev equations
in the Euclidean space; we refer to [2,5,6,11] and references therein. Re-
cently, Jaber obtained some results about the existence of positive solutions
for Hardy–Sobolev equations on compact Riemannian manifolds. In partic-
ular, Jaber in [9] studied optimal Hardy–Sobolev inequalities on compact
Riemannian manifolds, and then in [8] investigated the existence of positive
solutions for the following equation:

− Δgu + h(x)u =
u2∗(s)−1

dg(x, ξ0)s
, u > 0 in M. (1.2)

The author obtained the existence of positive solutions of (1.2) when the
potential h satisfies h(ξ0) < (n−2)(6−s)

12(2n−2−s)Scalg(ξ0). In [10], the author proved
the existence of solution for Eq. (1.2) with a perturbation term uq−1 for
2 < q < 2n

n−2 by mountain pass theorem.
Inspired by the above-mentioned works, we study the existence of peak

solutions for Eq. (1.1) when ε small enough. To the best of our knowledge, it
seems that this is the first result about the existence of blow-up solutions for
elliptic equations with Hardy–Sobolev term on manifolds. Our main result
can be stated as follows.

Theorem 1.1. Let (M, g) be a smooth compact Riemannian manifold of di-
mension n ≥ 6, let h be a C1 function on M such that the operator −Δg + h
is coercive, and let ξ0 ∈ M satisfy{

h (ξ0) > (n−2)(6−s)
12(2n−2−s)Scalg (ξ0) , if ε > 0;

h (ξ0) < (n−2)(6−s)
12(2n−2−s)Scalg (ξ0) , if ε < 0,

and if ε is small enough, then Eq. (1.1) admits a solution uε such that the
family (uε)ε is bounded in H2

1 (M) and blows up at ξ0 as ε → 0.

The proof of our result relies on a very well-known Lyapunov–Schmidt
reduction procedure, introduced in [4] and used in many of the quoted pa-
pers. In particular, [3] and [13] for the existence of blow-up solutions for
asymptotically critical elliptic equations on Riemannian manifolds.



Vol. 20 (2018) Hardy–Sobolev equation on manifolds Page 3 of 12 123

The paper is organized as follows: We give some preliminaries in Sect.
2. Section 3 is devoted to the existence result. The proof of the main theorem
will be given in Sect. 4.

In this paper, C denotes a generic positive constant, which may also
vary from line to line.

2. The framework and preliminary results

In this section, we give some preliminary results. Let M be a compact Rie-
mannian manifold of class C∞. On the tangent bundle of M , we define the
exponential map exp : TM → M , which has the following properties:

(i) exp is of class C∞;
(ii) there exists a constant r > 0 such that expξ0

∣∣
B(0,r)

: B(0, r) → Bg(ξ0, r)
is a diffeomorphism for all ξ0 ∈ M , where B(0, r) denotes the ball in
R

n centered at 0 with radius r, and Bg(ξ0, r) denotes the ball in M
centered at ξ0 with radius r with respect to the distance induced by the
metric g.

From now on, we fix such r with r < ig/2, where ig denotes the injectivity
radius of (M, g). Let C be the atlas on M whose charts are given by the
exponential map and P = {ψω}ω∈C be a partition of unity subordinate to
the atlas C.

Let H2
1 (M) be the Sobolev space with the inner product

〈u, v〉 =
∫

M

〈∇u,∇v〉g dυg +
∫

M

huvdυg,

with the norm

‖u‖2h =
∫

M

(|∇gu|2 + hu2
)

dυg. (2.1)

For u ∈ H2
1 (M), we have∫

M

|∇gu|2 dυg =
∑
ω∈C

∫
ω

ψω(x)|∇gu|2 dυg,

where dυg =
√

det g dz denotes the volume form on M associated with the
metric g. Moreover, if u has support inside one chart ω = Bg(ξ0, r), then

∫
M

|∇gu|2 dυg

=
∑
ω∈C

∫
B(0,r)

ψω(expξ0
(z))

n∑
i,j=1

gij
ξ0

(z)
∂u(expξ0

(z))

∂zi

∂u(expξ0
(z))

∂zj
|gξ0(z)| 12 dz,

(2.2)

where gξ0 denotes the Riemannian metric reading in B(0, r) through the
normal coordinates defined by the exponential map expξ0 at ξ0. We denote
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|gξ0(z)| := det(gξ0(z)) and (gξ0)
ab(z) is the inverse matrix of gξ0(z). In par-

ticular, it holds

gabξ0 (0) = δab, gξ0(0) = Id,
∂gabξ0

∂zc
(0) = 0 for any a, b, c,

where δab is the Kronecker symbol. Since M is compact, there are two strictly
positive constants C and C̃ such that

∀ ξ0 ∈ M, ∀ υ ∈ Tξ0M, C‖υ‖2 ≤ gξ0 (υ, υ) ≤ C̃‖υ‖2.
Hence, we have

∀ ξ0 ∈ M, C1 ≤ |gξ0 | ≤ C2.

Let Lq(M,dg(x, ξ0)−s) be the weighted Lebesgue space equipped with the
norm

|u|q,s =
(∫

M

dg(x, ξ0)−s|u|q dυg

)1/q

.

It will be useful to rewrite problem (1.1) in a different setting. We first
introduce the following operator. Let i∗ : L2(n−s)/(n+2−2s)(M,dg(x, ξ0)−s) ↪→
H2

1 (M) be the adjoint operator of the embedding i : H2
1 (M) ↪→ L2∗(s)(M,dg

(x, ξ0)−s), i.e., for any w ∈ L2(n−s)/(n+2−2s)(M,dg(x, ξ0)−s), the function
u = i∗(w) ∈ H2

1 (M) is the unique solution of the equation Δgu + hu = w in
M . By the continuity of the embedding H2

1 (M) into L2∗(s)(M,dg(x, ξ0)−s),
we have

‖i∗(w)‖h ≤ C|w| 2(n−s)
n+2−2s ,s

(2.3)

for some positive constant C independent of w.
To study the supercritical case, by the standard elliptic estimates (see,

[7]), given a real number q > 2(n − s)/(n − 2), that is

(n − s) q

n − s + (2 − s) q
>

2 (n − s)
n + 2 − 2s

for any w in L2(n−s)/(n+2−2s)(M,dg(x, ξ0)−s), the function i∗(w) belongs to
Lq(M,dg(x, ξ0)−s) and satisfies

|i∗(w)|q,s ≤ C|w| 2(n−s)
n+2−2s ,s

(2.4)

for some positive constant C independent of w. For ε small, we set

qε :=
{

2∗ (s) − n−s
2−s ε if ε < 0;

2∗(s) if ε > 0,

and set Hε = H2
1 (M) ∩ Lqε(M,dg(x, ξ0)−s) to be the Banach space provided

with the norm

‖u‖h,qε
= ‖u‖h + |u|qε,s.

If ε > 0, the subcritical case, the space Hε is the Sobolev space H2
1 (M), and

the norm ‖ · ‖h,qε
is equivalent to the norm ‖ · ‖h. A simple calculation gives



Vol. 20 (2018) Hardy–Sobolev equation on manifolds Page 5 of 12 123

that

(n − s)qε

n − s + (2 − s)qε
=

{
qε

2∗(s)−1−ε if ε < 0;
2(n−s)
n+2−2s if ε > 0,

(2.5)

and by (2.3) [or (2.4) in the supercritical case], we can write problem (1.1)
as

u = i∗ (fε(u)) , u ∈ Hε, (2.6)

where fε(u) = u
2∗(s)−1−ε
+
dg(x,ξ0)s , with u+ = max{u, 0}.

We introduce the following equation which corresponds to the limit
equation of problem (1.1).

− Δu(z) =
u2∗(s)−1(z)

|z|s , u > 0 in R
n, (2.7)

where Δ = div(∇) is the Laplace–Beltrami operator associated with the
Euclidean metric. In [12], it is known that Eq. (2.7) possesses the following
family of radial solutions δ(2−n)/2U(δ−1|z|), where

U(z) = αn

( 1
1 + |z|2−s

)n−2
2−s

, with αn = ((n − s)(n − 2))
n−2

2(2−s) . (2.8)

Let us define a smooth cutoff function χr that satisfies χr(z) = 1 for z ∈
B̄(0, r

2 ); 0 < χr(z) < 1 for z ∈ B(0, r)\B(0, r
2 ); χr(z) = 0 for z ∈ R

n\B̄(0, r),
and |∇χr(z)| ≤ 2

r , |∇2χr(z)| ≤ 2
r2 . For any ξ0 ∈ M and any positive real

number δ, we define

Wδ,ξ0(x) :=

{
χr(exp−1

ξ0
(x))δ

2−n
2 U

(
δ−1exp−1

ξ0
(x)

)
if x ∈ Bg(ξ0, r);

0 otherwise.
(2.9)

From the work of [15], we know that every solution of the linear equation

− Δv = (2∗(s) − 1)
U2∗(s)−2

|z|s v, v ∈ D1,2
0 (Rn), (2.10)

is the linear combination of the function

V (z) =
d

(
δ(2−n)/2U(δ−1z)

)
dδ

∣∣∣
δ=1

=
1

2
(n − s)

n−2
2(2−s) (n − 2)

n+2−2s
2(2−s)

|z|2−s − 1

(1 + |z|2−s)
n−s
2−s

.

(2.11)

We introduce the functions

Zδ,ξ0(x) :=

{
χr

(
exp−1

ξ0
(x)

)
δ

2−n
2 V

(
δ−1exp−1

ξ0
(x)

)
if x ∈ Bg(ξ0, r);

0 otherwise.
(2.12)

Define

Kδ,ξ0 = Span {Zδ,ξ0} ,

and

K⊥
δ,ξ0 = {φ ∈ Hε : 〈φ,Zδ,ξ0〉 = 0} .



123 Page 6 of 12 W. Chen JFPTA

We will look for the solution of (2.6), or equivalent to (1.1), of the form

uε = Wδε(t),ξ0 + φε,t, δε(t) =
√

|ε|t, t > 0, (2.13)

where the rest term φε,t ∈ Hε ∩ K⊥
δε(t),ξ0

and Wδε(t),ξ0 is as in (2.9).
Let Πδε(t),ξ0 : Hε → Kδε(t),ξ0 and Π⊥

δε(t),ξ0
: Hε → K⊥

δε(t),ξ0
be the

orthogonal projections. To solve problem (2.6), we will solve the following
system:

Π⊥
δε(t),ξ0

{
Wδε(t),ξ0 + φε,t − i∗

[
fε

(
Wδε(t),ξ0 + φε,t

)]}
= 0, (2.14)

Πδε(t),ξ0

{
Wδε(t),ξ0 + φε,t − i∗

[
fε

(
Wδε(t),ξ0 + φε,t

)]}
= 0. (2.15)

3. The existence result

The first step in the proof consists in solving Eq. (2.14). This is done in
Proposition 3.1. We skip the proof of this result, which is rather standard in
the literature on Lyapunov–Schmidt reduction; we refer the readers to [13].

Proposition 3.1. If n ≥ 6 and δε(t) is as in (2.13), for any a, b > 0 satisfying
a < b, if ε is small enough, for any t ∈ [a, b], Eq. (2.14) has a unique solution
φε,t in Hε ∩ K⊥

δε(t),ξ0
, which is continuously differentiable with respect to t.

Moreover,

‖φε,t‖h,qε
≤ C

{
|ε| |ln |ε| |2/3 if n = 6 and ε > 0;
|ε| |ln |ε| | otherwise,

(3.1)

where C is a positive constant.

We define the functional Jε : Hε → R by

Jε (u(x)) =
1

2

∫
M

|∇gu(x)|2dυg +
1

2

∫
M

h(x)u(x)2dυg − 1

2∗(s) − ε

∫
M

u
2∗(s)−ε
+

dg(x, ξ0)s
dυg,

(3.2)

where u+ = max{u, 0} ∈ Hε. It is well known that any critical point of Jε is
the solution to problem (1.1). We also define the functional J̃ε : R+ → R by

J̃ε(t) = Jε

(
Wδε(t),ξ0 + φε,t

)
, (3.3)

where Wδε(t),ξ0 is defined in (2.9) and φε,t is given by Proposition 3.1.
The next result allows to solve Eq. (2.15), by reducing the problem to

a finite dimensional one.

Proposition 3.2. (i) For ε small, if t is a critical point of the functional J̃ε,
then Wδε(t),ξ0 +φε,t is a solution of (2.6), or equivalent of problem (1.1).

(ii) If n ≥ 6 and δε(t) is as in (2.13), for a < t < b, there holds

J̃ε(t) =
2 − s

2(n − s)
c0 − c1ε − c2ε ln |ε| + c3ϕξ0(t)ε + o(|ε|) (3.4)
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as ε → 0, C1-uniformly with respect to ξ0 in M , where ci, i = 0, 1, · · · , 4
are positive constants, and ϕξ0(t) is defined by

ϕξ0(t) =sign(ε)
(
h(ξ0) − (n − 2)(6 − s)

12(2n − 2 − s)
Scalg(ξ0)

)
t − c4 ln t. (3.5)

Proof. First, by using the same argument as in [13], we have that for ε small,
if t is a critical point of the functional J̃ε, then Wδε(t),ξ0 +φε,t is a solution of
(2.6), or equivalently of problem (1.1). Moreover, if n ≥ 6 and for a < t < b,
there holds

J̃ε(t) = Jε

(
Wδε(t),ξ0(x)

)
+ o(|ε|), (3.6)

as ε → 0, C1-uniformly with respect to ξ0 in M .
We now give the expansion of the energy J(Wδε(t),ξ0(x)). We have

Jε

(
Wδε(t),ξ0(x)

)
=

1
2

∫
M

|∇gWδε(t),ξ0(x)|2dυg +
1
2

∫
M

h(x)Wδε(t),ξ0(x)2dυg

− 1
2∗(s) − ε

∫
M

W
2∗(s)−ε
δε(t),ξ0

dg(x, ξ0)s
dυg. (3.7)

We estimate each term as follows.∫
M

|∇gWδε(t),ξ0(x)|2dυg

=
∫
Rn

(
δij − δε(t)2

3
Rikljzizj + o(δε(t)2)

)(
1 − δε(t)2

6
Rklzkzl

)

× ∂U(z)
∂zi

∂U(z)
∂zj

dz + o(δε(t)2)

=
∫
Rn

|∇U |2dz − |ε| t

6n
Scalg(ξ0)

∫
Rn

|z|2|∇U |2dz + o(|ε|),
(3.8)

and

d

dt

(∫
M

|∇gWδε(t),ξ0(x)|2dυg

)

= −δε(t)δ′
ε(t)

1
3n

Scalg(ξ0)
∫
Rn

|z|2|∇U |2dz + o(δε(t)δ′
ε(t)),

= −|ε| 1
6n

Scalg(ξ0)
∫
Rn

|z|2|∇U |2dz + o(|ε|), (3.9)

where δ′
ε(t) denotes the derivative of δε(t) with respect to t. Moreover,∫

M

h(x)Wδε(t),ξ0(x)2dυg =δε(t)2h(ξ0)
∫
Rn

U2dz + o(δε(t)2)

=|ε|th(ξ0)
∫
Rn

U2dz + o(|ε|), (3.10)
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and

d

dt

( ∫
M

h(x)Wδε(t),ξ0(x)2dυg

)
=2δε(t)δ′

ε(t)h(ξ0)
∫
Rn

U2dz + o(δε(t)2)

=|ε|h(ξ0)
∫
Rn

U2dz + o(|ε|). (3.11)

Furthermore, by (2.13), we have

1
2∗(s) − ε

∫
M

W
2∗(s)−ε
δε(t),ξ0

dg(x, ξ0)s
dυg

=
1

2∗(s)

∫
Rn

U(z)2
∗(s)

|z|s dz + ε ln |ε| 1
2∗(s)

n − 2
4

∫
Rn

U(z)2
∗(s)

|z|s dz

+ ε
[ 1
(2∗(s))2

∫
Rn

U(z)2
∗(s)

|z|s dz − sign(ε)
1

2∗(s)

∫
Rn

U(z)2
∗(s)

|z|s ln U(z)dz
]

+ ε
[( 1

2∗(s)
n − 2

4

∫
Rn

U(z)2
∗(s)

|z|s dz
)

ln t

− sign(ε)
( 1

2∗(s)
Scalg(ξ0)

6n

∫
Rn

|z|2−sU(z)2
∗(s)dz

)
t
]

+ o(|ε|), (3.12)

and

d

dt

( 1
2∗(s) − ε

∫
M

W
2∗(s)−ε
δε(t),ξ0

dg(x, ξ0)s
dυg

)

= ε
δ′
ε(t)

δε(t)
1

2∗(s)
n − 2

2

∫
Rn

U(z)2
∗(s)

|z|s dz

− δε(t)δ′
ε(t)

1
2∗(s)

Scalg(ξ0)
3n

∫
Rn

|z|2−sU(z)2
∗(s)dz

+ o(δε(t)δ′
ε(t))

= ε
[( 1

2∗(s)
n − 2

4

∫
Rn

U(z)2
∗(s)

|z|s dz
)1

t

− sign(ε)
( 1

2∗(s)
Scalg(ξ0)

6n

∫
Rn

|z|2−sU(z)2
∗(s)dz

)]
+ o(|ε|). (3.13)

Since U is the solution of problem (2.7), we have that

∫
Rn

|∇U |2dz =
∫
Rn

U(z)2
∗(s)

|z|s dz.

Thus, from (3.7), (3.8), (3.10) and (3.12), we get

Jε

(
Wδε(t),ξ0(x)

)
=

2 − s

2(n − s)
c0 − c1ε − c2ε ln |ε| + c3ϕξ0(t)ε + o(|ε|), (3.14)
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as ε → 0, C0-uniformly with respect to ξ0 in M , where

c0 =
∫
Rn

|∇U |2dz,

c1 =
1

(2∗(s))2

∫
Rn

U(z)2
∗(s)

|z|s dz − sign(ε)
1

2∗(s)

∫
Rn

U(z)2
∗(s)

|z|s ln U(z)dz,

c2 =
1

2∗(s)
n − 2

4

∫
Rn

U(z)2
∗(s)

|z|s dz,

c3 =
1
2

∫
Rn

U2dz,

and

ϕξ0(t) = sign(ε)
[
h(ξ0) − Ψ(U)Scalg(ξ0)

]
t − c4 ln t,

where

Ψ(U) =
1
6n

∫
Rn |z|2|∇U |2dz∫

Rn U2dz
− 1

2∗(s)
1
3n

∫
Rn |z|2−sU(z)2

∗(s)dz∫
Rn U2dz

,

and

c4 =
1

2∗(s)
n − 2

2

∫
Rn

U(z)2
∗(s)

|z|s dz∫
Rn U2dz

.

Next, we compute Ψ(U) by using similar ideas of Jaber in [8]. For any positive
real numbers p and q satisfying p − q > 1, we set

Iq
p =

∫ +∞

0

tq

(1 + t)p
dt.

Then we find

Iq
p+1 =

p − q − 1
p

Iq
p , and Iq+1

p+1 =
q + 1

p − q − 1
Iq
p+1. (3.15)

Using (2.8), we derive

∫
Rn |z|2|∇U |2dz∫

Rn U2dz
=

(n − 2)2
∫ +∞
0

rn+3−2s

(1+r2−s)
2(n−s)
2−s

dr

∫ +∞
0

rn−1

(1+r2−s)
2(n−2)
2−s

dr

=
(n − 2)2

∫ +∞
0

t
n

2−s
+1

(1+t)
2(n−s)
2−s

dt

∫ +∞
0

t
n

2−s
−1

(1+t)
2(n−2)
2−s

dt

=
(n − 2)2I

n
2−s+1
2(n−s)
2−s

I
n

2−s −1
2(n−2)
2−s

=
n(n − 2)(n + 2 − s)

2(2n − 2 − s)
,
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and

∫
Rn |z|2−sU(z)2

∗(s)dz∫
Rn U2dz

=(n − s)(n − 2)

∫ +∞
0

rn+1−s

(1+r2−s)
2(n−s)
2−s

dr

∫ +∞
0

rn−1

(1+r2−s)
2(n−2)
2−s

dr

=(n − s)(n − 2)

∫ +∞
0

t
n=2
2−s

(1+t)
2(n−s)
2−s

dt

∫ +∞
0

t
n

2−s
−1

(1+t)
2(n−2)
2−s

dt

=(n − s)(n − 2)
I

n−2
2−s
2(n−s)
2−s

I
n

2−s −1
2(n−2)
2−s

=
n(n − 4)(n − s)
2(2n − 2 − s)

.

Then,

Ψ(U) =
(n − 2)(6 − s)
12(2n − 2 − s)

.

Thus, we can rewrite ϕξ0(t) as in (3.5).
Finally, (3.9), (3.11) together with (3.13) yield that (3.14) holds in C1-

sense with respect to t. �

4. Proof of the main result

Proof of Theorem 1.1. From Proposition 3.2 (i), it follows that Wδε(t),ξ0 +
φε,t, where Wδε(t),ξ0 is defined in (2.9) and the existence of φε,t is guaranteed
by Proposition 3.1, is a solution of (1.1) if t is a critical point of the functional
J̃ε, which is equivalent to finding a critical point of the function ϕξ0(t).

In fact, by assumption,

sign(ε)
(
h(ξ0) − (n − 2)(6 − s)

12(2n − 2 − s)
Scalg(ξ0)

)
> 0,

then ϕξ0(t) has a minimal point

t0 = c4

[
sign(ε)(h(ξ0) − (n − 2)(6 − s)

12(2n − 2 − s)
Scalg(ξ0))

]−1

,

which is a stable critical point of ϕξ0(t). Then there exists tε such that tε → t0
as ε → 0 and tε is the critical point of J̃ε. �
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