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Abstract. In this paper, by introducing multivalued (α, η)–ψ-contractive
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single-valued mappings and also coupled fixed point theorems in com-
plete Menger PM and partially ordered Menger PM spaces. We have
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1. Introduction

First probabilistic metric spaces was introduced by Menger [27] in 1942. Then,
Sehgal and Bharucha-Reid [33] proved the probabilistic version of the clas-
sical Banach contraction principle for B-contraction mappings. After this,
the fixed point theory in probabilistic metric spaces for single-valued and
multivalued mappings was extensively studied by many mathematician (see
[16,21–26,36,37]). In 2010, Jachymski [19] improved the probabilistic ver-
sion of the classical Banach contraction principle, obtained by Ćirić [7] for
nonlinear contractions.

On the other hand, in 2012, Samet et al. [29] introduced the notion of
α–ψ-contractive mappings and gave some results on fixed point of mappings
in complete metric spaces. They introduced the family of non-decreasing
functions ψ : [0,∞) → [0,∞) such that

∑∞
n=1 ψn(t) < ∞ for all t > 0.

They also supposed that T be a self-mapping on a metric space (X, d) and
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α : X × X → [0,∞) be a function, and said the mapping T , α-admissible
mapping if

x, y ∈ X α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Further, The mapping T was said an α–ψ-contractive mapping if there exist
two function α : X × X → [0,∞) and ψ such that for x, y ∈ X,

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)).

Next, they gave the following main theorem:

Theorem 1.1. [29] Let (X, d) be a complete metric space and Let T be α–ψ-
contractive mapping satisfying the following conditions:

(i) T be α-admissible;
(ii) There exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T be continuous or if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1

for all n and xn → x as n → ∞ then α(xn, x) ≥ 1 for all n hold.
Then, T has a fixed point.

More recently, by the same idea with Theorem 1.1, new results has
been developed for single-valued and multivalued mappings in metric spaces,
fuzzy metric spaces and probabilistic metric spaces, see [1,13,18,28]. Hence,
the following question is bound to arise:

Is it possible to obtain a generalization of multivalued and probabilistic
version of Theorem 1.1 and prove fixed point theorems for mappings satisfying
a more general conditions?

Our purpose of this article is to give an affirmative answer of this ques-
tion in Theorems 2.12 and 2.13, and also to state coupled fixed and fixed-point
theorems for single-valued mappings in partially ordered and probabilistic
metric spaces in Sect. 3 that extend, generalize and improve many existing
results. In fact, we shall prove our existence results for a wide class of contrac-
tive multivalued and single-valued mappings in probabilistic metric spaces.
Moreover, to illustrate the usability of our results, in Sect. 4, we discuss the
fixed-point theorems for multivalued and single-valued mappings on metric
spaces, and also, the existence of solutions for nonlinear Volterra integral
equations on a Banach space.

Throughout this paper, let R = (−∞,∞), R+ = [0,∞), Δ+ be the space
of all probability distribution functions F : R∪{−∞,+∞} → [0, 1] such that
F is left-continuous and non-decreasing on R, F (0) = 0 and F (+∞) = 1 and
the subset D+ ⊆ Δ+ is the set D+ = {F ∈ Δ+; l−F (+∞) = 1}. Here, l−f(x)
denotes the left limit of the function f at the point x, l−f(x) = limt→x− f(t).
The space D+ is partially ordered by the usual pointwise ordering of func-
tions, i.e., F ≤ G if and only if F (t) ≤ G(t) for all t ∈ R. The maximal
element for D+ in this order is the distance distribution function ε0, defined
by

ε0(t) =
{

0 if t ≤ 0,
1 if t > 0.
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Definition 1.2. [17] A function 
 : [0, 1] × [0, 1] → [0, 1] is called a t-norm, if
it satisfies the following conditions, for any a, b, c, d ∈ [0, 1]:

(1) 
(a, 1) = a;
(2) 
(a, b) = 
(b, a);
(3) 
(a, b) ≤ 
(c, d) for a ≤ c and b ≤ d;
(4) 
(
(a, b), c) = 
(a,
(b, c)).

The four basic t-norms are the minimum t-norm: 
M (x, y) = min{x, y},
the product t-norm: 
p(x, y) = x.y, the Lukasiewicz t-norm: 
L(x, y) =
max{x + y − 1, 0}, and the weakest t-norm, the drastic product: 
D(x, y) =
min{x, y} if max{x, y} = 1 and 
D(x, y) = 0 otherwise.

As regards, the pointwise ordering, we have the inequalities


D < 
L < 
p < 
M .

It is said that the t-norm 
 is of Hadžić-type (H-type in short) if the family
{
n}n≥0 of its iterates, defined for each x ∈ [0, 1] by


1(x) = 
(x, x), and 
n+1(x) = 
((
n(x)), x) ∀n ≥ 1,

is equicontinuous at x = 1, that is,

∀ε ∈ (0, 1) ∃δ ∈ (0, 1) : a > 1 − δ ⇒ 
n(a) > 1 − ε ∀n ≥ 1.


M is a trivial example of t-norm of H-type, but there are t-norms of H-type
weaker than 
M , see [17].
If 
 be a t-norm and {xi}i≥1 is a sequence in [0, 1], 
∞

i=1xi is by definition
limn→∞ 
n

i=1xi, where 
n
i=1xi is defined recurrently by x1 if n = 1 and


n
i=1xi = 
(
n−1

i=1 xi, xn) for all n ≥ 2.

Proposition 1.3. [17] Let {xn}n∈N be a sequence of numbers from [0, 1] such
that limn→∞ xn = 1 and 
 is of H-type, then limn→∞ 
∞

i=nxi = limn→∞

∞

i=1xn+i = 1.

Definition 1.4. [17,31] The 3-tuple (S,F ,
) is called a Menger probabilistic
metric space (briefly, Menger PM space) if S is a nonempty set, 
 is a t-
norm, and F is a mapping from S × S into D+ [Fx,y denotes the value of F
at the pair (x, y)] satisfying the following conditions:

(PM1) Fx,y(t) = ε0(t) if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t) for all x, y ∈ S, t > 0;
(PM3) Fx,z(t + s) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ S and t, s ≥ 0.

Schweizer et al. [31,32] point out that if the t-norm 
 of a Menger PM
space (S,F ,
) satisfies the condition sup0<t<1 
(t, t) = 1, then (S,F ,
)
is a Hausdorff topological space in the topology τ induced by the family of
neighborhoods

{Up(ε, λ) : p ∈ S, λ > 0, ε > 0},

where

Up(ε, λ) = {x ∈ S : Fx,p(ε) > 1 − λ}.
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By virtue of this topology τ , a sequence {xn} in a Menger PM space (S,F ,
)
is said to be τ -convergent to x ∈ S (we write xn → x) if for any given
ε > 0 and λ ∈ (0, 1), there exists a positive integer N = N(ε, λ) such that
Fxn,x(ε) > 1−λ whenever n ≥ N ; {xn} is called a τ -Cauchy sequence in S if
for any given ε > 0 and λ ∈ (0, 1), there exists a positive integer N = N(ε, λ)
such that Fxn,xm

(ε) > 1 − λ, whenever n,m ≥ N ; (S,F ,
) is said to be
τ -complete, if each Cauchy sequence in S is τ -convergent to some point in S.
It is easy to prove that {xn} is τ -convergent to x ∈ S if and only if

lim
n→∞ Fxn,x(t) = 1 for all t > 0.

Lemma 1.5. [11,33] Let (S, d) be a usual metric space. Define a mapping
F : S × S → D+ by

Fx,y(t) = ε0(t − d(x, y)), x, y ∈ S, t > 0.

Then, (S,F ,
M ) is a Menger PM space; it is called the induced Menger PM
space by (S, d) and it is complete if (S, d) is complete.

In the sequel, we let (S,F ,
) be a Menger PM space and denote by
CB(S) the family of all nonempty τ -closed subsets of S. Let x ∈ S and
A,B ∈ CB(S); we define two functions Fx,A and FA,B by

Fx,A(t) = sup
y∈A

Fx,y(t), t ≥ 0, (1.1)

and

F̃A,B(t) = sup
s<t


( inf
x∈A

sup
y∈B

Fx,y(s), inf
y∈B

sup
x∈A

Fx,y(s)), t ≥ 0, (1.2)

respectively. Then, Fx,A is called the probabilistic distance between x and A,
and F̃A,B is called the probabilistic distance between A and B.
The probabilistic Hausdorff metric was defined and studied by Egbert [9] in
the case of Menger spaces. He proved that if the function H defined for any A

and B in CB(S) by H(A,B) = F̃A,B , then (CB(S),H,
) with continuous t-
norm 
 is a Menger PM space. The completeness with respect to probabilistic
Hausdorff metric of all nonempty closed subsets of a complete general PM
spaces was proved by Cobzas [8]. He in his paper proved that if the PM space
(S, F,
) with sup-continuous t-norm 
 is complete, then the space CB(S)
is complete with respect to probabilistic Hausdorff metric provided 
 ≥ 
L.

Lemma 1.6. [5] Let (S,F ,
) be a Menger PM space and 
 be a left-continuous
t-norm. If A ∈ CB(S), and x, y be arbitrary points of S, Then, the following
assertions hold:

(i) Fx,A(t) = 1 for all t > 0 if and only if x ∈ A;
(ii) Fx,A(t1 + t2) ≥ 
(Fx,y(t1), Fy,A(t2)), for all t1, t2 ≥ 0;

(iii) For any A,B ∈ CB(S) and x ∈ A, Fx,B(t) ≥ F̃A,B(t) for all t ≥ 0.
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Theorem 1.7. [30] Let (S,F ,
) be a Menger PM space with continuous t-
norm 
. If pn and qn be sequences such that pn → p and qn → q, then
limn→∞ Fpn,qn(t) = Fp,q(t) for all continuity point t of Fp,q.

Definition 1.8. [18] Let T : S → 2S be a set-valued function, and let α, η :
S × S × (0,∞) → R

+ be two functions, where α is bounded. We say that T
is an α�–η�-admissible mapping if

α(x, y, t) ≤ η(x, y, t) ⇒ α�(Tx, Ty, t) ≤ η�(Tx, Ty, t) x, y ∈ S, t > 0,

where α�(A,B, t) = supx∈A,y∈B α(x, y, t) and η�(A,B, t) = infx∈A,y∈B

η(x, y, t).

Let f : S → S be a single-valued mapping and T : S → 2S be a
multivalued mapping. A point x ∈ S is a fixed point of f (resp. T ) if
fx = x(resp. x ∈ Tx).

2. Fixed-point results for multivalued (α, η)–ψ-contractive
mappings

We begin this section with introducing the class of functions and our new
notions that help us to give our fixed-point theorems for multivalued map-
pings in Menger PM spaces and also partially ordered Menger PM spaces.

Let Ψ denote the class of all the functions ψ from R
+ into R

+ satisfying
the following properties:

(ψ1) 0 < ψ(t) < t for all t > 0;
(ψ2) limn→∞ ψn(t) = 0 for all t > 0, where ψn(t) denotes the n-th

iterative function of ψ(t).
If ψ is defined by ψ(t) = kt, k ∈ (0, 1), or ψ(t) = a(t)t, where a : (0,∞) →
(0, 1) be a monotonically decreasing function, then ψ ∈ Ψ.

Definition 2.1. Let (S,F ,
) be a Menger PM space. We say that T : S → 2S

has the approximative-valued property, whenever for each x ∈ S there exists
y ∈ Tx such that Fx,y(t) = Fx,Tx(t) for all t > 0. Also, T is called to have
the w-approximative valued property whenever for each a ∈ S and all x ∈ Ta
there exists y ∈ Tx such that

Fx,y(t) ≥ F̃Ta,Tx(t) ∀t > 0,

i.e., the mapping P(x) = {y ∈ Tx;Fx,y(t) ≥ F̃Ta,Tx(t),∀t > 0} for each
a ∈ S and all x ∈ Ta, has nonempty values.

Remark 2.2. Note that, if the multivalued mapping T has the approximative
valued property, then it will satisfy in the w-approximative valued property
too. It is clear that every compact-valued mapping has the approximative
valued property.

Definition 2.3. Let T : S → 2S , and α, η : S × S × (0,∞) → R
+ be two

functions. T be called α-admissible w.r.t. η, if

∀x ∈ S, ∀y ∈ Tx α(x, y, t) ≤ η(x, y, t) ⇒ α(y, z, t)
≤ η(y, z, t) ∀z ∈ Ty, t > 0.
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Remark 2.4. We notice that it is easy to see that every α�–η�-admissible
mapping (Definition 1.8) is a α-admissible w.r.t. η on S.

Example 2.5. Let S = R
+ and T : S → 2S be defined by T (x) = [0, 3x] for

each x ∈ S. If define α : S × S × (0,∞) → R
+ as

α(x, y, t) =
{

1
4 if (x, y) = (0, 0),
2 if (x, y) = (0, 0),

then T is α-admissible w.r.t. η. In fact, if for each x ∈ S, and y ∈ Tx we
have α(x, y, t) ≤ 1, then x = y = 0. This implies that Ty = {0} and so for
any z ∈ Ty we get α(y, z, t) ≤ 1.

Example 2.6. Let S = [0, 1] and T : S → 2S be a multivalued map defined
by T (x) = { 1

2} for all x ∈ [0, 1
2 ) ∪ ( 12 , 1], T (x) = [14 , 3

4 ] for all x = 1
2 and

η : S × S × (0,∞) → R
+ as

η(x, y, t) =
{

1
3 if y = 1

2 ,
2 otherwise,

then T is not α-admissible w.r.t. η on S. To see this, if for each x ∈ S, and
y ∈ Tx we have η(x, y, t) ≥ 1, then y = 1

2 . This implies that Ty = { 1
2}, thus

for z ∈ Ty, z = 1
2 and this means η(x, y, t) = 1

3 < 1.

Definition 2.7. Let (S,F ,
) be a Menger PM space and ψ ∈ Ψ. The mapping
T : S → 2S is called multivalued (α, η)–ψ-contractive if for every x, y ∈ S
that α(x, y, t) ≤ η(x, y, t) then

F̃Tx,Ty(ψ(t)) ≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t)}, t > 0.

Definition 2.8. We say that S satisfies the condition (Cα,η), whenever for
each sequence {xn} in S with α(xn, xn+1, t) ≤ η(xn, xn+1, t) for all n ∈ N

and xn → x, there exists a subsequence {xnk
} of {xn} such that α(xnk

, x, t) ≤
η(xnk

, x, t) for all k ∈ N hold.

Example 2.9. Let S = R
+ with the metric d(x, y) = |x − y|. Suppose that

F(x, y)(t) = Fx,y(t) =
t

t + d(x, y)
,

and 
 = 
M , then (S,F ,
) is a Menger PM space. Let ψ(t) = t
2 for t ≥ 0,

T : S → 2S be defined by T (x) = {2x − 5
3} for all x > 1, T (x) = [0, x

3 ] for all
0 ≤ x ≤ 1 and η : S × S × (0,∞) → R

+ as

η(x, y, t) =
{

1
3 if x, y /∈ [0, 1],
2 otherwise.

We shall show that T is multivalued (α, η)–ψ-contractive and S satis-
fies the condition (Cα,η). If for each x, y ∈ S we have η(x, y, t) ≥ 1, then
x, y ∈ [0, 1] and so Tx = [0, x

3 ] and Ty = [0, y
3 ]. Using the definition of the
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probabilistic Hausdorff metric (1.2), we get

F̃[0, x3 ],[0, y3 ]
(
t

2
) =

t
2

t
2 + 1

3 |x − y| =
t

t + 2
3 |x − y|

≥ t

t + |x − y| = Fx,y(t)

≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t)},

for all t > 0. This means that T is multivalued (α, η)–ψ-contractive. In addi-
tion, if {xn} is a sequence in S such that η(xn, xn+1, t) ≥ 1 for all n ∈ N and
xn → x, then by the definition of the η, we have xn ∈ [0, 1] for all n and so
x ∈ [0, 1]. This shows that there exists a subsequence {xnk

} of {xn} (here as
{xn}) such that η(xnk

, x, t) ≥ 1 for all k ∈ N, i.e., S satisfies the condition
(Cα,η).

To obtain our main theorem, we need the following lemmas.

Lemma 2.10. Let (S,F ,
) be a Menger PM space. Let ψ ∈ Ψ, A ∈ CB(S)
and x ∈ S. If

Fx,A(ψ(t)) = Fx,A(t) for all t > 0,

then x ∈ A.

Proof. Let x ∈ S. By (1.1), for any y ∈ A we have Fx,y(t) ≤ Fx,A(t) for
all t > 0. On the other hand, since limt→∞ Fx,y(t) = 1, then for ε ∈ (0, 1),
there exists t0 > 0 such that Fx,y(t0) > 1− ε. Hence, by choosing n such that
ψn(t0) < δ for any n ≥ N , and using induction on Fx,A, we get

Fx,A(δ) ≥ Fx,A(ψn(t0)) = · · · = Fx,A(ψ(t0)) = Fx,A(t0) ≥ Fx,y(t0) > 1 − ε.

Therefore, Fx,A(t) = 1 for all t > 0, and then by Lemma 1.6 (i), we conclude
that x ∈ A. �

Lemma 2.11. [35] For n ∈ N, let g1, g2, . . . , gn : R → [0, 1] and F ∈ D+. If
for some ψ ∈ Ψ,

F (ψ(t)) ≥ min{g1(t), g2(t), . . . , gn(t), F (t)} for all t > 0,

then F (ψ(t)) ≥ min{g1(t), g2(t), . . . , gn(t)} for all t > 0.

The following theorem is our main result.

Theorem 2.12. Let (S,F ,
) be a complete Menger PM space with contin-
uous t-norm 
 of H-type. Let T : S → CB(S) has the w-approximative
valued property and be a multivalued (α, η)–ψ-contractive mapping satisfying
the following conditions:

(i) T is α-admissible w.r.t. η on S;
(ii) For some x0 ∈ S there exists x1 ∈ Tx0 such that α(x0, x1, t) ≤ η(x0, x1, t)

for all t > 0;
(iii) T is continuous or S satisfies the condition (Cα,η).
Then, T has a fixed point, that is, there exists x ∈ S such that x ∈ Tx.
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Proof. If x1 = x0, then we have nothing to prove. Let x1 = x0, i.e., x0 /∈ Tx0.
Since T has w-approximative value property, then there exists x2 ∈ Tx1 such
that Fx1,x2(t) ≥ F̃Tx0,Tx1(t) for all t > 0. For x2 ∈ Tx1, using this property
that T is α-admissible w.r.t. η, we have α(x1, x2, t) ≤ η(x1, x2, t) for all t > 0.
If x1 ∈ Tx1, then x1 is a fixed point of T and we have nothing to prove.
Suppose that x2 = x1. Again, by the assumptions, there exists x3 ∈ Tx2

such that Fx2,x3(t) ≥ F̃Tx1,Tx2(t) and α(x2, x3, t) ≤ η(x2, x3, t) for all t > 0.
By continuing this process, we obtain a sequence {xn} in S such that

xn ∈ Txn−1, xn = xn−1, Fxn,xn+1(t) ≥ F̃Txn−1,Txn
(t),

and

α(xn, xn+1, t) ≤ η(xn, xn+1, t) for all t > 0, n = 1, 2, . . . .

Now, we have

Fxn,xn+1(ψ(t)) ≥ F̃Txn−1,Txn
(ψ(t))

≥ min{Fxn−1,xn
(t), Fxn−1,Txn−1(t), Fxn,Txn

(t)}
≥ min{Fxn−1,xn

(t), Fxn−1,xn
(t), Fxn,xn+1(t)}

= min{Fxn−1,xn
(t), Fxn,xn+1(t)} for all t > 0, n = 1, 2, . . . ,

and so we get from Lemma 2.11, that Fxn,xn+1(ψ(t)) ≥ Fxn−1,xn
(t), thus

Fxn,xn+1(ψ
n(t)) ≥ Fxn−1,xn

(ψn−1(t)) ≥ · · · ≥ Fx1,x2(ψ(t)) ≥ Fx0,x1(t), (2.1)

for all t > 0 and n = 1, 2, . . .. In addition, (ψ1) implies that

Fxn,xn+1(t) ≥ Fxn−1,xn
(t) for all t > 0, n = 1, 2, . . . . (2.2)

Now fix δ0 > 0 and ε0 ∈ (0, 1). Since S is a Menger PM space, we have
Fx0,x1(t) → 1 as t → ∞, thus there exists t0 > 0 such that Fx0,x1(t0) > 1−ε0.
In addition, from (ψ2) and by choosing n such that ψn(t0) < δ0 for all n ≥ k,
(2.1) and using monotonicity F , we obtain

Fxn,xn+1(δ0) > Fxn,xn+1(ψ
n(t0)) ≥ Fx0,x1(t0) > 1 − ε0 for all n ≥ k.

Thus, we infer that

lim
n→∞ Fxn,xn+1(t) = 1 for all t > 0. (2.3)

Now we prove {xn} is a Cauchy sequence in S. This means that we need to
prove that for each δ > 0 and 0 < ε < 1 there exists an n1(δ, ε) such that for
all m > n ≥ n1, Fxn,xm

(δ) > 1 − ε. In order to this, set tn = δ
2n , n = 1, 2, . . .,

then limn→∞ Fxn,xn+1(tk) = 1 for each k. Thus, limn→∞ Fxn,xn+1(tn) = 1.
Using Proposition 1.3, we have

lim
n→∞ 
∞

i=nFxi,xi+1(ti) = 1.

Let n1 be a positive integer such that 
∞
i=nFxi,xi+1(ti) > 1 − ε for each

n ≥ n1, thus, for any m,n that m > n ≥ n1 we get

Fxn,xm
(δ) ≥ Fxn,xn+1

(
m−1∑

i=n

ti

)

≥ 
m−1
i=n Fxi,xi+1(ti)

≥ 
∞
i=nFxi,xi+1(ti) > 1 − ε.
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Therefore, the sequence {xn} is Cauchy. Since the space (S,F ,
) is
complete, there exists x ∈ S such that xn → x as n → ∞. If T is continuous,
then limn→∞ F̃Txn,Tx(t) = 1 for any t > 0. Then, by Lemma 1.6, we get

Fx,Tx(t) ≥ 

(

Fx,xn+1

(
t

2

)

, Fxn+1,Tx

(
t

2

))

≥ 

(

Fx,xn+1

(
t

2

)

, F̃Txn,Tx

(
t

2

))

→ 
(1, 1) = 1,

and so Fx,Tx(t) = 1 for any t > 0. This implies that x ∈ Tx. But, if S satisfies
the condition (Cα,η), then there exists a subsequence {xnk

} of {xn} such that
α(xnk

, x, t) ≤ η(xnk
, x, t) for all k. Thus, again from Lemma 1.6, we obtain

Fx,Tx(ψ(t)) ≥ 
(Fx,xnk+1(t − ψ(t)), Fxnk+1,Tx(ψ(t)))

≥ 
(Fx,xnk+1(t − ψ(t)), F̃Txnk
,Tx(ψ(t)))

≥ 
(Fx,xnk+1(t − ψ(t)),min{Fxnk
,x(t), Fxnk

,xnk+1(t), Fx,Tx(t)}).

Letting n → ∞, Fx,Tx(ψ(t)) ≥ Fx,Tx(t) and then Fx,Tx(ψ(t)) = Fx,Tx(t)
for all t > 0. This yields from Lemma 2.10, that x ∈ Tx. The proof is
complete. �

Theorem 2.13. Theorem 2.12 remain true if the condition “t-norm 
 of H-
type” is replaced by the following

(H) There exists a sequence {tn} ⊂ (0,∞) with
∑∞

n=1 tn < ∞ such that

lim
n→∞ 
∞

i=nFx0,x1(ti) = 1.

Proof. It is sufficient to prove that the {xn} is a Cauchy sequence. By a
similar technique in the proof of previous theorem, for any fixed δ > 0, if
tn = δ

2n , n = 1, 2, . . ., then we see that
∑∞

n=1 tn < ∞, thus by (H) and using
induction on (2.2), we obtain for any positive integer m > n,

Fxn,xm
(δ) ≥ Fxn,xn+1

(
m−1∑

i=n

ti

)

≥ 
∞
i=nFxi,xi+1(ti)

≥ 
∞
i=nFx0,x1(ti) → 1.

Therefore, the sequence {xn} is Cauchy. Following the proof of Theo-
rem 2.12, we conclude that T has a fixed point. �

Remark 2.14. If in Theorems 2.12 and 2.13 the condition “the w-approximative
valued property” with “every compact-valued mapping”, and (i) with “every
α�–η�-admissible mapping” is replaced, then result holds too.

From Theorem 2.12, we can obtain the following corollary, which is gen-
eralization of multivalued version of the theorems of Ćirić [7] and Jachymeski
[19].

Corollary 2.15. Let (S,F ,
) be a complete Menger PM space with continu-
ous t-norm 
 of H-type. Let T : S → CB(S) has the w-approximative-valued
property satisfying the following conditions:
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(i) For ψ ∈ Ψ, and each x, y ∈ S, that α(x, y, t) ≤ η(x, y, t) then

F̃Tx,Ty(ψ(t)) ≥ Fx,y(t), t > 0;

(ii) T is α-admissible w.r.t. η on S;
(iii) For some x0 ∈ S, there exists x1 ∈ Tx0 such that α(x0, x1, t) ≤ η(x0, x1, t)

for all t > 0;
(iv) T is continuous or S satisfies the condition (Cα,η).
Then, T has a fixed point.

Proof. Consequence follows from this fact that for x, y ∈ S and t > 0, we
have Fx,y(t) ≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t)}. �

Corollary 2.16. Let η ≡ 1, then Theorems 2.12 and 2.13 remain true if “every
multivalued (α, η)–ψ-contractive mapping” is replaced by the following condi-
tion:

(i1) For ψ ∈ Ψ, and each x, y ∈ S,

α(x, y, t)F̃Tx,Ty(ψ(t)) ≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t)}, t > 0;

Now, We will state our fixed-point results in partially ordered Menger
PM spaces. The following notations subserve our purpose.

Definition 2.17. Let � be an order relation on S. For two subset A,B of S,
we mark A � B if each a ∈ A and b ∈ B imply that a � b.

Theorem 2.18. Let (S,F ,
) be a complete Menger PM space with continuous
t-norm 
 of H-type and � be a partial order defined on S. Let T : S → CB(S)
has the w-approximative-valued property satisfying the following conditions:

(i) For ψ ∈ Ψ, and each x, y ∈ S with x � y,

F̃Tx,Ty(ψ(t)) ≥ min{Fx,y(t), Fx,Tx(t), Fy,Ty(t)}, t > 0;

(ii) If for each x ∈ S and y ∈ Tx, x � y implies {y} � Ty;
(iii) There exist x0 ∈ S and x1 ∈ Tx0 such that x0 � x1;
(iv) T is continuous or for each sequence {xn} in S with xn � xn+1 for all

n ∈ N and xn → x, there exists a subsequence {xnk
} of {xn} such that

xnk
� x for all k ∈ N hold.

Then, T has a fixed point.

Proof. Define α ≡ 1 and the function η : S × S × (0,∞) → R
+ by

η(x, y, t) =
{

1 if x � y,
1
2 otherwise.

for all t > 0. Using the definition of α, η, the conditions (i) and (ii) of The-
orem 2.12 hold. Now, let {xn} be a sequence in S with η(xn, xn+1, t) ≥ 1
for all n ∈ N and xn → x. By the definition of η, we have xn � xn+1 for
all n ∈ N. From (iv), this implies that there exists a subsequence {xnk

} of
{xn} such that xnk

� x for all k ∈ N, which gives us that η(xnk
, x, t) = 1 for

all k ∈ N and all t > 0. Therefore, all the hypotheses of Theorem 2.12 are
satisfied and T has a fixed point. �
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Example 2.19. Let S = R
+, 
 = 
M and

F(x, y)(t) = Fx,y(t) =
t

t + d(x, y)
,

for all x, y ∈ S and for all t > 0. Clearly, (S,F ,
) is a Menger PM space with

 of H-type. Define the mapping T and α as that be defined in Example 2.5
and ψ(t) = t

2 for all t ≥ 0. Since T has the compact values then it has the
w-approximative-valued property. Let x, y ∈ S such that α(x, y, t) ≤ 1 for
all t > 0, then x = y = 0 and consequently Tx = Ty = {0}. Thus, it is
easy to see that T is multivalued (α, η)–ψ-contractive. In addition, if put
x0 = x1 = 0, then α(x0, x1, t) ≤ 1 for all t > 0. Now since T is continuous,
therefore, Theorem 2.12 implies that T has a fixed point.

Notice that in the above example, T is not a multivalued probabilistic
ψ-contraction (see [15] or [17], Definition 4.3), i.e., T does not satisfy the
following inequality:

∀x, y ∈ S, u ∈ Tx ∃v ∈ Ty; Fu,v(ψ(t)) ≥ Fx,y(t) t > 0,

or equivalently

∀x, y ∈ S F̃Tx,Ty(ψ(t)) ≥ Fx,y(t) t > 0. (2.4)

Indeed, for ψ(t) = kt, let x = 1 and y = 4
3 , then Tx = [0, 3] and

Ty = [0, 4]. Hence

F̃[0,3],[0,4](kt) =
kt

kt + 1
=

t

t + 1
k

≥ t

t + 1
3

,

for all t > 0 implies that k ≥ 3 and this is a contradiction. That is, Corollary
2.8 of [25] cannot be applied to T . Note that with choosing x = 1 and
y = 2, one can show that there is not ψ ∈ Ψ such that (2.4) holds, thus the
corresponding theorem of [10] is also not applicable in this case.

Example 2.20. Let (S,F ,
), ψ, T, and η be defined as in Example 2.9. It is
easy to check that T is α-admissible w.r.t. η and by putting x0 = 1, x1 = 1

3
we get η(x0, x1, t) ≥ 1. Therefore, Theorem 2.12 with α ≡ 1 ensures the
existence of a fixed point. Here, T is infinitely fixed points.

Now, if in the above example, choose x = 1, y = 3
2 then Tx = [0, 1

3 ],
Ty = { 4

3} and so we have

F̃[0, 13 ],{ 4
3}(kt) =

kt

kt + 4
3

=
t

t + 4
3k

≥ t

t + 1
2

implies that k ≥ 8
3 , and this is a contradiction, i.e., there is no k < 1 such

that F̃Tx,Ty(kt) ≥ Fx,y(t). In addition, suppose there exists ψ ∈ Ψ such that
F̃[0, 13 ],{ 4

3}(ψ(t)) ≥ t
t+ 1

2
, then since ψ(t) < t we have t

t+ 4
3

≥ t
t+ 1

2
, which is a

contradiction. This shows that the corresponding theorem of [10] cannot be
applied to T .
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3. Fixed point and coupled fixed-point results for single-valued
mappings

In this section, we first state our main results for single-valued mappings in
Menger PM spaces and also partially ordered Menger PM spaces using the
following notation:

Definition 3.1. Let f be a single-valued mapping on S. We say that f is
α-quasi-admissible w.r.t. η, whenever

∀x ∈ S, α(x, fx, t) ≤ η(x, fx, t) ⇒ α(fx, f2x, t) ≤ η(fx, f2x, t) ∀t > 0.

Theorem 3.2. Let (S,F ,
) be a complete Menger PM space with continuous
t-norm 
 of H-type. Let f : S → S is a mapping satisfying the following
conditions:

(i) For ψ ∈ Ψ, and each x, y ∈ S that α(x, y, t) ≤ η(x, y, t), then

Ffx,fy(ψ(t)) ≥ min{Fx,y(t), Fx,fx(t), Fy,fy(t)}, t > 0;

(ii) f is α-quasi-admissible w.r.t. η on S;
(iii) There exists x0 ∈ S such that α(x0, fx0, t) ≤ η(x0, fx0, t) for t > 0;
(iv) f is continuous or S satisfies the condition (Cα,η).
Then, f has a fixed point, that is there exists x ∈ S such that x = fx.

Proof. It is sufficient that we define T : S → 2S by Tx = {fx} for all x ∈ S,
then consequence is obtained from Theorem 2.12. �

Remark 3.3. The reader can show easily that if f satisfies the following impli-
cation:

∀x, y ∈ S, α(x, y, t) ≤ η(x, y, t) ⇒ α(fx, fy, t) ≤ η(fx, fy, t) ∀t > 0,(3.1)

then, f is α-quasi-admissible w.r.t. η. Therefore, we can replace the condition
(ii) of above theorem with implication (3.1).

The following corollaries are obtained immediately for partially ordered
Menger PM spaces.

Corollary 3.4. Let (S,F ,
) be a complete Menger PM space with continuous
t-norm 
 of H-type and � be a partial order defined on S. Let f : S → S is
a mapping satisfying the following conditions:

(i) For ψ ∈ Ψ, and each x, y ∈ S that x � y, then

Ffx,fy(ψ(t)) ≥ min{Fx,y(t), Fx,fx(t), Fy,fy(t)}, t > 0;

(ii) For each x ∈ S, x � fx implies fx � f2x;
(iii) There exists x0 ∈ S such that x0 � fx0;
(iv) f is continuous or S satisfies the condition (Cα,η).
Then, f has a fixed point.

Corollary 3.5. Let (S,F ,
) be a complete Menger PM space with continuous
t-norm 
 of H-type and � be a partial order defined on S. Let f : S → S is
a non-decreasing mappings w.r.t. � satisfying the following conditions:
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(i) For ψ ∈ Ψ, and each x, y ∈ S that x � y, then

Ffx,fy(ψ(t)) ≥ min{Fx,y(t), Fx,fx(t), Fy,fy(t)}, t > 0;

(ii) There exists x0 ∈ S such that x0 � fx0;
(iii) f is continuous or S satisfies the condition (Cα,η).
Then, f has a fixed point.

Proof. Let x ∈ S such that x � fx. Since f is a non-decreasing mappings
w.r.t. �, we have fx � f2x, then condition (ii) of Corollary 3.4 is satisfied.
Therefore, f has a fixed point. �

Remark 3.6. Theorem 3.2, Corollaries 3.4 and 3.5 are extensions and gen-
eralizations of Theorem 2.1 of [35], Corollary 3.6 of [6], taking Ψ(t) = kt
∀k ∈ (0, 1) and Theorem 1 of [19] to partially ordered Menger PM spaces.

Example 3.7. Let (R+,F ,
M ) with

F(x, y)(t) = Fx,y(t) =
t

t + |x − y| ,

for all x, y ∈ S and t > 0. Let f : S → S be defined by f(x) = x
3(x+1) for all

x ∈ [0, 1], f(x) = 2x2 + 1 for all x > 1 and η : S × S × (0,∞) → R
+ as

η(x, y, t) =
{

3 if x, y ∈ [0, 1],
1
2 otherwise.

for all t > 0. For each x, y ∈ S, η(x, y, t) ≥ 1 implies that x, y ∈ [0, 1]. Thus,
we get

F x
3(x+1) , y

3(y+1)

(
t

3

)

=
t
3

t
3 + | y

3(y+1) − x
3(x+1) |

≥ t

t + |x − y| = Fx,y(t),

for all t > 0. Clearly, this inequality implies that

F x
3(x+1) , x

3(x+1)
(
t

3
) ≥ min{Fx,y(t), Fx,fx(t), Fy,fy(t)}.

Thus, (i) of Theorem 3.2 holds. In addition, for each x ∈ S such that
η(x, fx, t) ≥ 1, we have fx ∈ [0, 1], thus f2x ∈ [0, 1]. This means that
η(fx, f2x, t) ≥ 1 for all t > 0. If x0 = 0 then η(0, f0, t) = 3 ≥ 1 for all
t > 0. Now, let {xn} be a sequence in S such that η(xn, xn+1, t) ≥ 1 for
all n ∈ N and xn → x, then we have xn ∈ [0, 1] for all n and x ∈ [0, 1].
Therefore, there exists a subsequence {xnk

} of {xn} (here as {xn}) such that
η(xnk

, x, t) ≥ 1 for all k ∈ N. Then, all the hypotheses of Theorem 3.2 are
satisfied and consequently, f has a fixed point. Here, x = 0 is a fixed point
of f .

Now, let x = 0 and y = 3
2 , then

F0, 112
(kt) =

t

t + 11
2k

≥ t

t + 3
2

= F0, 32
(t),
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implies that k ≥ 11
3 , and this is contradiction, hence the inequality Ff(x),f(y)

(kt) ≥ Fx,y(t) is not satisfied. This shows that f is not a B-contraction,
and so the corresponding theorem of Sehgal and Bharucha-Reid [33] cannot
be applied to f . Similarly, one can show that Theorem 1 of [19] is also not
applicable in this case.

In continuation, we shall use our results to obtain the coupled fixed
point theorems for single-valued mappings in complete Menger PM spaces
and also partially ordered Menger PM spaces.

Definition 3.8. [3] Let G : S × S → S be a given mapping. We say that
(x, y) ∈ S × S is a coupled fixed point of G if

G(x, y) = x and G(y, x) = y.

Lemma 3.9. [29] Let G : S × S → S be a given mapping. Define the mapping
T : S × S → S × S by

T (x, y) = (G(x, y), G(y, x)), (x, y) ∈ S × S. (3.2)

Then, (x, y) is a coupled fixed point of G if and only if (x, y) is a fixed point
of T .

Now, let (x, y), (u, v) ∈ S×S. Define distribution function F ∗ : S×S →
D+ by

F ∗
(x,y),(u,v)(t) = min{Fx,u(t), Fy,v(t)}, t > 0. (3.3)

Theorem 3.10. Let (S,F ,
) be a complete Menger PM space with continuous
t-norm 
 of H-type and η : S2 × S2 × (0,∞) → R

+ be a function. Suppose
that f : S × S → S be a given mapping satisfying the following conditions:

(i) For ψ ∈ Ψ,(x, y), (u, v) ∈ S × S that η((x, y), (u, v), t) ≥ 1, then

FG(x,y),G(u,v)(ψ(t)) ≥ min{Fx,u(t), Fy,v(t), Fx,G(x,y)(t),
Fu,G(u,v)(t), Fy,G(y,x)(t), Fv,G(v,u)(t)}, t > 0;

(ii) For all (x, y) ∈ S × S, η((x, y), (G(x, y), G(y, x)), t) ≥ 1 implies

η((G(x, y), G(y, x)), (G(G(x, y), G(y, x)), G(G(y, x), G(x, y))), t) ≥ 1, t > 0;

(iii) There exists (x0, y0) ∈ S × S such that

η((x0, y0), (G(x0, y0), G(y0, x0)), t) ≥ 1, η((G(y0, x0), G(x0, y0)), (y0, x0), t) ≥ 1;

(iv) G is continuous or for each two sequences {xn} and {yn} in S such
that

η((xn, yn), (xn+1, yn+1), t) ≥ 1, and η((yn+1, xn+1), (yn, xn), t) ≥ 1,

for each n ∈ N, t > 0 and xn → x, yn → y as n → ∞, there exist
subsequences {xnk

} of {xn} and {ynk
} of {yn} such that

η((xnk
, ynk

), (x, y), t) ≥ 1, and η((y, x), (ynk
, xnk

), t) ≥ 1, k ∈ N, t > 0.

Then, G has a coupled fixed point, that is there exists (x∗, y∗) ∈ S × S such
that x∗ = G(x∗, y∗) and y∗ = G(y∗, x∗).
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Proof. Let Y = S×S, and define F ∗
(x,y),(u,v)(t) as (3.3) for each (x, y), (u, v) ∈

Y . It is not hard to see that since (S,F ,
) is a complete Menger PM space,
then the space (Y, F ∗,
) is also a complete Menger PM space. The condition
(i) implies that if η((x, y), (u, v), t) ≥ 1, then

FG(x,y),G(u,v)(ψ(t)) ≥ min{Fx,u(t), Fy,v(t), Fx,G(x,y)(t),
Fu,G(u,v)(t), Fy,G(y,x)(t), Fv,G(v,u)(t)}

= min{min{Fx,u(t), Fy,v(t)},min{Fx,G(x,y)(t), Fy,G(y,x)(t)},

min{Fu,G(u,v)(t), , Fv,G(v,u)(t)}}
= min{F ∗

(x,y),(u,v)(t), F
∗
(x,y),T (x,y)(t), F

∗
(u,v),T (u,v)(t)},

and if η((v, u), (y, x), t) ≥ 1, then similarly

FG(y,x),G(v,u)(ψ(t)) = FG(v,u),G(y,x)(ψ(t))
≥ min{F ∗

(x,y),(u,v)(t), F
∗
(x,y),T (x,y)(t), F

∗
(u,v),T (u,v)(t)},

where T : Y → Y is given by (3.2). Therefore, we obtain

F ∗
T (ξ),T (γ)(ψ(t)) ≥ min{F ∗

ξ,γ(t), F ∗
ξ,T (ξ)(t), F

∗
γ,T (γ)(t)},

provided ηm(ξ, γ, t) ≥ 1 for each ξ = (ξ1, ξ2), γ = (γ1, γ2), where

ηm((ξ1, ξ2), (γ1, γ2), t) = min{η((ξ1, ξ2), (γ1, γ2), t), η((γ2, γ1), (ξ2, ξ1), t)},

for each t > 0. This shows that T satisfies in the condition (i) of Theo-
rem 3.2. Moreover, if ξ = (ξ1, ξ2) ∈ Y be such that ηm(ξ, T ξ, t) ≥ 1, then
using condition (ii), we have ηm(Tξ, T 2ξ, t) ≥ 1. Next, using the definition
of ηm and condition (iii) implies that there exists (x0, y0) ∈ Y such that
ηm((x0, y0), T (x0, y0), t) ≥ 1. Now, if G is continuous then T is too. Let
{(xn, yn)} be a sequence in Y such that ηm((xn, yn), (xn+1, yn+1), t) ≥ 1 for
each t > 0 and (xn, yn) → (x, y). Using the definition of ηm and condition
(iv), we get that there exists a subsequence {(xnk

, ynk
)} of {(xn, yn)} such

that

ηm((xnk
, ynk

), (x, y), t) ≥ 1, t > 0.

Hence, Theorem 3.2 ensures the existence of a fixed point of T , and so by
Lemma 3.9, G has a coupled fixed point. The proof is completed. �

Remark 3.11. By putting u = G(x, y) and v = G(y, x) in Theorem 3.10, we
also can obtain a generalization of probabilistic and multivalued version of
Theorem 2.5 of [29].

In the end of this section, we shall extend this results to partially ordered
Menger PM spaces by a new notion of w-mixed monotone property, and the
mixed monotone property which are introduced by Bhaskar and Lakshmikan-
tham in [3].

Definition 3.12. [3] Let (S,�) be a non-empty partially ordered set. The map-
ping G : S × S → S is said to have the mixed monotone property if

x1, x2 ∈ S, x1 � x2 ⇒ G(x1, y) � G(x2, y), y ∈ S,
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and

y1, y2 ∈ S, y1 � y2 ⇒ G(x, y2) � G(x, y1), x ∈ S.

Definition 3.13. Let (S,�) be a non-empty partially ordered set. We say the
mapping G : S × S → S has the w-mixed monotone property if for each
x, y ∈ S,

x1 ∈ S, x1 � G(x1, y) ⇒ G(x1, y) � G(G(x1, y), y),

and

y1 ∈ S, y1 � G(x, y1) ⇒ G(x,G(x, y1)) � G(x, y1),

Remark 3.14. It is clear that if G has the mixed monotone property then it
also satisfies the w-mixed monotone property.

Theorem 3.15. Let (S,F ,
) be a complete Menger PM space with continuous
t-norm 
 of H-type and � be a partial order defined on S. Suppose that the
mapping G : S × S → S has the w-mixed monotone property on S and there
exists ψ ∈ Ψ with

FG(x,y),G(u,v)(ψ(t)) ≥ min{Fx,u(t), Fy,v(t), Fx,G(x,y)(t),
Fu,G(u,v)(t), Fy,G(y,x)(t), Fv,G(v,u)(t)},

for all x, y, u, v ∈ S such that x � u and v � y and t > 0. Suppose that G is
continuous or S has the following properties:

(a) If {xn} be a non-decreasing sequence such that xn → x, then there exists
a subsequence {xnk

} of {xn} such that xnk
� x for all k.

(b) If {yn} be a non-increasing sequence such that yn → y, then there exists
a subsequence {ynk

} of {yn} such that y � ynk
for all k.

Moreover, if there exists (x0, y0) ∈ S × S such that x0 � G(x0, y0) and
G(y0, x0) � y0, then G has a coupled fixed point.

Proof. Define the mapping η : S2 × S2 × (0,∞) → R
+ by

η((x, y), (u, v), t) =
{

1 if x � u, v � y,
1
2 otherwise.

for all t > 0. By hypothesis and the definition of η, for each x, y, u, v ∈ S
that η((x, y), (u, v), t) ≥ 1, we have

FG(x,y),G(u,v)(ψ(t)) ≥ min{Fx,u(t), Fy,v(t), Fx,G(x,y)(t),
Fu,G(u,v)(t), Fy,G(y,x)(t), Fv,G(v,u)(t)},

for all t > 0. Then, G satisfies in the condition (i) of Theorem 3.10. Let
(x, y) ∈ S × S be such that η((x, y), (G(x, y), G(y, x)), t) ≥ 1. Using the
definition of η, we have x � G(x, y) and G(y, x) � y. Since G has the w-
mixed monotone property, thus G(x, y) � G(G(x, y), G(y, x)) and G(G(y, x),
G(x, y)) � G(y, x) and so

η((G(x, y), G(y, x)), (G(G(x, y), G(y, x)), G(G(y, x), G(x, y))), t) ≥ 1,

for all t > 0. In addition, there exists (x0, y0) ∈ S×S such that x0 � G(x0, y0)
and G(y0, x0) � y0, then it follows from the definition of η that the condition
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(iii) of Theorem 3.10 holds too. Now, only it remains that show the condition
(iv) of Theorem 3.10 holds. If G is continuous then we have nothing to prove.
Let {xn} and {yn} be two sequences in S such that

η((xn, yn), (xn+1, yn+1), t) ≥ 1, and η((yn+1, xn+1), (yn, xn), t) ≥ 1,

for each n ∈ N, t > 0, and xn → x, yn → y as n → ∞. Then, the definition of
η implies that {xn} is a non-decreasing sequence and {yn} is a non-increasing
sequence. From (a) and (b), there exist subsequences {xnk

} of {xn} and {ynk
}

of {yn} such that xnk
� x and y � ynk

for all k. This shows that

η((xnk
, ynk

), (x, y), t) ≥ 1, and η((y, x), (ynk
, xnk

), t) ≥ 1, k ∈ N, t > 0.

Therefore, Theorem 3.10 ensures the existence of a coupled fixed point. �

Corollary 3.16. [35] Let (S,�,F ,
) be a partially ordered complete Menger
PM space with continuous t-norm 
 of H-type. Suppose G : S × S → S is a
mapping satisfying the mixed monotone property on S and, for some ψ ∈ Ψ,

FG(x,y),G(u,v)(ψ(t)) ≥ min{Fx,u(t), Fy,v(t), Fx,G(x,y)(t),
Fu,G(u,v)(t), Fy,G(y,x)(t), Fv,G(v,u)(t)},

for all x, y, u, v ∈ S such that x � u and v � y and all t > 0. Suppose that G
is continuous or S has the following properties:

(i) If non-decreasing sequence xn tends to x, then xn � x for all n.
(ii) If non-increasing sequence yn tends to y, then y � yn for all n.

If there exist x0, y0 ∈ S such that x0 � G(x0, y0) and G(y0, x0) � y0, then G
has a coupled fixed point.

Proof. Since G has the mixed monotone property, then it also satisfies the
w-mixed monotone property. Now, let {xn} be a non-decreasing sequence
such that xn → x and {yn} a non-increasing sequence such that yn → y,
then from (i) and (ii), we have xn � x and y � yn for all n. It follows that
for each subsequence of {xn} and {yn}, such as {xnk

} and {ynk
}, we have

xnk
� x and y � ynk

for all k. Therefore, (a) and (b) of Theorem 3.15 hold,
consequently G has a coupled fixed point. �

Example 3.17. Let S = R
+ and F(x, y)(t) = Fx,y(t) = t

t+|x−y| for all x, y ∈ S

and t > 0. Then (R+,F ,
M ) is a complete Menger PM space. Define ψ ∈ ψ,
the continuous mapping G : S × S → S by

G(x, y) =
3
2
|x − y|,

and η : S2 × S2 × (0,∞) → R
+ as

η((x, y), (u, v), t) =
{

1 if x = y = u = v = 0,
1
2 if (x, y, u, v) = (0, 0, 0, 0).

For each x, y, u, v ∈ S, η((x, y), (u, v), t) ≥ 1 implies that the left-hand side
of inequality in (i) of Theorem 3.10 is equal to 1 and hence (i) is obviously
hold. Moreover, let x, y ∈ S such that η((x, y), (G(x, y), G(y, x)), t) ≥ 1, then
x = y = G(x, y) = G(y, x) = 0. This implies that G(G(x, y), G(y, x)) =
G(G(y, x), G(x, y)) = G(0, 0) = 0, and so (ii) be satisfied too. With putting
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x0 = y0 = 0, the condition (iii) is also satisfied. Thus, all the conditions of
Theorem 3.10 hold. Therefore, G has a coupled fixed point. Indeed, (0, 0) is
the coupled fixed point of G.

Example 3.18. Consider S = R
+ with metric d(x, y) = |x − y| and suppose

that “≥” be the usual ordering on S. We define a ordering “�” on S as
follows:

x � y ⇔ x ≥ y, x, y ∈ S.

Then, (S,�, d) is a complete partially ordered metric space. Let G : S×S → S
be defined by

G(x, y) =
x

3 + y
, x, y ∈ S.

It is easy to see that G has the mixed monotone property. But, put (x, y) =
(10, 0) and (u, v) = (9, 1), then

d(G(10, 0), G(9, 1)) =
13
12

≤ k =
k

2
[d(10, 9) + d(0, 1)],

which implies that k > 1. This shows that G does not satisfy the contractive
condition of Theorem 2.1 of [3] and so it cannot applied to G.
Now, for each x, y ∈ S and all t > 0, suppose that

F(x, y)(t) = Fx,y(t) =
{ t

t+max{x,y} if x = y,

1 otherwise.

Clearly, (S,�,F ,
M ) is a complete partially ordered Menger PM space.
Define ψ(t) = t

2 for all t ≥ 0. Note that, if G(x, y) = G(u, v) for each
(x, y), (u, v) ∈ S×S, then by the definition of F , we have FG(x,y),G(u,v)(t) = 1
for all t > 0. Let G(x, y) = G(u, v) for each (x, y), (u, v) ∈ S × S with x ≥ u
and v ≥ y. Then, we have

FG(x,y),G(u,v)(
t

2
) =

t
2

t
2 + max

{
x

3+y , u
3+v

} =
t

t + 2x
3+y

≥ t

t + 2
3x

≥ t

t + x
=

t

t + max
{

x, x
3+y

}

= Fx,G(x,y)(t)
≥ min{Fx,u(t), Fy,v(t), Fx,G(x,y)(t),

Fu,G(u,v)(t), Fy,G(y,x)(t), Fv,G(v,u)(t)},

for all t > 0. Finally, by x0 = y0 = 0, we deduce that G satisfies all the
conditions given in Theorem 3.15. Moreover, (0, 0) is a coupled fixed point of
G.

Remark 3.19. Since every fuzzy metric space (S,M,
) with the condition:

lim
t→∞ M(x, y, t) = 1, x, y ∈ S, (3.4)

is a Menger PM space, where Fx,y(t) = M(x, y, t), then our results will hold
in fuzzy metric spaces satisfying the condition (3.4). For further information
on fuzzy metric spaces, refer to [12,14,20].
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4. Applications

In this section, first we shall use our results to study new fixed-point theorems
for multivalued- and single-valued mappings in complete metric spaces. The
following theorem extend and generalized Theorems 2.1 and 2.2 of [29] to
multivalued mappings.

Theorem 4.1. Let (S, d) be a complete metric space and α, η : S×S×(0,∞) →
R

+ be two functions. Suppose T : S → CB(S) is a multivalued mapping such
that for each a ∈ S and all x ∈ Ta there exists y ∈ Tx such that

d(x, y) ≤ H(Ta, Tx), (4.1)

where H denotes the Hausdorff metric on CB(S). Suppose that T satisfies
the following conditions:

(i) For some k < 1 and every x, y ∈ S that α(x, y, t) ≤ η(x, y, t), we have

H(Tx, Ty) ≤ k max{d(x, y),d(x, Tx),d(y, Ty)};

(ii) T is α-admissible w.r.t. η on S;
(iii) For some x0 ∈ S there exists x1 ∈ Tx0 such that α(x0, x1, t) ≤ η(x0, x1, t)

for all t > 0;
(iv) T is continuous or S satisfies the condition (Cα,η).
Then, T has a fixed point.

Proof. Let (S,F ,
M ) be the induced Menger PM space by (S, d). We show
that the conditions of Theorem 2.12 are satisfied for ψ(t) = kt. Since (S, d) is
a complete metric space then (S,F ,
M ) is complete too. Furthermore, one
can prove that for any x ∈ S and A,B ∈ CB(S), we have

Fx,A(t) = ε0(t − d(x,A)) and F̃A,B(t) = ε0(t − H(A,B)).

Thus, for each x, y ∈ S that α(x, y, t) ≤ η(x, y, t), we get

F̃Tx,Ty(kt) = ε0(kt − H(Tx, Ty)) = ε0(t − 1
k

H(Tx, Ty))

≥ ε0 (t − max{d(x, y),d(x, Tx),d(y, Ty)})
= min{ε0(t − d(x, y)), ε0(t − d(x, Tx)), ε0(t − d(y, Ty))}
= min{Fx,y(t), Fx,Tx(t), Fy,Ty(t)},

for any t > 0. Next, from (4.1), we have

Fx,y(t) = ε0(t − d(x, y)) ≥ ε0(t − H(Ta, Tx)) = F̃Tx,Ta(t),

for any t > 0. Therefore, the conclusion follows from Theorem 2.12. �

Remark 4.2. (i) The above theorem is true if (4.1) is replaced by every
compact-valued mapping.

(ii) Using our ideas in Theorem 2.18, it is possible to extend Theorem 4.1
to a complete metric space endowed with a partial order.

Now, we present the following result, which extend Theorems 2.1 and
2.2 of [29] for single-valued mappings in complete metric spaces.
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Theorem 4.3. Let (S, d) be a complete metric space and f : S → S is a
mapping satisfying the following conditions:

(i) For every x, y ∈ S that α(x, y, t) ≤ η(x, y, t), we have

d(fx, fy) ≤ ψ(d(x, y)),

where ψ ∈ Ψ is the strictly increasing function.
(ii) f is α-quasi-admissible with respect to η on S;
(iii) There exists x0 ∈ S such that α(x0, fx0, t) ≤ η(x0, fx0, t) for t > 0;
(iv) f is continuous or S satisfies the condition (Cα,η).
Then, f has a fixed point.

Proof. Let (S,F ,
M ) be the induced Menger PM space by (S, d). Since (S, d)
is a complete metric space then (S,F ,
M ) is complete. Now, let x, y ∈ S
such that α(x, y, t) ≤ η(x, y, t) and ψ ∈ Ψ is the strictly increasing function
such that d(fx, fy) ≤ ψ(d(x, y)), then by [19] (Theorem 2 and Remark 1),
the mapping f is satisfied in Ffx,fy(ψ(t)) ≥ Fx,y(t), on the Menger PM space
(S,F ,
M ) induced by (S, d). Therefore, all the conditions in Theorem 3.2
are satisfied and so f has a fixed point. �

In what follows, we shall give a typical application of fixed-point theory
to study the existence of the solution of nonlinear Volterra integral equations
on Banach spaces. To apply the results in Sect. 3, some notations and basic
definitions due to [34] are introduced here.

Let I = [0, a] be a given real interval, C(I,R) the Banach space of all
real continuous functions defined on I with the sup norm

‖x‖∞ = max
t∈I

|x(t)|, x ∈ C(I,R),

and C(I × I × C(I,R),R) the space of all continuous functions defined on
I ×I ×C(I,R). Alternatively, the Banach space C(I,R) can be endowed with
Bielecki norm

‖x‖B = max
t∈I

(|x(t)|e−Lt), x ∈ C(I,R), L > 0,

and the induced metric dB(x, y) = ‖x − y‖B for all x, y ∈ C(I,R), see [4].
Now, if the mapping is defined as F : C(I,R) × C(I,R) → D+ by

Fx,y(t) = ε0(t − dB(x, y)) x, y ∈ C(I,R), t > 0,

then the space (C(I,R),F ,ΔM ) is the τ -complete Menger PM space induced
by C(I,R), see Theorem 3 of [33]. In addition, one can prove that in the space
(C(I,R),F ,ΔM ), the convergence in norms ‖ · ‖∞ and ‖ · ‖B are equivalent
to each other in τ -topology.

Consider the nonlinear Volterra integral equation

x(t) =
∫ t

0

K(t, s, x(s))ds + g(t), t ∈ I, (4.2)

and define f : C(I,R) → C(I,R), by the formula

fx(t) :=
∫ t

0

K(t, s, x(s))ds + g(t), g ∈ C(I,R).
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Theorem 4.4. Consider Eq. (4.2). Let (C(I,R),F ,ΔM ) be Menger PM space
induced by the Banach space C(I,R) and suppose

(S1) K ∈ C((I × I × C(I,R)),R) and

‖K‖∞ = sup
t,s∈I, x∈C(I,R)

|K(t, s, x(s))| < ∞;

(S2) There exist θ ∈ C((I×I×(0,∞)),R) and L > 0 such that if θ(x, y, r) ≥ 0
for x, y ∈ C(I,R) and r > 0, then for every t, s ∈ I we have

|K(t, s, x(s)) − K(t, s, y(s))|
≤ Lmax{|x(s) − y(s)|, |x(s) − fx(s)|, |y(s) − fy(s)|};

(S3) There exists x0 ∈ C(I,R) such that θ(x0, fx0, r) ≥ 0 for all r > 0;
(S4) If θ(x, fx, r) ≥ 0 for each x ∈ C(I,R), then θ(fx, f2x, r) ≥ 0 for all

r > 0;
(S5) If {xn} be a sequence in C(I,R) such that θ(xn, xn+1, r) ≥ 0 for all

n ∈ N and xn → x then there exists a subsequence {xnk
} of {xn} such

that θ(xnk
, x, r) ≥ 0 for all k ∈ N.

Then, the Volterra-type integral equation (4.2) has a solution in C(I,R).

Proof. We shall check that hypotheses in Theorem 3.2 are satisfied. Let S :=
C(I,R) be endowed with Bielecki-type norm, i.e., ‖x‖B = maxt∈I(|x(t)|e−Lt),
for x ∈ S where L > 0 satisfies condition (S2). First, the space (S,F ,ΔM ) is
Menger PM space, where ΔM is a t-norm of H-type. In addition, let x, y ∈ S
such that θ(x(t), y(t), r) ≥ 0 for all t ∈ I and r > 0. From (S2), we have

dB(fx, fy) ≤ max
t∈I

∫ t

0

|K(t, s, x(s)) − K(t, s, y(s))|eL(s−t)e−Lsds

≤ Lmax{dB(x, y), dB(x, fx), dB(y, fy)}max
t∈I

∫ t

0

eL(s−t)ds

≤ (1 − e−aL)max{dB(x, y), dB(x, fx), dB(y, fy)}.

Now, put k = 1 − e−aL and define the function η : S × S × (0,∞) → R
+ by

η(x, y, r) =
{

1 if θ(x, y, r) ≥ 0, r ∈ I,
1
2 otherwise.

Then for any r > 0, η(x, y, r) ≥ 1 implies

Ffx,fy(kr) = ε0(kr − dB(fx, fy)) = ε0

(

r − 1
k

dB(fx, fy)
)

≥ ε0(r − max{dB(x, y), dB(x, fx), dB(y, fy)})
= min{ε0(r − dB(x, y)), ε0(r − dB(x, fx)), ε0(r − dB(y, fy))}
= min{Fx,y(r), Fx,fx(r), Fy,fy(r)},

for all x, y ∈ S. This shows that the operator f satisfies the condition (i)
of Theorem 3.2 with respect to ψ(r) = kr for k ∈ (0, 1) and α(x, y, r) = 1
for all x, y ∈ C(I,R) and r > 0. Finally, (ii), (iii) and (iv) of Theorem 3.2
are obviously true from (S3), (S4) and (S5). Therefore, Theorem 3.2 ensures
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the existence of fixed point of f that this fixed point is the solution of the
integral equation (4.2). �

Example 4.5. Consider the continuous function K(t, s, x) = e−s

t+1K̃(t, x) where

K̃(t, x) =

⎧
⎨

⎩

−1 if x ≤ 0,
3
√

x − 1 if 0 ≤ x < 1,
arctan(x − 1) if 1 ≤ x,

for all t ∈ I = [0, 1]. In this case, we show that nonlinear Volterra integral
equation

x(t) =
−1

t + 1
(t + e−t) +

∫ t

0

e−s

t + 1
K̃(s, x(s))ds, 0 ≤ s ≤ t ≤ 1 (4.3)

is satisfied in conditions of Theorem 4.4. Clearly, ‖K‖∞ = π
2 . Now, define

function

θ(x, y, r) =
{

1 if x, y ≤ 0, r ∈ I,
−1 otherwise.

If θ(x, y, r) ≥ 0 then x(t), y(t) ≤ 0, which implies K̃(t, x) = K̃(t, y) = −1.
That is,

|K(t, s, x) − K(t, s, y)| = 0 ≤ Lmax{|x − y|, |x − fx|, |y − fy|},

for all t, s ∈ I. Moreover, θ(−1, f(−1), r) ≥ 0. Assume θ(x, fx, r) ≥ 0, then
x(t) ≤ 0 and fx(t) ≤ 0, and so k̃(t, fx) = −1, thus

f2x(t) =
−1

t + 1
(t + e−t) +

∫ t

0

e−s

t + 1
K̃(s, fx(s))ds = −1,

for all fx(t) ≤ 0. That is, θ(fx, f2x, r) ≥ 0. Therefore, θ(x, fx, r) ≥ 0
implies θ(fx, f2x, r) ≥ 0 for all r > 0. Further, let us assume that xn is
a sequence in C(I,R) such that θ(xn, xn+1, r) ≥ 0 for all n ∈ N and xn → x.
Then xnk

= xn ≤ 0. That is, θ(xnk
, x, r) ≥ 0 for all k ∈ N. Thus, all

conditions of Theorem 4.4 are satisfied. Hence, equation (4.3) has a solu-
tion in C(I,R). Here, x(t) = −1 is a solution. Observe that, the inequality
|K(t, s, x)−K(t, s, y)| ≤ Lmax{|x− y|, |x− fx|, |y − fy|} is not globally sat-
isfied, i.e., there exist t, s ∈ I and x, y ∈ R such that |K(t, s, x)−K(t, s, y)| >
Lmax{|x− y|, |x− fx|, |y − fy|}. To show this, let L > 0. For all t, s ∈ I and
each 0 < x < y < 1√

(6eL)3
< 1 we obtain

|K(t, s, x) − K(t, s, y)| =
e−s

t + 1
| 3
√

x − 3
√

y|

=
e−s

t + 1
|x − y|

3
√

x2 + 3
√

y2 + 3
√

x 3
√

y
> L|x − y|,

and hence, |K(t,s,x)−K(t,s,y)
x−y | → ∞ as x, y → 0. Thus, we see the impact of

the function θ in Theorem 4.4.

Corollary 4.6. Consider Eq. (4.2). Suppose
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(i) K : I × I × R → R is continuous with ‖K‖∞ < ∞ and K(t, s, ·) is
non-decreasing for each t, s ∈ I;

(ii) For each t, s ∈ I and each x, y ∈ R with x ≤ y, we have

|K(t, s, x) − K(t, s, y)| ≤ Lmax{|x − y|, |x − fx|, |y − fy|};

(iii) There exists x0 ∈ C(I,R) such that x0(t) ≤ ∫ t

0
K(t, s, x0(s))ds + g(t),

for all t ∈ I.

Then, the integral equation (4.2) has a solution in C(I,R).

Proof. First, define the mapping θ(x, y, r) = y − x for x, y ∈ R. From (iii),
we have x0 ≤ fx0, then θ(x0, fx0, r) ≥ 0 and so the condition (S3) of Theo-
rem 4.4 holds. In addition, since K is non-decreasing for each t, s ∈ I, thus f
is non-decreasing. This shows (S4) and (S5) of the same theorem are satisfied.
Now, the existence follows from Theorem 4.4. �

Corollary 4.7. Let (C(I,R),F ,ΔM ) be Menger PM space induced by the
Banach space C(I,R) and suppose K ∈ C((I × I × C(I,R)),R) satisfying
the following conditions

(i) ‖K‖∞ = supt,s∈I, x∈C(I,R) |K(t, s, x(s))| < ∞;
(ii) There exists L > 0 such that for all t, s ∈ I and each x, y ∈ C(I,R), we

have

|K(t, s, x(s)) − K(t, s, y(s))|
≤ Lmax{|x(s) − y(s)|, |x(s) − fx(s)|, |y(s) − fy(s)|}.

Then, the integral equation (4.2) has a solution in C(I,R).

Proof. By Theorem 4.4 with θ(x, y, r) = 1 for all x, y ∈ C(I,R) and r > 0,
we deduce the existence of the solution. �

Example 4.8. Consider the Volterra integral equation (4.2) where K(t, s, x) =
s arctan(x) and g(t) = 1

2 (3t − (1 + t2) arctan t). Thus, we have

x(t) =
1
2
(3t − (1 + t2) arctan t) +

∫ t

0

s arctan(x(s))ds, 0 ≤ s ≤ t ≤ 1.(4.4)

It is obviously that ‖K‖∞ = π
2 . Further, for arbitrarily fixed x, y ∈ C(I,R)

and for t, s ∈ I, we obtain

|K(t, s, x) − K(t, s, y)| ≤ | arctan x − arctan y|
≤ |x − y| ≤ max{|x − y|, |x − fx|, |y − fy|},

thus, the continuous function K satisfies assumption (ii) of Corollary 4.7.
Hence, Eq. (4.4) has a solution in C(I,R). Here, x(t) = t is the solution of
this equation.

Example 4.9. Consider the following nonlinear Volterra integral equation

x(t) =
1
3
t cos(t3) + t3 − t

3
+

∫ t

0

ts2 sin(x(s))ds, t ∈ [0, 1]. (4.5)
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Since, for continuous function K, ‖K‖∞ = 1 and also, for each x, y ∈ C(I,R)
and for t, s ∈ I, we have

|K(t, s, x) − K(t, s, y)| = ts2|cosx − cosy|
≤ |x − y| ≤ max{|x − y|, |x − fx|, |y − fy|}.

Therefore, Eq. (4.5) has a solution in C(I,R) whose exact solution is x(t) =
t3.

Example 4.10. The equations of Hammerstein type x(t) =
∫ t

0
K(t−s)N(x(s))

ds + g(t) arise in nonlinear physical phenomenons such as electro-magnetic
fluid dynamics, reformulation of boundary value problems with a nonlinear
boundary condition (see [2]) and chemical absorption kinetics [22]. Here, we
consider the following Hammerstein integral equations of nonlinear Volterra
type

x(t) = et(ln(e + e1−t) − ln 2) +
∫ t

0

et−sx(s)
1 + |x(s)|ds, (4.6)

for t ∈ [0, 1], where it is a special case of equation (4.2) with K(t, s, x) =
et−sx(s)
1+|x(s)| and g(t) = et(ln(e + e1−t) − ln 2). It is derived that K(t, s, x) is
continuous and |K(t, s, x)| ≤ |et−s| ≤ e. Moreover,

|K(t, s, x) − K(t, s, y)| ≤ e · | x

1 + |x| − y

1 + |y| |
≤ e· | |y| − |x| |≤ e|x − y|
≤ e · max{|x − y|, |x − fx|, |y − fy|},

for t, s ∈ [0, 1] and x, y ∈ C(I,R), thus L = e. Then, Corollary 4.7 ensures the
existence of a solution of (4.6). Here, the solution of this equation is x(t) = et.

Example 4.11. As the final example, consider the following Volterra integral
equation

x(t) = ln
(

1 +
t(t + 2)

t2 + 2t + 2

)

+
∫ t

0

1
1 + s

tanh(x(s))ds, (4.7)

for t ∈ [0, 1]. It is easily seen that K(t, s, x) = 1
1+s tanh(x) satisfies in ‖K‖∞ =

1 and there exists c ∈ R such that
∣
∣
∣
∣
tanh x

1 + s
− tanh y

1 + s

∣
∣
∣
∣ ≤ | tanh x − tanh y| = (1 − tanh2 c)|x − y|
≤ max{|x − y|, |x − fx|, |y − fy|},

for t, s ∈ [0, 1] and x, y ∈ C(I,R). Hence, all the required conditions of
Corollary 4.7 are satisfied, and (4.7) has a solution. Here, x(t) = ln(t + 1) is
the solution of this equation.

5. Conclusions

The new notions of contractions for multivalued and single-valued mappings
in complete Menger PM spaces have been introduced. We proved the new
fixed-point theorems for these new types of multivalued and single-valued
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mappings in complete Menger PM and partially ordered Menger PM spaces.
Moreover, we extended our results to the case of coupled fixed points. These
results extended, generalized and improved many existing results. In the final
part of the paper, to illustrate the usability of our results, the fixed-point
theorems for multivalued and single-valued mappings on metric spaces and
so, the existence of solutions for nonlinear Volterra integral equations have
been proved.
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[7] Ćirić, LjB: Solving the Banach fixed point principle for nonlinear contractions
in probabilistic mettric spaces. Nonlinear Anal. 72, 2009–2018 (2010)

[8] Cobzas, S.: Completeness with respect to the probabilistic Pompeiu–Hausdorff
metric. Studia Univ. Math. LII 3, 43–65 (2007)

[9] Egbert, R.J.: Products and quotients of probabilistic metric spaces. Pac. J.
Math. 24, 437–455 (1968)

[10] Fang, J.X.: A note on fixed point theorems of Hadžić. Fuzzy Sets Syst. 48,
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