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Abstract. The motive behind this manuscript is to set up the existence
and uniqueness of positive solutions to a fractional thermostat model
for certain values of the parameter λ > 0. We accomplish sufficient
conditions for the existence of positive solutions to the model, and af-
terwards formulate a couple of non-trivial examples to authenticate the
grounds of our obtained results. Our findings are based on certain fixed
point results for contractions depending on a couple of altering distance
functions φ and ψ in the setting of Banach spaces.
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1. Introduction and preliminaries

Metric fixed point theory is extensively employed in different mathematical
branches as well as in real-world problems originating in applied sciences. The
results on fixed points of contractive maps considered on different underlying
spaces are mostly applied on the validation of the existence and uniqueness
of solutions of functional, differential or integral equations. The plurality of
these types of problems elicits the probe to more and better techniques, which
is a salient feature of the recent research works in this literature.

The dawning of fixed point theory on a complete metric space is inte-
grated with the Banach contraction principle due to Banach [6].

Theorem 1.1. Let (X, d) be a complete metric space and T be a self-mapping
on X satisfying

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X and k ∈ [0, 1). Then T has a unique fixed point z ∈ X, and
for any x ∈ X, the sequence of iterates {Tnx} converges to z.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-018-0584-8&domain=pdf
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Because of its inferences and huge usability in mathematical theory,
Banach contraction principle has been improved and generalized in metric
spaces, partially ordered metric spaces, Banach spaces and many other spaces,
see [1,3,4,7,11–14,17,21,24].

In 1962, Rakotch [23] proved that the Theorem 1.1 still holds if the
constant k is replaced by a contraction monotone decreasing function. He
proved the following theorem as a corollary.

Theorem 1.2. Let (X, d) be a complete metric space and T : X → X be a
mapping such that

d(Tx, Ty) ≤ α(x, y)d(x, y)

for all x, y ∈ X, where α is a function defined on [0,∞) satisfying the fol-
lowing conditions:

(i) α(x, y) = α(d(x, y)), i.e., α is dependent on the distance of x and y
only;

(ii) 0 ≤ α(τ) < 1 for all τ > 0;
(iii) α(τ) is monotonically decreasing function of τ.

Then T has a unique fixed point.

In his research article, Jaggi [19] used the continuity and some different
contractive conditions on the mapping to attain the succeeding result.

Theorem 1.3. Let f be a continuous self-map defined on a complete metric
space (X, d). Further let f satisfy the following condition:

d(f(x), f(y)) ≤ αd(x, f(x))d(y, f(y))
d(x, y)

+ βd(x, y)

for all x, y ∈ X, with x �= y and for some α, β ∈ [0, 1) with α + β < 1. Then
f has a unique fixed point in X.

In this connection, the readers are referred to the pertinent papers [25,
26] for more interesting results.

Thereafter, Khan et al. [20] extended and generalized the Banach prin-
ciple using a control function, known as altering distance function.

Definition 1.4. A function ϕ : [0,∞) → [0,∞) is called an altering distance
function if it satisfies the following conditions:

(i) ϕ is monotone increasing and continuous;
(ii) ϕ(t) = 0 if and only if t = 0.

In [20], the authors also proved the following fixed point theorem by
means of the newly originated concept of control functions.

Theorem 1.5. Let (X, d) be a complete metric space and ψ : [0,∞) → [0,∞).
Also suppose that f : X → X is a mapping satisfying

ψ(d(fx, fy)) ≤ aψ(d(x, y))

for all x, y ∈ X and for some 0 ≤ a < 1. Then f has a unique fixed point.
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Alber and Guerre-Delabriere [2] introduced the notion of weak contrac-
tions in a Hilbert space.

Definition 1.6 [2]. Let (X, d) be a metric space. A mapping T : X → X is
called weakly contractive if and only if

d(Tx, Ty) ≤ d(x, y) − φ(d(x, y))

for all x, y ∈ X, where φ is an altering distance function.

In 2015, Salazar and Reich [28] proved that a self-mapping defined on a
bounded set is of Rakotch type contractive map iff it is a weak contraction in
the sense of Guerre-Delabriere. Rhoades [27] generalized the weak contraction
condition in metric spaces and proved the following fixed point result in
complete metric spaces.

Theorem 1.7. Let (X, d) be a complete metric space. If T : X → X is a
weakly contractive map, then T has a unique fixed point.

In their research paper, Dutta and Choudhury [16] generalized Theo-
rems 1.5 and 1.7 to obtain the following theorem.

Theorem 1.8. Let (X, d) be a complete metric space and T : X → X be a
mapping satisfying

ψ(d(Tx, Ty)) ≤ ψ(d(x, y)) − φ(d(x, y))

for all x, y ∈ X, where ψ and φ are two altering distance functions. Then T
has a unique fixed point.

Fractional calculus has been explored for many decades mostly as a
pure analytic mathematical branch. Though in recent times, many authors
are showing a lot of interest in its applications for solving ordinary differ-
ential equations. Fractional differential equations appear in different engi-
neering and scientific branches as the mathematical modeling of systems and
techniques in the domains of physics, chemistry, aerodynamics, robotics and
many more. For a few recent articles in this direction, see [5,8,9,15,18,22,29]
and the references in that respect.

Considering exclusively positive solutions are effective for several ap-
plications, inspired by the aforementioned works, in our draft, we set up an
existence and uniqueness theorem to find positive solutions to a fractional
thermostat model with a positive parameter. With a view to inspect the
solutions, we enquire into some new fixed point results in a Banach space
by considering a pair of altering distance functions in a more adequate ap-
pearance. We also extend our results in a Banach space which is equipped
with an arbitrary binary relation and keeps the order-preserving property of
the mappings. Finally, some suitable constructive examples are furnished to
substantiate the effectiveness of our results.
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2. Fixed point results

This section deals with the results on the existence and uniqueness of fixed
points of maps satisfying a contractive condition with a pair of control func-
tions in a Banach space and also their proofs. Moreover, we formulate an
example to elucidate our attained results.

Theorem 2.1. Let (X, ‖.‖) be a Banach space and C be a closed subset of X.
Let T : C → C be a mapping. Assume that there exist two altering distance
functions φ, ψ : [0,∞) → [0,∞) such that

φ(‖Tx − Ty‖) ≤ φ(‖Tx − y‖) − ψ(‖x − y‖) (2.1)

for all x, y ∈ C. Then T has a unique fixed point in C.

Proof. Let x0 ∈ C be arbitrary but fixed. Consider, the iterated sequence
{xn} where xn = Tnx0 for each natural number n.

Therefore, by the given condition we have

φ(‖Txn−1 − Txm−1‖) ≤ φ(‖Txn−1 − xm−1‖) − ψ(‖xn−1 − xm−1‖)

⇒ φ(‖xn − xm‖) ≤ φ(‖xn − xm−1‖) − ψ(‖xn−1 − xm−1‖), (2.2)

which implies that

φ(‖xn − xm‖) ≤ φ(‖xn − xm−1‖)

for all n,m ∈ N. Since φ is monotone increasing, we have

‖xn − xm‖ ≤ ‖xn − xm−1‖
for all n,m ∈ N.

Interchanging the role of xn and xm in the above equation, we get

‖xn − xm‖ ≤ ‖xn−1 − xm‖ (2.3)

for all n,m ∈ N.
Thus, for each fixed n ∈ N, we can conclude that the sequence {s

(n)
m }m∈N

of non-negative real numbers is monotone decreasing, where s
(n)
m = ‖xn−xm‖

for each m ∈ N. So, {s
(n)
m }m∈N is convergent for each n ∈ N.

Let

lim
m→∞ s(n)

m = a(n)

for each n ∈ N.
Now from Eq. (2.2), we have

φ(‖xn − xm‖) + ψ(‖xn−1 − xm−1‖) ≤ φ(‖xn − xm−1‖).

Keeping n fixed, taking limit as m → ∞ on both sides of the above equation
and using the continuity of φ, ψ on [0,∞), we get

lim
m→∞ φ(‖xn − xm‖) + lim

m→∞ ψ(‖xn−1 − xm−1‖) ≤ lim
m→∞ φ(‖xn − xm−1‖)

⇒ φ( lim
m→∞ ‖xn − xm‖) + ψ( lim

m→∞ ‖xn−1 − xm−1‖) ≤ φ( lim
m→∞ ‖xn − xm−1‖)

⇒ φ(a(n)) + ψ(a(n−1)) ≤ φ(a(n))

⇒ ψ(a(n−1)) ≤ 0
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⇒ ψ(a(n−1)) = 0

⇒ a(n−1) = 0 [since, ψ(t) = 0 if and only if t = 0].

Therefore, a(n) = 0 for all n ∈ N, i.e., limm→∞ ‖xn − xm‖ = 0 for all n ∈ N.
Now, we consider the sequence of functions {fm} defined on C by

fm(x) =
{‖xn − xm‖, if x = xn for some n ∈ N;

0, otherwise.

Therefore, limm→∞ fm(x) = 0 for all x ∈ C. Thus, the limit function f
of the sequence of functions {fm} is given by

f(x) = 0 for all x ∈ C.

Now, let

Mm = sup
x∈C

|fm(x) − f(x)|.

Therefore,

Mm = sup
x∈C

|fm(x)| [since, f(x) = 0 for all x ∈ C]

= sup
n

|fm(xn)|
= sup

n
‖xn − xm‖.

But, we know from (2.3) that

‖xn − xm‖ ≤ ‖xn−1 − xm‖ ≤ ‖xn−2 − xm‖ ≤ · · · ≤ ‖x1 − xm‖,

which implies that

sup
n

‖xn − xm‖ ≤ ‖x1 − xm‖
⇒ Mm ≤ ‖x1 − xm‖
⇒ lim

m→∞ Mm ≤ lim
m→∞ ‖x1 − xm‖ = 0

⇒ lim
m→∞ Mm = 0.

Let ε > 0 be arbitrary. Since, limm→∞ Mm = 0, there exists a natural number
N such that

|Mm| < ε for all m ≥ N

⇒ sup
x∈C

|fm(x) − f(x)| < ε for all m ≥ N

⇒ |fm(x) − f(x)| < ε for all m ≥ N and for all x ∈ C

⇒ |fm(x)| < ε for all m ≥ N and for all x ∈ C.

In particular, we have

|fm(xn)| < ε for all m ≥ N and for all n ∈ N.

Therefore, we can write ∣∣‖xn − xm‖ − 0
∣∣ < ε (2.4)

for all n,m ≥ N .
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Next, we consider the double sequence {snm}n,m∈N of real numbers,
where

snm = ‖xn − xm‖
for all n,m ∈ N. Here using (2.4), we have

|snm − 0| < ε for all n,m ≥ N.

This implies the double sequence {snm}n,m∈N converges to 0, i.e,

lim
n,m→∞ ‖xn − xm‖ = 0.

Thus, {xn} is a Cauchy sequence in C. C being complete, {xn} must
converge to some z ∈ C.

Now from (2.1), we have

φ(‖xn+1 − Tz‖) ≤ φ(‖xn+1 − z‖) − ψ(‖xn − z‖)

⇒ φ(‖xn+1 − Tz‖) ≤ φ(‖xn+1 − z‖)

⇒ lim
n→∞ φ(‖xn+1 − Tz‖) ≤ lim

n→∞ φ(‖xn+1 − z‖)

⇒ φ
(

lim
n→∞ ‖xn+1 − Tz‖

)
≤ φ

(
lim

n→∞ ‖xn+1 − z‖
)

⇒ φ
(

lim
n→∞ ‖xn+1 − Tz‖

)
≤ φ(0) = 0

⇒ φ
(

lim
n→∞ ‖xn+1 − Tz‖

)
= 0

⇒ lim
n→∞ ‖xn+1 − Tz‖ = 0.

The above equation shows that the sequence {xn} converges to Tz. Thus,
Tz = z and z is a fixed point of T .

Finally, we check the uniqueness of the fixed point z. To check this, let
z1 be another fixed point of T , i.e., Tz1 = z1.

From (2.1) and using Definition 1.4, we have

φ(‖Tz − Tz1‖) ≤ φ(‖Tz − z1‖) − ψ(‖z − z1‖)

⇒ φ(‖z − z1‖) + ψ(‖z − z1‖) ≤ φ(‖z − z1‖)

⇒ ψ(‖z − z1‖) ≤ 0

⇒ ψ(‖z − z1‖) = 0
⇒ z = z1.

Therefore, z is the only fixed point of T . �

Now, we generalize Theorem 2.1 in a Banach space which is equipped
with an arbitrary binary relation and state the subsequent theorem.

Theorem 2.2. Let (X, ‖.‖) be a Banach space and R be an equivalence relation
on X. Assume that X has the property that if {xn} be any sequence in X
converging to z ∈ X and xnRxm for each pair of natural numbers n and m,
then xnRz for each natural number n. Let C be a closed subset of X and
T : C → C be a mapping such that T satisfies the following conditions:

(i) T is order-preserving with respect to R,
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(ii) φ(‖Tx − Ty‖) ≤ φ(‖Tx − y‖) − ψ(‖x − y‖) for all x, y ∈ C such that
xRy,

where φ, ψ : [0,∞) → [0,∞) are two altering distance functions. Then T has
a unique fixed point in C if there exists x0 ∈ X such that x0RTx0.

Proof. The proof of this theorem is analogous to the previous one and so
omitted. �

In the next portion of this section, we present a result which not only
gives the guarantee of existence of fixed point but also properly points out
the fixed point.

Theorem 2.3. Let (X, ‖.‖) be a Banach space and C be a closed subspace of
X. Let T : C → C be a mapping. Also assume that there exist two altering
distance functions φ, ψ : [0,∞) → [0,∞) such that T satisfies the following
conditions:

(i) φ(‖Tx − Ty‖) ≤ φ(‖x − y‖) − ψ(‖x − y‖),
(ii) φ(‖Tx − y‖) ≤ φ(‖x − y‖) − ψ(‖x − y‖)

for all x, y ∈ C. Then the null vector of X is the only fixed point of T .

Proof. Let x0 ∈ C be arbitrary but fixed and consider the iterated sequence
{xn} where xn = Tnx0 for all n ∈ N.

Let sn = ‖xn − xn+1‖ for all n ∈ N. Now, by condition (i) we get

φ(‖Txn − Txn+1‖) ≤ φ(‖xn − xn+1‖) − ψ(‖xn − xn+1‖)

⇒ φ(‖xn+1 − xn+2‖) ≤ φ(‖xn − xn+1‖)

⇒ φ(sn+1) ≤ φ(sn)
⇒ sn+1 ≤ sn.

This is true for all natural numbers n, which implies that {sn} is a decreasing
sequence of non-negative reals and hence this sequence must converge. Let

lim
n→∞ sn = a.

Again, from (i) we have

φ(sn+1) ≤ φ(sn) − ψ(sn)

⇒ lim
n→∞ φ(sn+1) ≤ lim

n→∞ φ(sn) − lim
n→∞ ψ(sn)

⇒ φ(a) ≤ φ(a) − ψ(a)

⇒ ψ(a) ≤ 0

⇒ ψ(a) = 0
⇒ a = 0
⇒ lim

n→∞ sn = 0.

Therefore,

lim
n→∞ ‖xn − xn+1 − θ‖ = 0.



106 Page 8 of 24 H. Garai et al. JFPTA

This shows that the sequence {un} in C converges strongly to θ, where θ is
the null vector in X and un = xn − xn+1 for all natural numbers n. Now,

φ(‖Tun − Tθ‖) ≤ φ(‖un − θ‖) − ψ(‖un − θ‖)

⇒ lim
n→∞ φ(‖Tun − Tθ‖) ≤ lim

n→∞ φ(‖un − θ‖) − lim
n→∞ ψ(‖un − θ‖)

⇒ lim
n→∞ φ(‖Tun − Tθ‖) ≤ 0

⇒ lim
n→∞ φ(‖Tun − Tθ‖) = 0

⇒ φ( lim
n→∞ ‖Tun − Tθ‖) = 0

⇒ lim
n→∞ ‖Tun − Tθ‖ = 0.

Again, by condition (ii) we get

φ(‖Tun − θ‖) ≤ φ(‖un − θ‖) − ψ(‖un − θ‖)

⇒ lim
n→∞ φ(‖Tun − θ‖) ≤ lim

n→∞ φ(‖un − θ‖) − lim
n→∞ ψ(‖un − θ‖)

⇒ lim
n→∞ φ(‖Tun − θ‖) ≤ 0

⇒ lim
n→∞ φ(‖Tun − θ‖) = 0

⇒ φ
(

lim
n→∞ ‖Tun − θ‖

)
= 0

⇒ lim
n→∞ ‖Tun − θ‖ = 0.

Therefore, by the uniqueness of limit, we obtain

Tθ = θ,

i.e., θ is a fixed point of T .
Finally, suppose z be another fixed point of T . Therefore,

φ(‖Tz − Tθ‖) ≤ φ(‖z − θ‖) − ψ(‖z − θ‖)

⇒ φ(‖z − θ‖) ≤ φ(‖z − θ‖) − ψ(‖z − θ‖)

⇒ ψ(‖z − θ‖) ≤ 0

⇒ ψ(‖z − θ‖) = 0
⇒ z = θ.

Therefore, θ is the only fixed point of T in C. �

Example 2.4. Consider the Banach space R endowed with the usual norm
and define a relation R on R by: for x, y ∈ R xRy if and only if either
x, y ∈ [−(n + 1),−n] or x, y ∈ [n, n + 1] for some n ∈ N or x = y. Then
clearly R is an equivalence relation on R.

Now, let C = C1 ∪C2 ∪C3, where C1 = [−2,−1], C2 = [1, 2], C3 = {0}.
Then C is a closed subset of R.

Define a mapping T : C → C by

Tx =
{−x, if x ∈ C1;

0, if x ∈ C2 ∪ C3.
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Therefore,

‖Tx − Ty‖ =

⎧⎨
⎩

|x − y|, if x, y ∈ C1;
|x|, if x ∈ C1 and y ∈ C2 ∪ C3;
0, if x, y ∈ C2 ∪ C3,

and

‖Tx − y‖ =
{ |x + y|, if x ∈ C1;

|y|, if x /∈ C1.

Consider the functions φ, ψ : [0,∞) → [0,∞) defined by

φ(t) = t2 and

ψ(t) =
t2

100000

for all t ∈ [0,∞).
Then, clearly φ, ψ are two altering distance functions. Let x, y ∈ C be

arbitrary such that xRy. Then the following cases arise.

Case 1 Let x, y ∈ C1. Then

φ(‖Tx − Ty‖) + ψ(‖x − y‖) − φ(‖Tx − y‖)

= |x − y|2 +
|x − y|2
100000

− |x + y|2

= −4xy +
(x − y)2

100000
≤ 0

⇒ φ(‖Tx − Ty‖) ≤ φ(‖Tx − y‖) − ψ(‖x − y‖).

Case 2 Let x, y ∈ C2. Then

φ(‖Tx − Ty‖) + ψ(‖x − y‖) − φ(‖Tx − y‖)

= 0 +
(x − y)2

100000
− y2

≤ 0

⇒ φ(‖Tx − Ty‖) ≤ φ(‖Tx − y‖) − ψ(‖x − y‖).

Case 3 Let x, y ∈ C3. Then clearly the equality holds.
Thus,

φ(‖Tx − Ty‖) ≤ φ(‖Tx − y‖) − ψ(‖x − y‖)

for all x, y ∈ C with xRy.
Also it is easily seen that T is order-preserving and by Theorem 2.2, 0

is the only fixed point of T .
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3. Application to fractional thermostat model

The motivation of this section is to provide an application of the results
discussed in this manuscript. For this purpose, we consider the following
fractional thermostat model:

CDαu(t) + λf(t, u(t)) = 0, t ∈ [0, 1], (3.1)

subject to the boundary conditions:

u′(0) = 0, βCDα−1u(1) + u(η) = 0, (3.2)

where CDα stands for Caputo fractional derivative of order α, λ is a positive
constant and 1 < α ≤ 2, 0 ≤ η ≤ 1, β > 0 such that the following conditions
hold:
(1) βΓ(α) − (1 − η)(α−1) > 0;
(2) f : [0, 1] × R → R

+ is a continuous function;
(3) u : [0, 1] → R is continuous.

Our aim is to derive some sufficient conditions under which the problem (3.1)
with the boundary conditions (3.2) possesses a unique positive solution for
certain values of the parameter λ. To proceed further, we first recall the
following lemmas.

Lemma 3.1 [22]. Assume f ∈ C[0, 1]. A function u ∈ C[0, 1] is a solution of
the boundary value problem

CDαu(t) + λf(t, u(t)) = 0, t ∈ [0, 1], (3.3)

u′(0) = 0, βCDα−1u(1) + u(η) = 0, (3.4)

if and only if it satisfies the integral equation

u(t) =
∫ 1

0

G(t, s)f(s)ds, (3.5)

where G(t, s) is the Green’s function (depending on α) given by

G(t, s) = β + Hη(s) − Ht(s)

and for r ∈ [0, 1], Hr(s) : [0, 1] → R is defined as Hr(s) = (r−s)α−1

Γ(α) for s ≤ r

and Hr(s) = 0 for s > r, i.e.,

G(t, s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β − (t−s)α−1

Γ(α) + (η−s)α−1

Γ(α) , if 0 ≤ s ≤ η, s ≤ t;

β + (η−s)α−1

Γ(α) , if 0 ≤ s ≤ η, s ≥ t;

β − (t−s)α−1

Γ(α) , if η ≤ s ≤ 1, s ≤ t;
β, if η ≤ s ≤ 1, s ≥ t.

Lemma 3.2 [30]. The function G(t, s) arising in Lemma 3.1 satisfies the fol-
lowing conditions:

(i) G(t, s) is a continuous map defined on [0, 1] × [0, 1];
(ii) for t, s ∈ (0, 1), we have G(t, s) > 0.

Now we prove the following lemma.
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Lemma 3.3. The Green’s function G(t, s) derived in Lemma 3.1 satisfies

sup
t∈[0,1]

∫ 1

0

G(t, s)ds = β +
ηα

Γ(α + 1)

and

inf
t∈[0,1]

∫ 1

0

G(t, s)ds = β +
ηα − 1

Γ(α + 1)
.

Proof. Let us consider the function ϕ defined on [0, 1] by

ϕ(t) =
∫ 1

0

G(t, s)ds

for all t ∈ [0, 1].
Now, for t ∈ [0, 1] and t ≤ η, s ≥ η, we have t ≤ s and thus,

ϕ(t) =
∫ 1

0

G(t, s)ds

=
∫ η

0

G(t, s)ds +
∫ 1

η

G(t, s)ds

=
∫ t

0

G(t, s)ds +
∫ η

t

G(t, s)ds +
∫ 1

η

G(t, s)ds

=
∫ t

0

{
β − (t − s)α−1

Γ(α)
+

(η − s)α−1

Γ(α)

}
ds

+
∫ η

t

{
β +

(η − s)α−1

Γ(α)

}
ds +

∫ 1

η

βds

= β +
ηα − tα

Γ(α + 1)
.

Again, for t ∈ [0, 1] and t ≥ η, s ≤ η, we have t ≥ s and so

ϕ(t) =
∫ 1

0

G(t, s)ds

=
∫ η

0

G(t, s)ds +
∫ 1

η

G(t, s)ds

=
∫ η

0

G(t, s)ds +
∫ t

η

G(t, s)ds +
∫ 1

t

G(t, s)ds

=
∫ η

0

{
β − (t − s)α−1

Γ(α)
+

(η − s)α−1

Γ(α)

}
ds

+
∫ t

η

{
β − (t − s)α−1

Γ(α)

}
ds +

∫ 1

t

βds

= β +
ηα − tα

Γ(α + 1)
.

Thus, from the above calculations we get,

ϕ(t) = β +
ηα − tα

Γ(α + 1)
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for all t ∈ [0, 1].
Therefore,

ϕ′(t) =
−αtα−1

Γ(α + 1)
< 0

for all t ∈ [0, 1].
This implies that the function ϕ is a decreasing function on [0, 1]. So,

sup
t∈[0,1]

∫ 1

0

G(t, s)ds = sup
t∈[0,1]

ϕ(t)

= ϕ(0)

= β +
ηα

Γ(α + 1)
,

and

inf
t∈[0,1]

∫ 1

0

G(t, s)ds = inf
t∈[0,1]

ϕ(t)

= ϕ(1)

= β +
ηα − 1

Γ(α + 1)
.

This completes the proof of the lemma. �

As a special case of Proposition 1 of [10], we have the following lemma.

Lemma 3.4. For the Green’s function G(t, s) derived in Lemma 3.1,

β − (1 − η)α−1

Γ(α)
≤ G(t, s) ≤ β +

ηα−1

Γ(α)

for all t, s ∈ [0, 1] holds.

Now we prove the following theorems concerning the existence and
uniqueness of a positive solution to the fractional thermostat model given
by Eqs. (3.1) and (3.2).

Theorem 3.5. Let us consider the fractional thermostat model with parameter
λ > 0 given by Eqs. (3.1) and (3.2). Assume that the following conditions
hold:

(i) βΓ(α + 1) + ηα > 1;
(ii) for all s ∈ [0, 1],

λ|f(s, u(s)) − f(s, v(s))| ≤ λ|f(s, u(s))| − λ sup
t∈[0,1]

|v(t)| − ψ( sup
t∈[0,1]

|u(t) − v(t)|)

for some altering distance function ψ and for all real-valued continuous
functions u(s), v(s) defined on [0, 1];

(iii) f is non-decreasing with respect to the second argument and there exists
t0 ∈ (0, 1) such that f(t0, 0) > 0.

Then the fractional thermostat model with parameter λ given by Eqs. (3.1)
and (3.2) has a unique positive solution for λ ≥ 1

k , where k = β + ηα−1
Γ(α+1) .
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Proof. Consider the Banach space C[0, 1] of all real-valued continuous func-
tions defined on [0, 1] equipped with the sup norm.

Define a mapping T : C[0, 1] → C[0, 1] by

Tu(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds

for all u ∈ C[0, 1], where G(t, s) is defined as in Lemma 3.1.
From Lemma 3.1, it is obvious that the thermostat model given by Eqs.

(3.1) and (3.2) has u(t) as a solution if and only if u(t) is a fixed point of T .
Now, by condition (ii), we have

λ|f(s, u(s)) − f(s, v(s))| ≤ λ|f(s, u(s))| − λ sup
t∈[0,1]

|v(t)|

− ψ( sup
t∈[0,1]

|u(t) − v(t)|)

= λ|f(s, u(s))| − λ‖v‖ − ψ(‖u − v‖).

Multiplying both sides by |G(t, s)|, we get

λ|f(s, u(s)) − f(s, v(s))||G(t, s)| ≤ λ|f(s, u(s))||G(t, s)|
− λ‖v‖|G(t, s)|
− ψ(‖u − v‖)|G(t, s)|

⇒ λ

∫ 1

0

|f(s, u(s)) − f(s, v(s))||G(t, s)|ds ≤ λ

∫ 1

0

|f(s, u(s))||G(t, s)|ds

− λ

∫ 1

0

‖v‖|G(t, s)|ds

−
∫ 1

0

ψ(‖u − v‖)|G(t, s)|ds

= λ

∫ 1

0

G(t, s)f(s, u(s))ds

− λ‖v‖
∫ 1

0

G(t, s)ds

− ψ(‖u − v‖)
∫ 1

0

G(t, s)ds

≤ λ

∫ 1

0

G(t, s)f(s, u(s))ds

− λ‖v‖ inf
t∈[0,1]

∫ 1

0

G(t, s)ds

− ψ(‖u − v‖) inf
t∈[0,1]

∫ 1

0

G(t, s)ds

≤ λ

∫ 1

0

G(t, s)f(s, u(s))ds

− λk‖v‖ − kψ(‖u − v‖).
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Now if λk ≥ 1, then from the above equation we obtain,

λ

∫ 1

0

|f(s, u(s)) − f(s, v(s))||G(t, s)|ds ≤ λ

∫ 1

0

G(t, s)f(s, u(s))ds − ‖v‖
− kψ(‖u − v‖)

≤ λ

∫ 1

0

G(t, s)f(s, u(s))ds − |v(t)|
− kψ(‖u − v‖)

≤
∣∣∣∣λ

∫ 1

0

G(t, s)f(s, u(s))ds − v(t)
∣∣∣∣

− kψ(‖u − v‖). (3.6)

Therefore, using Eq. (3.6) we get

|Tu(t) − Tv(t)| =
∣∣∣∣λ

∫ 1

0

G(t, s)f(s, u(s))ds − λ

∫ 1

0

G(t, s)f(s, v(s))ds

∣∣∣∣
=

∣∣∣∣λ
∫ 1

0

G(t, s)(f(s, u(s)) − f(s, v(s)))ds

∣∣∣∣
≤

∣∣∣∣λ
∫ 1

0

G(t, s)f(s, u(s))ds − v(t)
∣∣∣∣ − kψ(‖u − v‖).

The above inequality holds for all t ∈ [0, 1] and so we have

sup
t∈[0,1]

|Tu(t) − Tv(t)| ≤ sup
t∈[0,1]

λ

∣∣∣∣
∫ 1

0

G(t, s)f(s, u(s))ds − v(t)
∣∣∣∣ − kψ(‖u − v‖)

⇒ ‖Tu − Tv‖ ≤ ‖Tu − v‖ − kψ(‖u − v‖). (3.7)

It is easily perceived by condition (i) that k > 0.

Define two functions φ, ψ1 : [0,∞) → [0,∞) by

φ(t) = t and

ψ1(t) = kψ(t)

for all t ∈ [0,∞). Then one can easily verify that φ, ψ1 are two altering
distance functions and also from Eq. (3.7) we get

φ(‖Tu − Tv‖) ≤ φ(‖Tu − v‖) − ψ1(‖u − v‖). (3.8)

The above inequality holds for all u, v ∈ C[0, 1] and so by Theorem 2.1, T
has a unique fixed point u(t), say, in C[0, 1].

Note that Eq. (3.8) holds if λk ≥ 1. So, T has u(t) as a fixed point
if λk ≥ 1, i.e., u(t) is a solution of the thermostat model (3.1) and (3.2) if
λk ≥ 1, i.e., λ ≥ 1

k .
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Now we have λ > 0, G(t, s) > 0 and f(s, u(s)) ≥ 0 for all t, s ∈ [0, 1].
Therefore, it is clear that

λ

∫ 1

0

G(t, s)f(s, u(s))ds ≥ 0

for all t ∈ [0, 1]. This means that Tu(t) ≥ 0 for all t ∈ [0, 1] and which leads
us to the fact that u(t) ≥ 0 for all t ∈ [0, 1].

Finally, we show that the unique solution u(t) is always positive. To
show this, first we show that the zero function 0 is not a fixed point of T .

Suppose to the contrary that the zero function 0 is a fixed point of T .
Then, we have

0 = λ

∫ 1

0

G(t, s)f(s, 0)ds,

for all t ∈ [0, 1]. Since G(t, s)f(s, 0) ≥ 0 for all t ∈ [0, 1] and for all s ∈ [0, 1],
we have

G(t, s)f(s, 0) = 0,

for all t ∈ [0, 1] and for almost all s ∈ [0, 1]. This fact leads us to

f(s, 0) = 0 for almost all s ∈ [0, 1]. (3.9)

By condition (iii), there exists t0 ∈ (0, 1) such that f(t0, 0) > 0. Again,
since f is continuous at (t0, 0), there exists a subset A of [0, 1] of positive
Lebesgue measure such that f(s, 0) > 0 for all s ∈ A. This is a contradiction
to Eq. (3.9). So the zero function 0 is not a fixed point of T .

Now, let u(t1) = 0 for some t1 ∈ (0, 1). Therefore, we have∫ 1

0

G(t1, s)f(s, u(s))ds = 0. (3.10)

But u(s) ≥ 0 for all s ∈ [0, 1] and f is non-decreasing with respect to the
second argument. Hence,

0 ≥
∫ 1

0

G(t1, s)f(s, u(s))ds ≥
∫ 1

0

G(t1, s)f(s, 0)ds ≥ 0. (3.11)

Therefore, from (3.10) and (3.11), we obtain∫ 1

0

G(t1, s)f(s, 0)ds = 0.

As G(t1, s)f(s, 0) ≥ 0, it follows that G(t1, s)f(s, 0) = 0 for almost all
s ∈ [0, 1]. This implies that f(s, 0) = 0 for almost all s ∈ [0, 1], which is
a contradiction.

Hence, it follows that u(t) > 0 for all t ∈ (0, 1). Again, since u is
continuous on [0, 1], we have u(t) > 0 for all t ∈ [0, 1]. Thus, the fractional
thermostat model, given by Eqs. (3.1) and (3.2), has a unique positive solution
for λ ≥ 1

k , where k = β + ηα−1
Γ(α+1) . �

Theorem 3.6. Let us consider the fractional thermostat model with parameter
λ given by Eqs. (3.1) and (3.2). Assume that the following conditions hold:

(i) βΓ(α + 1) + ηα > 1;
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(ii) for all s ∈ [0, 1],

λ|f(s, u(s)) − f(s, v(s))| ≤ λ|f(s, u(s))| − λ sup
t∈[0,1]

|v(t)| − ψ( sup
t∈[0,1]

|u(t) − v(t)|),

for some bounded altering distance function ψ and for all u(s), v(s) in
the set C = {u(s) ∈ C[0, 1] : R1 ≤ u(s) ≤ R, for all s ∈ [0, 1], where
R,R1 are constants with R > 1, R1 > 0};

(iii) k1 = β + ηα−1

Γ(α) , k2 = β − (1−η)α−1

Γ(α) > 0, k = β + ηα−1
Γ(α+1) < 1;

(iv)
∫ 1

0
f(s,R)ds ≤ 6R

λk1
and

∫ 1

0
f(s, 0)ds > R1

5λk2
;

(v) f is non-decreasing with respect to the second argument and there exists
t0 ∈ (0, 1) such that f(t0, 0) > 0.

Then the fractional thermostat model with parameter λ given by Eqs. (3.1)
and (3.2) has a unique positive solution in C for λ ≥ 1

k .

Proof. Let us take the Banach space C[0, 1] endowed with the sup norm. We
consider the set C ′ defined as

C′ =
{

u(s) ∈ C[0, 1] :
R1

5
≤ u(s) ≤ 6R for all s ∈ [0, 1] or u(s) = 0 for all s ∈ [0, 1]

}
.

Then it is easily noticeable that C ′ is a closed subset of C[0, 1]. The fact
that f is non-decreasing with respect to the second argument gives us∫ 1

0

f(s, u(s))ds ≤
∫ 1

0

f(s,R)ds

≤ 6R

λk1
,

and ∫ 1

0

f(s, u(s))ds ≥
∫ 1

0

f(s,R1)ds

≥
∫ 1

0

f(s, 0)ds

>
R1

5λk2

for all u ∈ C. Therefore,

λ

∫ 1

0

G(t, s)f(s, u(s))ds ≤ λ

(
β +

ηα−1

Γ(α)

)∫ 1

0

f(s, u(s))ds

≤ λk1
6R

λk1

= 6R,

i.e.,

λ

∫ 1

0

G(t, s)f(s, u(s))ds ≤ 6R, (3.12)
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and

λ

∫ 1

0

G(t, s)f(s, u(s))ds ≥ λ

(
β − (1 − η)α−1

Γ(α)

)∫ 1

0

f(s, u(s))ds

≥ λk2
R1

5λk2

=
R1

5
,

i.e.,

λ

∫ 1

0

G(t, s)f(s, u(s))ds ≥ R1

5
. (3.13)

Next, we define a mapping T : C ′ → C ′ by

Tu(t) =
{

λ
∫ 1

0
G(t, s)f(s, u(s))ds, for all u ∈ C ∪ {0};

0, elsewhere.

From Eqs. (3.12) and (3.13) one can easily check that T is well defined on
C ′.

We now define a relation R on C[0, 1] by the following:
for u, v ∈ C[0, 1], uRv if and only if

(1) either u, v ∈ C ′\{0} and both Tu, Tv �= 0;
(2) or u, v ∈ C ′\{0} and both Tu, Tv = 0;
(3) or u = v = 0.

Then it is clear that R is an equivalence relation on C[0, 1]. We claim that T
is order-preserving on C ′ with respect to R.

Let u, v ∈ C ′ be arbitrary with uRv. Then the following cases may arise.

Case 1 When u, v ∈ C ′\{0} and both Tu, Tv �= 0.

Then

Tu ≥ R1

5
> 0

⇒ T (Tu) > 0.

Similarly, T (Tv) > 0. So, T (Tu), T (Tv) �= 0, and TuRTv.

Case 2 When u, v ∈ C ′\{0} and both Tu, Tv = 0.

Since R is an equivalence relation, TuRTv.

Case 3 When u = v = 0.
Then we have Tu = Tv and so TuRTv, since R is an equivalence rela-

tion. Therefore, T is order-preserving on C ′ with respect to R.
Since ψ is bounded, so there exists a constant M > 0 such that ψ(t) ≤ M

for all t ∈ [0,∞). Without loss of generality, we may assume that R1
5 ≥ M .

Now we define two altering distance functions by φ(t) = (2M + 1)kt and
ψ1(t) = (2M + 1)k2ψ(t) for all t ∈ [0,∞).

Let u, v ∈ C ′ be arbitrary with uRv. Then the succeeding cases may
arise.
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Case 1 When u, v ∈ C ′\{0} and both Tu, Tv �= 0.
So u, v ∈ C and

Tu = λ

∫ 1

0

G(t, s)f(s, u(s))ds

and

Tv = λ

∫ 1

0

G(t, s)f(s, v(s))ds.

Then proceeding as in Theorem 3.5, we get

‖Tu − Tv‖ ≤ ‖Tu − v‖ − kψ(‖u − v‖), if λ ≥ 1
k

⇒ (2M + 1)k‖Tu − Tv‖ ≤ (2M + 1)k‖Tu − v‖ − (2M + 1)k2ψ(‖u − v‖)

⇒ φ(‖Tu − Tv‖) ≤ φ(‖Tu − v‖) − ψ1(‖u − v‖), if λ ≥ 1
k .

Case 2 When u, v ∈ C ′\{0} and both Tu, Tv = 0.

Therefore, u, v /∈ C and φ(‖Tu − Tv‖) = φ(0) = 0. Also, ‖v‖ > R1
5 .

Therefore,

φ(‖v‖) > φ

(
R1

5

)

= (2M + 1)k
R1

5

≥ (2M + 1)k2 R1

5
≥ (2M + 1)k2M

≥ (2M + 1)k2ψ(t)

= ψ1(t)

⇒ φ(‖Tu − v‖) ≥ ψ1(t)

⇒ φ(‖Tu − v‖) ≥ ψ1(‖u − v‖)

⇒ φ(‖Tu − v‖) − ψ1(‖u − v‖) ≥ φ(‖Tu − Tv‖).

Case 3 When u = v = 0.
In this case, clearly we have

φ(‖Tu − Tv‖) ≤ φ(‖Tu − v‖) − ψ(‖u − v‖).

Thus, we see that

φ(‖Tu − Tv‖) ≤ φ(‖Tu − v‖) − ψ(‖u − v‖)

holds for all u, v ∈ C ′ with uRv if λ ≥ 1
k . So by Theorem 2.2, T has a unique

fixed point in C ′ if λ ≥ 1
k . But by the definition of T , it can have the fixed

point only in C. So T has a unique fixed point in C.
Thus, u(t) is the unique solution of the fractional thermostat model

given by Eqs. (3.1) and (3.2), which follows by Lemma 3.1 and the definition
of T . Also, since u ∈ C, u is positive. Hence, the fractional thermostat model
given by Eqs. (3.1) and (3.2) satisfying the hypotheses of Theorem 3.6 has a
unique positive solution in C for λ ≥ 1

k . �
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Now, we demonstrate an example which validates the effectiveness of
the aforementioned result.

Example 3.7. Let us consider the fractional thermostat model
CDαu(t) + λf(t, u(t)) = 0, t ∈ (0, 1), (3.14)

u′(0) = 0, βCDα−1u′(1) + u(η) = 0. (3.15)

We choose

α =
3
2
, β =

4
5
, η =

1
2

and

f(t, u) =
{

ln(320 + t2) + t3 + 1
24−u , if u ≤ 20;

ln(320 + t2) + t3 + 1
4 , elsewhere.

Then, βΓ(α) − (1 − η)(α−1) = 4
5 .12 .

√
π − ( 1

2 )
1
2 > 0.

Clearly, f : [0, 1] × R → R
+ is a continuous function and also f is non-

decreasing with respect to the second argument and there exists 1
2 ∈ (0, 1)

such that f(1
2 , 0) > 0.

We take

C =
{

u(s) ∈ C[0, 1] :
1
10

≤ u(s) ≤ 20, for all s ∈ [0, 1]
}

,

i.e., here R1 = 1
10 , R = 20.

Now,

βΓ(α + 1) + ηα =
4
5
.
3
2
.
1
2
.
√

π +
(

1
2

) 3
2

≈ 1.4165 > 1,

and

k = β +
ηα − 1

Γ(α + 1)

=
4
5

+
( 1
2 )

3
2 − 1

3
2 .12 .

√
π

≈ 0.3135 < 1

⇒ 1
k

≈ 3.1897.

Also we have

k1 = β +
ηα−1

Γ(α)

=
4
5

+
( 1
2 )

1
2

1
2 .

√
π

≈ 1.5981 and

k2 = β − (1 − η)α−1

Γ(α)

=
4
5

− ( 1
2 )

1
2

1
2 .

√
π
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≈ 0.0019.

We choose λ = 3.2 and clearly λ ≥ 1
k .

Now, ∫ 1

0

f(s,R)ds ≤ ln (1 + 320) +
1
4

+
1
4

≈ 22.4722

≤ 6R

λk1

as
6R

λk1
≈ 6 × 20

3.2 × 1.5981
≈ 23.4653.

Also, ∫ 1

0

f(s, 0)ds = ln (320) +
1
4

+
1
24

≈ 22.2639

>
R1

5λk2

as
R1

5λk2
≈ 6 × 20

3.2 × 1.5981
≈ 3.2894.

Next, we define a mapping ψ : [0,∞) → [0,∞) by

ψ(t) =
{

t2, if 0 ≤ t < 1;
1, if t ≥ 1.

Then it is an easy task to note that ψ is a bounded altering distance function.
Finally, for any u(s), v(s) ∈ C, we have

λ|f(s, u(s)) − f(s, v(s))| = 3.2
∣∣∣∣ 1
24 − u(s)

− 1
24 − v(s)

∣∣∣∣
≤ 3.2

(
1
4

+
1
4

)

= 1.6.

But,

λ|f(s, u(s))| − λ sup
t∈[0,1]

|u(t)| − ψ( sup
t∈[0,1]

|u(t) − v(t)|) ≥ 3.2 × 21 − 3.2 × 20 − ψ(40)

= 2.20.

Therefore,

λ|f(s, u(s)) − f(s, v(s))| ≤ λ|f(s, u(s))| − λ sup
t∈[0,1]

|u(t)| − ψ

(
sup

t∈[0,1]
|u(t) − v(t)|

)
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for all u(s), v(s) ∈ C. So, by Theorem 3.6, the thermostat model given by
Eqs. (3.14) and (3.15) has a unique positive solution in C for λ = 3.2.

Remark 3.8. It is quite interesting to note that if we take λ < 1
k in Theo-

rem 3.6, then the thermostat model given by Eqs. (3.1) and (3.2) may not
have a positive solution in C. We present the following example in support
of our claim.

Example 3.9. Let us consider the fractional thermostat model
CDαu(t) + λf(t, u(t)) = 0, t ∈ (0, 1), (3.16)

u′(0) = 0, βCDα−1u′(1) + u(η) = 0. (3.17)

We take

α =
3
2
, β =

6
5
, η =

1
2
,

f(t, u) = 6 + 5t2

and

C =
{

u(s) ∈ C[0, 1] :
1
15

≤ u(s) ≤ 5, for all s ∈ [0, 1]
}

,

i.e., here R1 = 1
15 , R = 5.

Then, clearly f : [0, 1] × R → R
+ is a continuous function and also f

is non-decreasing with respect to the second argument and there exists 1
2 ∈

(0, 1) such that f(1
2 , 0) > 0. Also, βΓ(α)− (1−η)(α−1) = 6

5 .12 .
√

π − ( 1
2 )

1
2 > 0.

Again we have βΓ(α + 1) + ηα ≈ 2.3019 > 1, k = β + ηα−1
Γ(α+1) = 0.7136 < 1,

1
k ≈ 1.1014, k1 = β + ηα−1

Γ(α) ≈ 1.9981, k2 = β − (1−η)α−1

Γ(α) ≈ 0.4019. We choose
λ = 1

230 , then clearly λ < 1
k . Now,
∫ 1

0

f(s,R)ds ≈ 7.66

≤ 6R

λk1

≈ 3303.13

and ∫ 1

0

f(s, 0)ds ≈ 7.66

>
R1

5λk2

= 7.6304.

Now, we consider the bounded altering distance function ψ : [0,∞) → [0,∞)
defined by

ψ(t) =
{

t
230 , if t ≤ 1;
1

230 , if t > 1.
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Therefore, for any u(s), v(s) ∈ C we have

λ|f(s, u(s))| − λ sup
t∈[0,1]

|u(t)| − ψ

(
sup

t∈[0,1]
|u(t) − v(t)|

)
≥ 1

230
× 6 − 1

230
× 5 − ψ(10)

= 0

= λ|f(s, u(s)) − f(s, v(s))|.

Thus, all the conditions of Theorem 3.6 are satisfied but the thermostat
model does not have a positive solution in C, because if this thermostat
model has a positive solution u(t), say in C, then we have

T (u(t)) = u(t) = λ

∫ 1

0

G(t, s)f(s, u(s))ds

≤ 1
230

× 1.9981 ×
(

6 +
5
3

)

<
1
15

which contradicts the fact that u(t) ∈ C.
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