
J. Fixed Point Theory Appl. (2018) 20:101
https://doi.org/10.1007/s11784-018-0575-9
Published online June 9, 2018
c© Springer International Publishing AG,
part of Springer Nature 2018

Journal of Fixed Point Theory
and Applications

Homoclinic solutions for a second-order
singular differential equation

Shiping Lu and Xuewen Jia

Abstract. In this paper, the problem of existence of homoclinic solutions
is studied for the second-order singular differential equation

x′′(t) + f(x(t))x′(t) − g(x(t)) − α(t)x(t)

1 − x(t)
= h(t),

where f, g, h, α : R → R are continuous and α(t+T ) ≡ α(t) for all t ∈ R.
Using the continuation theorem of coincidence degree theory given by
Mawhin and Manásevich, a new result on the existence of homoclinic
solutions to the equation is obtained.
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1. Introduction

Consider the existence of homoclinic solutions for the equation

x′′(t) + f(x(t))x′(t) − g(x(t)) − α(t)x(t)
1 − x(t)

= h(t), (1.1)

where f, g, h, α : R → R are continuous and α(t+T ) ≡ α(t) with α(t) > 0 for
all t ∈ R. We will say that a solution u of Eq. (1.1) is a homoclinic equation, if
u(t) → 0 as t → ±∞. When such a solution satisfies in addition to u′(t) → 0
as t → ±∞, then it is usually called a homoclinic solution or a pulse, although
here, 0 is not a stationary solution of Eq. (1.1). In [1], by Leray–Schauder
fixed point theorem, Faure has studied the T -periodic solutions of equation

x′′(t) + cx′(t) − x(t)
1 − x(t)

= e(t),

where c > 0 is a constant and e(t) is a continuous T -periodic solution.
The study of singular systems is perhaps as old as the Kepler classi-

cal problem in mechanics. In recent years, the problem of periodic solutions
has been studied widely for some second-order differential equations with
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singularity [2–10]. This is due to the fact that periodic solution for the sin-
gular equation possesses a significant role in many practical situations (see
[5,9,11–15]) and the references therein). Compared with the problem of peri-
odic solution, the problem of homoclinic solution for second-order differential
equations with singularity is studied less often. In the case of singular Hamil-
tonian systems, we find that there were some papers on the study of existence
of homoclinic solutions [16–19]. For example, the first result on existence of
a homoclinic orbit to autonomous singular Hamiltonian systems

u′′ + Vu(u) = 0,−∞ < t < +∞
was obtained by Tanaka [16] using variational methods. Costa and Tehrani
[17] further studied the problem of homoclinic solutions to a class of non-
autonomous singular Hamiltonian systems

u′′ + Vu(t, u) = 0,−∞ < t < +∞,

where u = (u1, u2, . . . , uN ) ∈ RN , V : R×RN has a singularity at u = q ∈ RN

and q �= 0. Under the assumption that V (t, u) satisfies strong-force condition,
the existence of infinitely many homoclinic solutions is obtained. Bonheure
and Torres [20] considered the problem of homoclinic-like solutions to the
singular equation

− x′′(t) + f(t, x(t), x′(t)) =
b(t)
up(t)

, (1.2)

where b ∈ C(R,R) is nonzero nonnegative, p > 0 is a constant. The arguments
are based upon a well-known fixed point theorem on cones, which is different
from the variational methods used in [16–19]. The reason for this is that there
is a first-order derivative term in Eq. (1.2). This implies that Eq. (1.2) is not
the Euler–Lagrange equation associated with some functional, and then, the
variational methods cannot be applied to Eq. (1.2) for obtaining homoclinic-
like solution. However, the function f(t, x, y) is required to be linear with
respect to the variables x and y. In detail, f(t, x, y) = a(t)x + c(t)y, where
a, c ∈ C(R,R) with a(t) > ã > 0 for all t ∈ R. This is due to the fact that
f(t, x, y) in such a way can guarantee the Green function G(t, s) associated
with boundary value problem −x′′(t) + c(t)x′(t) + a(t)x(t) = 0, x(−∞) =
x(+∞) = 0 satisfying G(t, s) > 0 for all (t, s) ∈ R2; then, for every h ∈
C(R,R) with h

a being bounded, the nonhomogeneous equation

−x′′(t) + c(t)x′(t) + a(t)x(t) = h(t)

with boundary condition x(−∞) = x(+∞) = 0 has a unique bounded solu-
tion u(t) =

∫
R

G(t, s)ds, which is crucial in [20] for applying some fixed point
theorems on cones. Motivated by [16–20], as well as [21,22], we continue to
study the existence of homoclinic-like solution for Eq. (1.2).

The work of present paper for investigating the existence of homoclinic
solutions to (1.1) is divided three parts. First, for each k ∈ N , we investigate
the existence of 2kT -periodic solutions uk(t) for the following equation

x′′(t) + f(x(t))x′(t) − g(x(t)) − α(t)x(t)
1 − x(t)

= hk(t), (1.3)
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where hk : R → R are two 2kT -periodic solutions with

hk(t) =

{
h(t), t ∈ [−kT, kT − T

2

)
,

h
(
kT − T

2

)
+

2(h(−kT )−h(kT− T
2 ))

T

(
t − kT + T

2

)
, t ∈ [

kT − T
2 , kT

]
.

(1.4)
Using a known continuation theorem of coincidence degree theory, we obtain
that for each k ∈ N , there is at least one positive 2kT -periodic solution uk(t)
to Eq. (1.3). Second, we will show that the sequence {uk(t)} satisfies

∫ kT

−kT

|uk(t)|n+1dt ≤ M0,

∫ kT

−kT

|u′
k(t)|2dt ≤ M1

and

−∞ < ρ0 < uk(t) ≤ ρ1 ∈ (0, 1), max
t∈[−kT,kT ]

|u′
k(t)| ≤ ρ2,

where n, M0, M1, ρ0, ρ1 and ρ2 are positive constants independent of k.
Finally, a homoclinic solution for Eq. (1.1) is obtained as a limit of a certain
subsequence of {uk(t)}.

By contrast, our approach to Eq. (1.1) is neither based on variational
theory used in [16–19], because there is a first derivative term f(x(t))x′(t)
in Eq. (1.1), and then Eq. (1.1) has no variational structure, nor based on
the methods used in [20], since the terms of f(x)y and g(x) may be generally
nonlinear with respect to variables of x and y.

2. Preliminary lemmas

Throughout this paper, the set of all positive integers is denoted by N , and for
ω > 0 being a constant, let Cω = {x ∈ C(R,R) : x(t + ω) = x(t) for all t ∈
R} with the norm defined by |x|∞ = maxt∈[0,ω] |x(t)|.

Let y(t) = 1 − x(t), then (1.3) is converted to the equation

y′′(t) + f(1 − y(t))y′(t) + g(1 − y(t)) +
α(t)
y(t)

= −hk(t) + α(t). (2.1)

Clearly, the problem of searching for 2kT -periodic solution u(t) to (1.1) with
u(t) < 1 is reduced to the question to investigate positive 2kT -periodic solu-
tion for (2.1). Now,we embed (2.1) into the following equation family with a
parameter λ ∈ (0, 1]

y′′(t) + λf(1 − y(t))y′(t) + λg(1 − y(t)) +
λα(t)
y(t)

= λ(−hk(t) + α(t)), λ ∈ (0, 1]. (2.2)

To study the existence of 2kT -periodic solution to (2.1) for each k ∈ N , we
give the following Lemma which is an easy consequence of main result in [23]
and [24].

Lemma 2.1. Assume that there exist positive constants N0, N1 and N2 with
0 < N0 < N1, such that the following conditions hold.
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1. For each λ ∈ (0, 1], each possible positive 2kT -periodic solution x to the
equation

y′′(t) + λf(1 − y(t))y′(t) + λg(1 − y(t)) +
λα(t)
y(t)

= λ(−hk(t) + α(t))

satisfies the inequalities N0 < x(t) < N1 and |x′(t)| < N2 for all t ∈
[0, T ].

2. Each possible positive solution c to the equation

g(1 − c) +
ᾱ

c
+ hk − ᾱ = 0,

satisfies the inequality N0 < c < N1.
3. It holds

(

g(1 − N0) +
ᾱ

N0
+ hk − ᾱ

)(

g(1 − N1) +
ᾱ

N1
+ hk − ᾱ

)

< 0.

Then Eq. (2.1) has at least one positive 2kT -periodic solution x such
that N0 < x(t) < N1 for all t ∈ [0, T ].

Lemma 2.2. If u : R → R is continuously differentiable on R, a > 0, μ > 1
and p > 1 are constants, then for every t ∈ R, the following inequality holds:

|u(t)| ≤ (2a)− 1
μ

(∫ t+a

t−a

|u(s)|μds
) 1

μ

+ a(2a)− 1
p

(∫ t+a

t−a

|u′(s)|pds
) 1

p

.

This lemma is a special case of Lemma 2.2 in [25].

Lemma 2.3 [26]. Let {uk} ∈ C1
2kT be a sequence of 2kT -periodic functions,

such that for each k ∈ N , uk satisfies

|uk|0 ≤ A0, |u′
k|0 ≤ A1,

where A0, A1 are constants independent of k ∈ N . Then there exist a u0 ∈
C(R,R) and a subsequence {ukj

} of {uk}k∈N such that for each j ∈ N ,

max
t∈[−jT,jT ]

|uki
(t) − u0(t)| −→ 0, as i −→ +∞.

Now, we list the following assumptions, which will be used for studying
the existence of homoclinic solutions to Eq. (1.1).

[H1] g : R → R is strictly monotone increasing and there are constants
σ > 0 and n > 0 such that

yg(y) ≥ σ|y|n+1 for all y ∈ R;

[H2] supt∈R |h(t)| := ρ ∈ (0,+∞) and
∫

R
|h(t)|n+1

n dt := ρ0 < +∞, where n
is determined in [H1].
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3. Main result

Theorem 3.1. Suppose that assumptions of [H1] and [H2] hold. Then Eq. (1.1)
has at least one nontrivial homoclinic solution.

Proof. Suppose that v(t) is an arbitrary positive 2kT -periodic solution to
(2.2), then

v′′ +λf(1− v(t))v′(t)+λg(1− v(t))+
λα(t)
v(t)

= λ(−hk(t)+α(t)), λ ∈ (0, 1].

(3.1)
Let t1 and t2 be the maximum point and the minimum point of v(t) on
[−kT, kT ]. This implies that v′(t1) = v′(t2) = 0, v′′(t1) ≤ 0 and v′′(t2) ≥ 0,
which together with (3.1) gives that

g(1 − v(t1)) +
α(t1)
v(t1)

≥ −hk(t1) + α(t1) ≥ −|hk|∞ + α(t1) (3.2)

and

g(1 − v(t2)) +
α(t2)
v(t2)

≤ −hk(t2) + α(t2) ≤ |hk|∞ + α(t2). (3.3)

Using the monotonicity property of g(x), we have from (3.2) that

v(t1) < 1 − g−1(−ρ), (3.4)

where ρ is determined in [H2]. In fact, if

v(t1) ≥ 1 − g−1(−ρ), (3.5)

then v(t1) > 1; and it follows from (3.2) that

g(1 − v(t1)) > −|hk|∞ ≥ −ρ,

i.e.,

v(t1) < 1 − g−1(−ρ),

which contradicts to (3.5). This contradiction implies that (3.4) holds. Also,
we can conclude from (3.3) that

v(t2) >
αl

ρ + αl
, (3.6)

where αl := mint∈[0,T ] α(t). If (3.6) does not hold, then

v(t2) ≤ αl

ρ + αl
. (3.7)
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It follows from (3.3) that

g(1 − v(t2)) ≤ ρ + α(t2) − α(t2)
v(t2)

= ρ + α(t2)
(

1 − 1
v(t2)

)

≤ ρ + α(t2)
(

1 − ρ + αl

αl

)

≤ ρ − αlρ

αl

= 0,

which together with assumption [H1] yields that

1 − v(t2) ≤ 0,

i.e.,

v(t2) ≥ 1,

which contradicts to (3.7), (3.4) and (3.6) give that

γ0 :=
αl

ρ + αl
< v(t) < 1 − g−1(−ρ) := γ1, for all t ∈ [−kT.kT ]. (3.8)

Let wλ(t) = v′(t) + λF (v(t)), λ ∈ (0, 1], where F (x) =
∫ x

0
f(1 − s)ds, then

from (3.1) that

w′
λ(t) = −λg(1 − v(t)) − λα(t)

v(t)
+ λ(−hk(t) + α(t)), λ ∈ (0, 1],

and then

max
t∈[−kT,kT ]

|w′
λ(t)| ≤ gγ0,γ1 +

α∞
γ0

+ α∞ + ρ := γ2, λ ∈ (0, 1], (3.9)

where α∞ = maxt∈[−kT,kT ] α(t) and gγ0,γ1 = maxγ0≤x≤γ1 |g(1 − x)|. Fur-
thermore, for each t ∈ [−kT, kT ], it is easy to see that there is an integer
i ∈ {−k,−k + 1, . . . , k − 1} such that t ∈ [iT, (i + 1)T ]. From the continuity
of v′(t) on [iT, (i + 1)T ], we have ti ∈ [iT, (i + 1)T ] such that

v′(ti) =
1
T

∫ (i+1)T

iT

v′(s)ds,

which together with (3.8) yields

|v′(ti)| =

∣
∣
∣
∣
∣
1
T

∫ (i+1)T

iT

v′(s)ds

∣
∣
∣
∣
∣
=

1
T

|v(iT ) − v((i + 1)T )| <
2γ1
T

. (3.10)
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Since

|wλ(t)| = |wλ(ti) +
∫ t

ti

w′
λ(s)ds|

≤ |wλ(ti)| +
∫ (i+1)T

iT

|w′
λ(s)|ds

≤ |v′(ti)| + |F (v(ti)| +
∫ (i+1)T

iT

|w′
λ(s)|ds,

it follows from (3.8), (3.9) and (3.10) that

|wλ(t)| ≤ 2γ1
T

+ Fγ0,γ1 + Tγ2,

where Fγ0,γ1 := maxγ0≤x≤γ1 |F (x)|, i.e.,

|v′|∞ = max
t∈[−kT,kT ]

|v′(t)| ≤ 2γ1
T

+ 2Fγ0,γ1 + Tγ2 := γ3. (3.11)

Clearly, γ3 is a positive constant independent of k ∈ N . By (3.8), it is easy
to check that

g(1 − γ0) +
ᾱ

γ0
+ hk − ᾱ > 0

and

g(1 − γ1) +
ᾱ

γ1
+ hk − ᾱ < 0,

and then
(

g(1 − γ0) +
ᾱ

γ0
+ hk − ᾱ

)(

g(1 − γ1) +
ᾱ

γ1
+ hk − ᾱ

)

< 0.

Thus, using Lemma 2.1 for the case of N0 = γ0, N1 = γ1 and N2 = γ3,
we have from (3.8) and (3.11) that for each k ∈ N , there is a positive 2kT -
periodic solution vk(t) to (2.1) such that

αl

ρ + αl
< vk(t) < 1 − g−1(−ρ), |v′

k|∞ < γ3 for all k ∈ N.

It follows from the substitution defined by y(t) = 1−x(t) that for each k ∈ N ,
there is a 2kT -periodic solution uk(t) to (1.3) such that

A0 := g−1(−ρ) < uk(t) <
ρ

ρ + αl
:= A1 (3.12)

and
|u′

k|∞ ≤ γ3. (3.13)

Since uk(t) is a 2kT -periodic solution to (1.3), we have

u′′
k(t) + f(uk(t))u′

k(t) − g(uk(t)) − α(t)uk(t)
1 − uk(t)

= hk(t), (3.14)

and then by (3.12) and (3.13), we have

|u′′
k |∞ ≤ γ4, (3.15)
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where γ4 := γ3fA0,A1 +gA0,A1 + α∞A1
1−A1

+ρ is a constant independent of k ∈ N .
Using Lemma 2.3, we see that there are a u0 ∈ C1(R,R) and a subsequence
{ukj

} of {uk} such that

max
t∈[−jT,jT ]

|uki(t)−u0(t)|−→0, and max
t∈[−jT,jT ]

|u′
ki

(t)−u′
0(t)| → 0 as i → +∞.

(3.16)
For any real numbers a and b satisfying a < b, there is a positive integer j0
such that for j > j0, [−kjT, kjT ) ⊃ [a, b]. Thus, if j > j0, then from (1.4) and
(3.14), we see that

u′′
kj

(t) + f(ukj
(t))u′

kj
(t) − g(ukj

(t)) − α(t)ukj
(t)

1 − ukj
(t)

= h(t), t ∈ [a, b], (3.17)

Integrating (3.17) over [a, t] ⊂ [a, b], we get

u′
kj

(t) − u′
kj

(a) = −
∫ t

a

f(ukj
(s))u′

kj
(s)ds −

∫ t

a

g(ukj
(s))ds

− α(s)ukj
(s)

1 − ukj
(s)

ds +
∫ t

a

h(s)ds, for t ∈ [a, b]. (3.18)

(3.16) implies that ukj
(t) → u0(t) uniformly for t ∈ [a, b] and u′

kj
(t) → u′

0(t)
uniformly for t ∈ [a, b]. Let j → ∞ in (3.18), we have

u′
0(t) − u′

0(a) = −
∫ t

a

f(u0(s))u′
0(s)ds −

∫ t

a

g(u0(s))ds

− α(s)u0(s)
1 − u0(s)

ds +
∫ t

a

h(s)ds, for t ∈ [a, b]. (3.19)

Considering a and b are two arbitrary constants with a < b, it is easy to see
from (3.19) that u0 is a solution to (1.1), i.e.,

u′′
0(t) + f(u0(t))u′

0(t) − g(u0(t)) − α(t)u0(t)
1 − u0(t)

= h(t), t ∈ R. (3.20)

Below, we will show

u0(t) → 0 and u′
0(t) → 0 as |t| → +∞.

For each k ∈ N , multiplying (3.14) with uk(t) and integrating it over the
interval [−kT, kT ], we have

∫ kT

−kT

|u′
k(t)|2dt −

∫ kT

−kT

f(uk(t))uk(t)u′
k(t)dt

+
∫ kT

−kT

g(uk(t))uk(t)dt +
∫ kT

−kT

α(t)uk(t)
1 − uk(t)

dt

=
∫ kT

−kT

hk(t)uk(t)dt.
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It follows from
∫ kT

−kT
f(uk(t))uk(t)u′

k(t)dt = 0, together with assumption [H1]
that

∫ kT

−kT

|u′
k(t)|2dt + σ

∫ kT

−kT

|uk(t)|n+1dt

≤
∫ kT

−kT

|hk(t)uk(t)|dt

≤
(∫ kT

−kT

|hk(t)|n+1
n dt

) n
n+1

(∫ kT

−kT

|uk(t)|n+1dt

) 1
n+1

. (3.21)

Furthermore, from (1.4) we see that

∫ kT

−kT

|hk(t)|n+1
n dt =

∫ kT− T
2

−kT

|hk(t)|n+1
n dt +

∫ kT

kT− T
2

|hk(t)|n+1
n dt

≤
∫ kT− T

2

−kT

|h(t)|n+1
n dt +

ρ
n+1

n T

2

≤
∫

R

|h(t)|n+1
n dt +

ρ
n+1

n T

2
:= ρ3, (3.22)

which together with (3.21) yields

σ

∫ kT

−kT

|uk(t)|n+1dt ≤ ρ
n

n+1
3

(∫ kT

−kT

|uk(t)|n+1dt

) 1
n+1

(3.23)

and
∫ kT

−kT

|u′
k(t)|2dt ≤ ρ

n
n+1
3

(∫ kT

−kT

|uk(t)|n+1dt

) 1
n+1

. (3.24)

(3.23) gives
∫ kT

−kT

|uk(t)|n+1dt ≤ ρ3σ
− n+1

n , for all k ∈ N. (3.25)

Substituting (3.25) into (3.24), we get
∫ kT

−kT

|u′
k(t)|2dt ≤ ρ3σ

− 1
n , for all k ∈ N. (3.26)

Since
∫ +∞

−∞
(|u0(t)|n+1 + |u′

0(t)|2)dt = lim
i→+∞

∫ iT

−iT

(|u0(t)|n+1 + |u′
0(t)|2)dt

= lim
i→+∞

lim
j→+∞

∫ iT

−iT

(|ukj
(t)|n+1 + |u′

kj
(t)|2)dt,
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clearly, for every i ∈ N , if kj > i, then by (3.25) and (3.26), we have
∫ iT

−iT

(|ukj
(t)|n+1 + |u′

kj
(t)|2)dt ≤

∫ kjT

−kjT

(|ukj
(t)|n+1 + |u′

kj
(t)|2)dt

≤ ρ3σ
− 1

n + ρ3σ
− n+1

n .

Let i → +∞ and j → +∞, we get
∫ +∞

−∞
(|u0(t)|n+1 + |u′

0(t)|2)dt ≤ ρ3σ
− 1

n + ρ3σ
− n+1

n , (3.27)

and then
∫

|t|≥r

(|u0(t)|n+1 + |u′
0(t)|2

)
dt → 0

as r → +∞. So using Lemma 2.2, we obtain

|u0(t)| ≤ (2T )− 1
n+1

(∫ t+T

t−T

|u0(s)|n+1ds

) 1
n+1

+ T (2T )− 1
2

(∫ t+T

t−T

|u′
0(s)|2ds

) 1
2

≤
[
(2T )− 1

m + T (2T )− 1
2

]
[(∫ t+T

t−T

|u0(s)|n+1ds

)1/(n+1)

+

(∫ t+T

t−T

|u′
0(s)|2ds

) 1
2
]

→ 0, as |t| → +∞,

which implies that
u0(t) → 0 as |t| → +∞. (3.28)

Next, we will prove that

u′
0(t) → 0 as |t| → +∞. (3.29)

From (3.12), (3.13) and (3.16), we obtain

|u0(t)| ≤ max
{

ρ

ρ + αl
, |g−1(−ρ)|

}

:= A0, for t ∈ R. (3.30)

and
|u′

0(t)| ≤ γ3, for t ∈ R. (3.31)

It follows from (3.20) that

|u′′
0(t)| ≤ fA0,A1γ3 + gA0,A1 +

α∞A1

1 − A1
+ ρ := A2, for t ∈ R. (3.32)

If (3.29) does not hold, then there is a constant δ ∈ (0, 1
2 ) and a sequence

{tk} that

|t1| < |t2| < |t3| < · · · ,

with |tk| + 1 < |tk+1|, k = 1, 2, . . ., and

|u′
0(tk)| ≥ 2δ, k = 1, 2, . . . ,
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which results in

|u′
0(t)| =

∣
∣
∣
∣u

′
0(tk) +

∫ t

tk

u′′
0(s)ds

∣
∣
∣
∣

≥ |u′
0(tk)| −

∫ t

tk

|u′′
0(s)|ds

≥ δ, for t ∈ [tk, tk +
δ

1 + A2
],

and then
∫ +∞

−∞
|u′

0(t)|2dt ≥
+∞∑

k=1

∫ tk+
δ

1+A2

tk

|u′
0(t)|2dt = +∞.

This contradicts to (3.27). It is easy to see that (3.29) holds. Thus,u0(t) is
just a homoclinic solution to equation (1.1). �

4. Example

In this section, we present an example to demonstrate the main result.
Consider the following equation:

x′′(t) + f(x(t))x′(t) − x3(t) − (1 − 1
2 sin t)x(t)

1 − x(t)
=

1√
2π

e− t2
2 , (4.1)

where f : R → R are continuous,h(t) = 1√
2π

e− t2
2 is a standard normal

distribution probability function. Corresponding to (1.1), we have g(x) = x3,
α(t) = 1 − 1

2 sin t. We can easily check that [H1] and [H2] holds for the case
of σ = 1 and n = 3. From Theorem 3.1, we know that equation (4.1) has at
least one nontrivial homoclinic solution.
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