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Abstract. We characterize the price of an Asian option, a financial con-
tract, as a fixed-point of a non-linear operator. In recent years, there
has been interest in incorporating changes of regime into the parame-
ters describing the evolution of the underlying asset price, namely the
interest rate and the volatility, to model sudden exogenous events in the
economy. Asian options are particularly interesting because the pay-
off depends on the integrated asset price. We study the case of both
floating- and fixed-strike Asian call options with arithmetic averaging
when the asset follows a regime-switching geometric Brownian motion
with coefficients that depend on a Markov chain. The typical approach
to finding the value of a financial option is to solve an associated sys-
tem of coupled partial differential equations. Alternatively, we propose
an iterative procedure that converges to the value of this contract with
geometric rate using a classical fixed-point theorem.
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1. Introduction

In this paper we use a fixed-point theorem to characterize the price of both
floating- and fixed-strike Asian call options (defined below) when the interest
rate and volatility of the underlying asset are subject to changes of regime
during the pricing period. We next formulate the problem precisely.

Let (Ω,F , P ) be a probability space which supports a Brownian motion
B = (Bt)t≥0 and a continuous-time Markov chain Y = (Yt)t≥0 independent
of B with finite state space M = {1, 2, . . . ,m} and generator Q = (qij)m×m,

qij ≥ 0 for i �= j,
∑

j∈M
qij = 0, qi := −qii ≥ 0.
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Suppose that under P , the underlying asset price follows the regime-
switching geometric Brownian motion,

dXt = Xt[(r(Yt) − δ) dt + σ(Yt)dBt ], 0 ≤ t ≤ T,

where r(i) > 0 and σ(i) > 0 denote the risk-free interest rate and the volatility
at regime i, respectively, and δ ≥ 0 is the dividend rate. Denote by Ft the
sigma-algebra generated by {(Xu, Yu) : 0 ≤ u ≤ t}.

Throughout this paper we fix a time t0 ∈ [0, T ), and define the inte-
grated process,

At :=
∫ t

t0

Xu du, t0 ≤ t ≤ T

and for convenience, we extend the definition of A to At = 0 for t ∈ [0, t0].
The European call option has payoff (XT −K)+ at time T , where K > 0

is a fixed strike. An Asian option is a path-dependent European-style option,
where the payoff depends on the average of past prices during the time interval
[t0, T ]. Asian options are mainly classified as fixed-strike (when XT is replaced
by AT and the strike K is fixed) or floating-strike (when K is replaced by
AT ). In this paper we study both cases.

More precisely, the price at time s ∈ [0, T ] of an Asian call option with
floating-strike expiring at T is given by:

C(s, x, a, i) = Es,x,a,i

[
e− ∫ T

s
r(Yu)du

(
XT − AT

T − t0

)+
]

, (1.1)

while an Asian call option with fixed-strike expiring at T with strike price K
is:

CK(s, x, a, i) = Es,x,a,i

[
e− ∫ T

s
r(Yu)du

(
AT

T − t0
− K

)+
]

, (1.2)

where we use the notation Es,x,a,i[·] for E[ · | Xs = x,As = a, Ys = i],
x > 0, a ≥ 0. The options are referred to as starting when s = t0, in-progress
when s > t0, and forward-starting when s < t0.

Regime-switching processes in finance were initially proposed by Hamil-
ton in his economic studies with discrete time models on the effect of incorpo-
rating shifts in the parameters of the model via an unobserved discrete time
two-state Markov chain (see [10,11]). Since then, several pricing methods for
financial instruments have emerged under the assumption of regime-switching
coefficients. Such models successfully incorporate sudden changes in the econ-
omy and compensate some of the drawbacks of the classical Black–Scholes
model due to the constancy of the drift and volatility parameters. To mention
some literature, Buffington and Elliott [2], Yao et al. [21], and Zhu et al. [24]
concentrate on vanilla European options; Guo and Zhang [9] study perpetual
American put options; and Chan and Zhu [4] deal with barrier options.

Despite the prominence of regime-switching models, the literature on
Asian options within this context is scarce. Some work has been done for the
class of fixed-strike Asian options, see for instance Boyle and Draviam [1]
and Dan et al. [6]. The pricing methods typically require solving a system of
coupled PDEs. In this paper, we explore an alternative approach to pricing
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Asian call options with regime-switching, based on the fixed-point theorem
for Banach spaces with the supremum norm and when the number of states
m is arbitrary. The initial value in the algorithm is precisely the price of a
fixed-strike Asian option without regime-switching, which has been more ex-
tensively studied in the literature. For instance, Geman and Yor [8] were able
to give an expression for the Laplace transform of a normalized fixed-strike
Asian call option by exploiting probabilistic properties of Bessel processes.
The normalized Asian option involves the expectation of a function of Yor’s
process Aν

t , see (3.4) below. Then the price of the option can be obtained by
inversion of the Laplace transform, although they noted that such inversion
was not easy. Later on, Carr and Schröder [5] built on Laplace transform
techniques and provided an explicit integral representation of the price. The
same year, Linetsky [17] took a different approach and showed that the nor-
malized price is the limit of up-and-out options on the diffusion X, each of
which is given as a series representation of known special functions. More
recently, Cai et al. [3] obtained an algorithm to price Asian options based on
an approximating continuous-time Markov chain sequence that converges to
the underlying asset price process. Other authors have provided price bounds,
see for instance Rogers and Shi [19] who use iterated conditional expectation.

The paper is organized as follows: In Sect. 2, convenient upper bounds
of the call options are derived as well as a symmetry relationship, in the
context of no regime switching, between the starting floating-strike call and
a fixed-strike put. These upper bounds are crucial in order to ensure the
relevant functions belong to the domain of a certain contraction operator
after scaling. We summarize the main results of the paper at the end of this
section.

Next, in Sect. 3 we split the functions C and CK into two parts, one
that restricts the payoff to the event that the Markov chain jumps before
maturity and the other to the complementary event where the Markov chain
does not jump in the lifetime of the option. In Sect. 3.1 we find the joint
density of the pair (Zt, At), where Zt = log(Xt/x), given the information
up to time s for t > s and given that the first jump time of the Markov
chain after s happens at time t. We use this density in Sect. 4, where we
characterize the functions C and CK as the limit (in the supremum norm) of
a sequence whose initial point is in terms of the price of an Asian call option
without regime-switching. The contraction operator is a nonlinear operator
expressed as a triple integral that accounts for the jumps to different states
before maturity.

The ideas in this paper are motivated by the method used by Yao et al.
[21] applied to price vanilla European options. The difficulty in our context
stems from the fact that Asian options are path-dependent and the joint
density of geometric Brownian motion and its integrated process is required.
Nonetheless, the fixed-point theorem approach works well in this setup and
we are able to show that the rate of convergence of the sequence is geometric.
Proof of preliminary lemmas appears in the Appendix.
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2. Preliminaries and main results

It is known that European call options are bounded above by the current
price of the underlying process. This is also true for the floating-strike option
in (1.1) and for the fixed-strike option in (1.2) up to a constant, and will be
used in the fixed-point approximation. The proofs of the next lemmas are
presented in the Appendix.

Lemma 2.1. For any initial condition (s, x, a, i) with s ∈ [0, T ], x > 0, a ≥ 0,

C(s, x, a, i) ≤ x. (2.1)

Define the call option conditional on the chain having no jump in the
interval [s, T ],

C0(s, x, a, i) := Es,x,a,i

[
e−r(i)(T−s)

(
XT − AT

T − t0

)+

| Yt = i, ∀t ∈ [s, T ]

]
.

When the option is starting or forward-starting, it is possible to establish
a symmetry between the associated floating-strike call option C0(s, x, 0, i)
and a fixed-strike Asian put option, for each i ∈ M. When the option is
in-progress, it is equivalent to a generalized starting option (see (2.2) below).
This type of symmetry results were studied, for instance, by Henderson and
Wojakowski [12] and Henderson et al. [13] in the classical setup without
regime switching.

The proof of the next lemma is included for completeness of presentation
but similar arguments are used in [13].

Lemma 2.2. For any initial condition (s, x, a, i) with s ∈ [0, T ], x > 0, a ≥ 0,

C0(s, x, a, i) = E
∗
s,x,a,i

⎡

⎣e−δ(T−s)

(
x − λX∗

T − β
1

T − s

∫ T

s

X∗
udu

)+
⎤

⎦

(2.2)
where λ = a

x(T−t0)
and β = T−s

T−t0
and the expectation E

∗ is with respect to
an equivalent martingale measure P ∗ under which X∗ solves the stochastic
differential equation,

dX∗
t = X∗

t [(δ − r(i))dt + σ(i)dB∗
t ], X∗

s = x, t ≥ s.

In particular, if the option is starting (s = t0) or forward-starting (s < t0)
then a = 0 and the floating-strike call option C0 is equivalent to a fixed-strike
put option. Specifically,

C0(s, x, 0, i) = E
∗
s,x,0,i

[
e−δ(T−t0)

(
x − β

A∗
T

T − t0

)+
]

(2.3)

where A∗
T =

∫ T

t0
X∗

u du, and β ≥ 1.

There are well-known methods for fixed-strike options without switching
coefficients as in (2.3), some works have been cited in the introduction. Using
any of such methods, in conjunction with the so-called put-call parity for
fixed-strike Asian options (see [14, p.220]), the value of C0 in (2.3) can be
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computed. In contrast, methods to compute (2.2) explicitly are less accessible.
In a recent work by Funahashi and Kijima [7], they provide an approximation
method for generalized Asian options by applying a so-called chaos expansion
approach. Monte Carlo methods can be used as a benchmark when there are
no closed-form formulas, see [15].

Now we turn to the case of fixed-strike options.

Lemma 2.3. Fix an initial condition (s, x, a, i) with s ∈ [0, T ], x > 0, a ≥ 0.
(i) If s ≤ t0 then a = 0 and CK(s, x, 0, i) ≤ x.
(ii) If s > t0 then

CK(s, x, a, i) ≤ a

T − t0
+ x.

We conclude this section with a summary of the main results in the pa-
per, without stating the technical details which we examine in the subsequent
sections. Consider the Banach space S of all bounded measurable functions
H : E �→ R, E = [0, T ] × R × R+ × M, with the supremum norm,

||H|| := sup
(s,z,a,i)∈E

|H(s, z, a, i)|.

Let F : S �→ S be defined by:

F (H)(s, z, a, i) :=
∑

j �=i

qij

∫ T

s

e−[qi+r(i)](t−s)

∫ ∞

a

∫ ∞

−∞

ez′
H(t, z + z′, a′, j)ψ(z′, a′) dz′ da′ dt (2.4)

where ψ is a joint density function to be derived later (see Proposition 3.2
below).

We now state the main result.

Theorem 2.4. (Contraction)
(i) F is a contraction mapping on S.
(ii) If H0,H ∈ S and H solves the equation

H(s, z, a, i) = F (H)(s, z, a, i) + H0(s, z, a, i)

then H is the only solution.
(iii) The sequence {Hn}∞

n=0, with

Hn+1(s, z, a, i) = F (Hn)(s, z, a, i) + H0(s, z, a, i),

converges to the fixed-point H with geometric rate of converge

ρ = max
i∈M

∑

j �=i

qij

qi + δ

(
1 − e−(qi+δ)(T−s)

)
< 1. (2.5)

We specialize to the floating-strike Asian options below.

Theorem 2.5. (Floating-strike option as a fixed-point) Define the functions
g, g0 ∈ S by:

g(s, z, a, i) := e−zC(s, ez, a, i),

g0(s, z, a, i) := e−qi(T−s)e−zC0(s, ez, a, i).
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Then g is the fixed-point of,

g(s, z, a, i) = F (g)(s, z, a, i) + g0(s, z, a, i).

Moreover, the sequence {gn}∞
n=0, with gn+1 = F (gn)+ g0 converges to g with

geometric rate of converge ρ in (2.5).

For fixed-strike Asian options, the initial condition of the approximating
sequence depends on whether the option is starting, forward-starting or in-
progress. More precisely, we have the following statement. Below, C0

K(s, x, a, i)
is defined similarly to C0(s, x, a, i), as the fixed-strike call option conditional
on the chain having no jump in the interval [s, T ].

Theorem 2.6. (Fixed-strike option as a fixed-point)

(i) If s ≤ t0, define the functions h, h0 ∈ S by:

h(s, z, a, i) := e−zCK(s, ez, a, i),

h0(s, z, a, i) := e−qi(T−s)e−zC0
K(s, ez, a, i).

Then h is the fixed-point of:

h(s, z, a, i) = F (h)(s, z, a, i) + h0(s, z, a, i).

Moreover, the sequence {hn}∞
n=0, with hn+1 = F (hn) + h0 converges to

h with geometric rate of converge ρ in (2.5).
(ii) If s > t0, define the functions h̃, h̃0 ∈ S by,

h̃(s, z, a, i) := e−z

(
CK(s, ez, a, i) − a

T − t0

)
,

h̃0(s, z, a, i) := e−qi(T−s)e−z

(
C0

K(s, ez, a, i) − a

T − t0

)
+ h̃1(s, z, a, i)

where

h̃1(s, z, a, i) =
ae−z

T − t0

[
qi

qi + r(i)

(
1 − e(qi+r(i))(T−s)

)
+ e−qi(T−s) − 1

]
.

(2.6)
Then h̃ is the fixed-point of,

h̃(s, z, a, i) = F (h̃)(s, z, a, i) + h̃0(s, z, a, i).

Moreover, the sequence {h̃n}∞
n=0, with h̃n+1 = F (h̃n) + h̃0 converges to

h̃ with geometric rate of converge ρ in (2.5).

3. Conditioning on the first jump time

Let us fix the current time s ∈ [0, T ] throughout the rest of the paper.
Conditional on Ys = i, let τ denote the first jump time of the Markov chain
Y after time s, that is,

τ = inf{t > s : Yt �= i}.
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We know that τ has exponential distribution with parameter qi. Plainly,

C(s, x, a, i) = e−qi(T−s)C0(s, x, a, i)

+ Es,x,a,i

[
e− ∫ T

s
r(Yu)du

(
XT − AT

T − t0

)+

1(τ ≤ T )

]
.

(3.1)

Likewise,

CK(s, x, a, i) = e−qi(T−s)C0
K(s, x, a, i)

+ Es,x,a,i

[
e− ∫ T

s
r(Yu)du

(
AT

T − t0
− K

)+

1(τ ≤ T )

]
. (3.2)

Notice that by conditioning the expectation in (3.1) on the jump time
τ = t, t ≥ s, we can write it as:

Es,x,a,i

[
e− ∫ T

s
r(Yu)du

(
XT − AT

T − t0

)+

1(τ ≤ T )

]

=
∫ T

s

qie
−qi(t−s)

Es,x,a,i

[
e− ∫ T

s
r(Yu)du

(
XT − AT

T − t0

)+

| τ = t

]
dt

=
∫ T

s

qie
−qi(t−s)

Es,x,a,i

[
e−r(i)(t−s)C(t,Xt, At, Yt) | τ = t

]
dt

by virtue of the Markov property of (t,Xt, At, Yt). A similar argument holds
for the fixed-strike case.

In what follows it will be convenient to work with the process,

Zt :=
∫ t

s

σ(Yu)dBu +
∫ t

s

(
r(Yu) − δ − 1

2
σ2(Yu)

)
du, t ≥ s

so that
Xt = exp(z + Zt), z := ln(x). (3.3)

3.1. Density of (Zt,At)

Conditional on Xs = ez, As = a, Ys = i and τ = t, it follows that,

Zt
law= σ(i)Bt−s + ν(i)(t − s), ν(i) := r(i) − δ − 1

2
σ2(i)

and

At = a +
∫ t

s

Xudu
law= a + ez

∫ t−s

0

eσ(i)Bu+ν(i)udu.

The pair (Zt, At) is independent of Yt and its distribution can be explicitly
computed. To this end, define,

Aν
t :=

∫ t

0

e2(Bu+νu)du, ν ∈ R. (3.4)

The following preliminary result is due to Yor [23].
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Lemma 3.1. We have:

P (Aν
t ∈ dw | Bt + νt = z) = f(t, z, w)dw

where,

1√
2πt

exp
(

−z2

2t

)
f(t, z, w) =

1
w

exp
(

− 1
2w

(1 + e2z)
)

θez/w(t)

and

θr(t) =
r√
2π3t

exp
(

π2

2t

) ∫ ∞

0

e−y2/2t e−r cosh(y) sinh(y) sin(πy/t) dy.

We refer to Proposition 2 in [23] for a proof.

Proposition 3.2. The joint density ψ(z′, a′) of the pair (Zt, At), conditional
on Xs = x = ez, As = a, Ys = i, and τ = t, is given by:

ψ(z′, a′) =
σ2(i)

4
e−z f (t′, z′, w(a′)) φ

(
z′ − 2νt′

2
√

t′

)
1{R×[a,∞]},

with w(a′) = σ2(i)
4 e−z(a′ − a) and t′ = σ2(i)

4 (t − s).

Proof. A direct consequence of Lemma 3.1 is that,

P ( 2(Bt + νt) ∈ dz,Aν
t ∈ dw) = f

(
t,

z

2
, w

)
φ

(
z − 2νt

2
√

t

)
dw dz

where φ(·) is the density of a standard normal distribution.
Henceforth, conditional on Xs = ez, As = a, Ys = i, and τ = t, and

writing P (· | Xs = ez, As = a, Ys = i, τ = t) = P (·) for short, we have:

P (Zt ≤ z′, At ≤ a′)

= P

(
σ(i)Bt−s + ν(i)(t − s) ≤ z′,

∫ t−s

0

eσ(i)Bu+ν(i)udu ≤ e−z(a′ − a)
)

= P

(
2(Bt′ + νt′) ≤ z′,

∫ t′

0

e2(Bu+νu) du ≤ σ2(i)
4

e−z(a′ − a)

)

where we used the scaling property σ(i)Bt−s
law= Bσ2(i)(t−s) and the change

of variables,

t′ ≡ σ2(i)
4

(t − s), ν ≡ 2ν(i)
σ2(i)

.

Finally,

P (Zt ≤ z′, At ≤ a′) =
∫ z′

−∞

∫ w(a′)

0

f
(
t′,

z

2
, w

)
φ

(
z − 2νt′

2
√

t′

)
dw dz

and a further change of variable from w to a′ concludes the proof. �



Vol. 20 (2018) Asian option as a fixed-point Page 9 of 15 93

4. Fixed-point

4.1. The main contraction theorem

The goal of this subsection is to show Theorem 2.4.

Proposition 4.1. F is a contraction mapping on S.

Proof. For each (s, z, a, i) and t ≥ s fixed, it follows that,
∫ ∞

a

∫ ∞

−∞
ez′

ψ(z′, a′) dz′ da′ = e(r(i)−δ)(t−s),

and so

ρ(i) :=
∑

j �=i

qij

∫ T

s

e−[qi+r(i)](t−s)

∫ ∞

a

∫ ∞

−∞
ez′

ψ(z′, a′) dz′ da′ dt

=
∑

j �=i

qij

∫ T

s

e−(qi+δ)(t−s)dt =
∑

j �=i

qij

qi + δ

∫ T

s

(qi + δ)e−(qi+δ)(t−s)dt

=
∑

j �=i

qij

qi + δ

(
1 − e−(qi+δ)(T−s)

)
< 1.

Then,

ρ := max
i∈M

ρ(i) < 1

which yields the inequality ||F (H)|| ≤ ρ||H||, as desired. �
Parts (ii) and (iii) of Theorem 2.4 are immediate from Proposition 4.1.

Corollary 4.2. If H0,H ∈ S and H solves the equation,

H(s, z, a, i) = F (H)(s, z, a, i) + H0(s, z, a, i) (4.1)

then H is the only solution.

Proof. Since F is a contraction so is the translation mapping F (·) + H0.
Henceforth, F (·) + H0 has a fixed point thanks to the Banach Fixed-Point
Theorem. This in turn implies the uniqueness. �
Corollary 4.3. The sequence {Hn}∞

n=0, with,

Hn+1(s, z, a, i) = F (Hn)(s, z, a, i) + H0(s, z, a, i),

converges to the fixed-point H with geometric rate of converge,

ρ = max
i∈M

∑

j �=i

qij

qi + δ

(
1 − e−(qi+δ)(T−s)

)
< 1.

Proof. Thanks to Corollary 4.2, {Hn}∞
n=0 converges to H in the supremum

norm. We have that Hn+1 − H = F (Hn) − F (H) = F (Hn − H). Then using
the fact that F is a contraction,

||Hn+1 − H|| ≤ ρ||Hn − H||
and

||Hn+1 − Hn|| ≤ ρn||H1 − H0||
where ρ is defined in Proposition 4.1. �
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4.2. Floating-strike case

In this subsection, we show Theorem 2.5.
Consider the functions:

g(s, z, a, i) = e−zC(s, ez, a, i), g0(s, z, a, i) = e−zC0(s, ez, a, i).

Observe that (3.1) can be written as:

g(s, z, a, i) = e−qi(T−s)g0(s, z, a, i) +
∫ T

s

qie
−qi(t−s)

Es,x,a,i

[
e−r(i)(t−s)eZtg(t, z + Zt, At, Yt) | τ = t

]
dt.

(4.2)

Moreover,

Es,x,a,i

[
e−r(i)(t−s)eZtg(t, z + Zt, At, Yt) | τ = t

]

=
∑

j �=i

qij

qi

∫ ∞

a

∫ ∞

−∞
e−r(i)(t−s)ez′

g(t, z + z′, a′, j)ψ(z′, a′) dz′ da′

where ψ is the density in Proposition 3.2, and the second term on the right-
hand side of equation (4.2) then reads:

∑

j �=i

qij

∫ T

s

e−[qi+r(i)](t−s)

∫ ∞

a

∫ ∞

−∞
ez′

g(t, z + z′, a′, j)ψ(z′, a′) dz′ da′ dt.

This is the mapping F as defined in (2.4) and we can further write:

g(s, z, a, i) = F (g)(s, z, a, i) + e−qi(T−s)g0(s, z, a, i). (4.3)

4.3. Fixed-strike case

In this subsection, we show Theorem 2.6.
For s ≤ t0 (starting and forward-starting options), consider the func-

tions:

h(s, z, a, i) = e−zCK(s, ez, a, i), h0(s, z, a, i) = e−zC0
K(s, ez, a, i).

In this case, similar in structure to the floating-strike, we obtain the equation,

h(s, z, a, i) = F (h)(s, z, a, i) + e−qi(T−s)h0(s, z, a, i), s ≤ t0. (4.4)

For s > t0 (in-progress options), consider the functions:

h̃(s, z, a, i) = e−z

(
CK(s, ez, a, i) − a

T − t0

)
,

h̃0(s, z, a, i) = e−z

(
C0

K(s, ez, a, i) − a

T − t0

)
,
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so that (3.2) can be written as

h̃(s, x, a, i) +
ae−z

T − t0
= e−qi(T−s)

(
h̃0(s, x, a, i) +

ae−z

T − t0

)

+

∫ T

s

qie
−qi(t−s)

Es,x,a,i

×
[
e−r(i)(t−s)

(
eZt h̃(t, z+Zt, At, Yt)+

ae−z

T − t0

)
| τ = t

]
dt.

After some algebraic manipulation, we obtain the equation, for s > t0,

h̃(s, z, a, i) = F (h̃)(s, z, a, i) + e−qi(T−s)h̃0(s, z, a, i) + h̃1(s, z, a, i),

where the extra term is h̃1 is in (2.6).

4.4. Iteration

Theorem 2.4 provides an iterative method to approximate the Asian option
functions. For instance, we can approximate,

g(s, z, a, i) = e−zC(s, ez, a, i)

with z = ln(x) by a fixed small error, say ε > 0:

g0(s, z, a, i) = e−(qi(T−s)+z) C0(s, ez, a, i),

gn+1(s, z, a, i) = F (gn)(s, z, a, i) + g0(s, z, a, i), n ≥ 0

If ||gn+1 − gn|| < ε, stop.

Observe that the larger the dividend rate δ, the faster the convergence. This
can be implied from the expression for ρ(i) in equation (2.5).

While the algorithm is theoretically appealing and provides an alterna-
tive to solving a certain system of PDEs as it is usual in option pricing, we
should mention that in order to approximate the function g (and then C), it
is necessary to compute first the initial function C0 for the iteration. A good
estimation of C0 is important to avoid amplifying the error in the iteration.
In this regards, it is known that the so-called Hartman-Watson density ap-
pearing in the definition of the density ψ is indeed difficult to implement.
To analyze the effect of the error incurred by such approximation, suppose
that the initial function for the iteration is, say g̃0 ∈ S. Then the mapping
F (·)+ g̃0 is also a contraction with the same rate of convergence ρ. Moreover,
the fixed-point theorem implies that the sequence {g̃n}n≥0 defined by:

g̃n+1 := F (g̃n) + g̃0, n ≥ 0

converges to a fixed-point, say g̃, which solves the equation:

g̃ = F (g̃) + g̃0.

Hence, we can check that,

||g̃ − g|| ≤ 1
1 − ρ

||g̃0 − g0||.
In other words, the accuracy of the algorithm depends proportionally on the
error incurred at the initial step.
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Appendix A: Proofs

Proof of Lemma 2.1. Define the probability measure P ∗ equivalent to P via
the Radon Nikodym derivative,

dP ∗

dP
|FT

= ET

where,

Et := exp
(∫ t

0

σ(Yu)dBu − 1
2

∫ t

0

σ2(Yu)du

)
.

The call option satisfies:

C(s, x, a, i)
x

= Es,x,a,i

[
e− ∫ T

s
r(Yu)duXT

x

(
1 − 1

T − t0

AT

XT

)+
]

= Es,x,a,i

[
ET E−1

s e−δ(T−s)

(
1 − 1

T − t0

AT

XT

)+
]

= E
∗
s,x,a,i

[
e−δ(T−s)

(
1 − 1

T − t0

AT

XT

)+
]

≤ 1.

where the expectation E
∗ is with respect to P ∗. The result is now clear. �

Proof of Lemma 2.2. Following up the proof of Lemma 2.1, we have that,

C0(s, x, a, i) = E
∗
s,x,a,i

[
e−δ(T−s)

(
x − x

T − t0

AT

XT

)+

| Yt = i,∀t ∈ [s, T ]

]
,

and B̂u = Bu − ∫ u

0
σ(Ys)ds is a Brownian motion under P ∗. Here,

x
AT

XT
=

x

XT

(
a +

∫ T

s

Xu du

)
.

The process (B∗
u)s≤u≤T , defined by B∗

u := B∗
s + B̂T+s−u − B̂T with

B∗
s a constant, is also a Brownian motion under P ∗ starting at B∗

s . Now,
conditional on Xs = x, As = a, and Yt = i for all t ∈ [s, T ],

x

XT
= exp

(
σ(i)(B̂s − B̂T ) +

[
r(i) − δ +

σ2(i)
2

]
(s − T )

)

law= exp
(

σ(i)(B∗
T − B∗

s ) +
[
δ − r(i) − σ2(i)

2

]
(T − s)

)
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and

x

∫ T

s

Xu

XT
=

∫ T

s

x exp
(

σ(i)(B̂u − B̂T ) +
[
r(i) − δ +

σ2(i)
2

]
(u − T )

)
du

law=
∫ T

s

x exp
(

σ(i)(B∗
T+s−u−B∗

s )+
[
δ − r(i)− 1

2
σ2(i)

]
(T −u)

)
du

=
∫ T

s

x exp
(

σ(i)(B∗
w − B∗

s ) +
[
δ − r(i) − 1

2
σ2(i)

]
(w − s)

)
dw

where the third equality is obtained after the change of variable w = T +s−u.
Therefore, C0(s, x, a, i) is given by:

E
∗
s,x,a,i

⎡

⎣e−δ(T−s)

(
x − a

x(T − t0)
X∗

T − T − s

T − t0

1
T − s

∫ T

s

X∗
udu

)+
⎤

⎦

where the underlying process X∗ follows:

dX∗
t = X∗

t [(δ − r(i))dt + σ(i)dB∗
t ], X∗

s = x, t ≥ s.

Defining the parameters λ = a
x(T−t0)

and β = T−s
T−t0

the proof is complete.
�

Proof of Lemma 2.3. Part (i). Let s ≤ t0. Then

CK(s, x, 0, i) ≤ Es,x,0,i

[
e− ∫ T

s
r(Yu)du AT

T − t0

]

≤ 1
T − t0

∫ T

t0

Es,x,0,i

[
e− ∫ t

s
r(Yu)duXt

]
dt

≤ x

T − t0

∫ T

t0

e−δ(t−s)dt ≤ x.

Part(ii). Let s > t0. Then

CK(s, x, a, i) ≤ Es,x,a,i

[
e− ∫ T

s
r(Yu)du

(
a +

∫ T

s
Xtdt

T − t0

)]

≤ a

T − t0
+

(
T − s

T − t0

)
1

T − s

∫ T

s

Es,x,a,i

[
e− ∫ t

s
r(Yu)duXt

]
dt

≤ a

T − t0
+

(
T − s

T − t0

)
x ≤ a

T − t0
+ x.

�
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