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Abstract. Let X be a complex linear space, endowed with an extended
(that is, admitting infinite values) norm. We prove a fixed point theorem
for operators of the form p3L3 + p2L2 + p1L, where L : X → X is linear
and p1, p2, p3 are fixed scalars. That result has been motivated by some
issues arising in Ulam stability. One of the tools is the Diaz-Margolis
fixed point alternative.
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1. Introduction

In this paper, N and R denote the sets of positive integers and real numbers,
N0 := N ∪ {0}, R

+ := (0,∞), and R
+
0 := [0,∞). We prove a fixed point

theorem motivated by some issues arising in Ulam stability. In this way, we
obtain an extension of the classical Diaz–Margolis fixed point alternative [15].

Let us recall that the notion of Hyers–Ulam stability originated from the
response of Hyers [17] to the interesting question of Ulam concerning approx-
imate homomorphisms of groups. Later, that notion has been generalized in
several various directions, which by now are very often collectively called the
Ulam type stability. Numerous papers on this subject have been published so
far and we refer to [1–3,6,13,18–20,25] for more details, some discussions, re-
cent results and further references. Let us also mention here that the problem
of stability of functional equations is connected to the notions of shadowing
(see [16,26,27]) and the theory of perturbation (see [11,23]).

Various definitions of that type of stability are possible for particular
equations (see, e.g., [1,18,25]), but roughly speaking, the following one de-
scribes our considerations to some extent: given a metric space (Y, d), a set
S �= ∅, nonempty classes of functions D0 ⊂ D ⊂ Y S and E ⊂ (R+

0 )S , and
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operators T : D → Y S and S : E → (R+
0 )S , we say that the equation

T (ψ) = ψ

is S–stable in D0 provided for any ψ ∈ D0 and δ ∈ E with

d
(
T (ψ)(t), ψ(t)

)
≤ δ(t), t ∈ S,

there is a solution φ ∈ D of the equation, such that

d
(
φ(t), ψ(t)

)
≤ (Sδ)(t), t ∈ S,

where AB denotes the family of all functions mapping a set B into a set A.
There are several papers showing how to deal with the problem of stabil-

ity of various linear equations of higher orders (see, e.g., [7,8,12,21,22,24,28–
30]) of the form:

m∑

i=0

biLiφ = H, (1)

where b0, . . . , bm are scalars, H is a given function, L is a suitable (e.g.,
difference, differential, functional, integral) operator acting on suitable space
of functions φ, L0φ ≡ φ and Li = L ◦ Li−1 for i ∈ N.

It seems that the most general result of this type, in the form of a fixed
point theorem, has been proved in [30] (see also [9]), with suitable examples of
applications to stability of differential and functional equations. Moreover, in
[7], a result has been given, which is much weaker (because only for m = 2),
but provides estimations of different type than in [30], that in some significant
situations are better.

In this paper, we use a somewhat similar approach as in [7], to obtain
analogous results, for a particular form of (1) with m = 3, that is, for the
equation:

p3L3ψ + p2L2ψ + p1Lψ = ψ (2)
with unknown ψ ∈ X, where p1, p2, p3 ∈ C (complex numbers), p3 �= 0,
and X is a complex linear space, endowed with an extended norm (see the
next section for a description) that is complete. Namely, we prove a fixed
point theorem, which is the main result of this paper and corresponds to the
results in [3–5,7,10,14,30]. We also describe some applications of it to the
Ulam stability.

As an auxiliary tool we need the following Diaz-Margolis fixed point
alternative (see [15]).

Theorem 1. Let (X, d) be a complete extended metric space and T : X → X
be a strictly contractive operator with the Lipschitz constant L < 1. If there
exists k ∈ N and x ∈ X, such that d(T kx, T k−1x) < ∞, then:
(a) The sequence {T nx} converges to a fixed point x∗ of T .
(b) x∗ is the unique fixed point of T in

X∗ = {y ∈ X : d(T kx, y) < ∞}.

(c) If y ∈ X∗, then

d(y, x∗) ≤ 1
1 − L

d(T y, y).
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2. Fixed point theorem

Let us recall that a pair (X, ‖ · ‖) is an extended complex normed space if X
is a complex linear space and ‖ · ‖ is a function mapping X into [0,∞] (i.e.,
‖ · ‖ may take the value +∞), such that, for every α ∈ C and x, y ∈ X with
‖x‖, ‖y‖ ∈ [0,∞):

‖x + y‖ ≤ ‖x‖ + ‖y‖, ‖αx‖ = |α| ‖x‖,

and the equality ‖x‖ = 0 means that x is the zero vector.
In what follows we assume that X is an extended complex Banach space,

i.e., an extended complex normed space in which every Cauchy sequence is
convergent (in X).

Remark 1. Let Y be a complex Banach space, S be a nonempty set and Y S

denote the family of all functions mapping S into Y . Clearly, Y S is a linear
space over C with the operations given by the usual formulas:

(f + h)(x) := f(x) + h(x), (αf)(x) := αf(x), x ∈ X,

for all f, h ∈ XS , α ∈ C. Define an extended norm in Y S by

‖f‖ = sup
s∈S

‖f(s)‖, f ∈ Y S .

Then, Y S (endowed with that extended norm) is a good natural example of
such extended Banach space.

Let L : X → X be an additive operator, that is

L(f + g) = Lf + Lg, f, g ∈ X.

Define operator P : X → X by

Pψ := p3L3ψ + p2L2ψ + p1Lψ, ψ ∈ X. (3)

Let a1, a2, a3 ∈ C be the roots of the characteristic polynomial of the
equation:

p3L3ψ + p2L2ψ + p1Lψ = ψ, (4)
that is, of

P (x) = p3x
3 + p2x

2 + p1x − 1, x ∈ C.

Then, ai �= 0 for i ∈ {1, 2, 3} and

p3 =
1

a1a2a3
, −p2 =

1
a1a2

+
1

a1a3
+

1
a2a3

, p1 =
1
a1

+
1
a2

+
1
a3

.

We assume in addition that

ai �= aj , i, j ∈ {1, 2, 3}, i �= j,

and L satisfies the Lipschitz condition

‖Lf − Lg‖ ≤ L‖f − g‖, f, g ∈,

with some positive constant L, such that

L < min {|a1|, |a2|, |a3|}. (5)

Now, we are in a position to prove the main result.
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Theorem 2. For every ϕ ∈ X with

ε :=
∥
∥Pϕ − ϕ

∥
∥ < ∞, (6)

P has a unique fixed point ψ ∈ X, such that

‖ϕ − ψ‖ < ∞;

moreover
‖ϕ − ψ‖ ≤ Cε,

where

C =
(

1
|a2 − a1| |a3 − a1| (|a1| − L)

+
1

|a1 − a2| |a3 − a2|(|a2| − L)

+
1

|a1 − a3| |a2 − a3| (|a3| − L)

)
|a1||a2||a3|. (7)

Proof. Take ϕ ∈ X, such that (6) holds. Define operators T1, T2, T3 : X → X
by

Tjf :=
1
aj

Lf, f ∈ X, j = 1, 2, 3,

and write

h1 :=
1

a2a3
L2ϕ −

( 1
a2

+
1
a3

)
Lϕ + ϕ,

h2 :=
1

a1a3
L2ϕ −

( 1
a1

+
1
a3

)
Lϕ + ϕ,

h3 :=
1

a1a2
L2ϕ −

( 1
a1

+
1
a2

)
Lϕ + ϕ.

Then

‖Tjf − Tjg‖ ≤ L

|aj |
‖f − g‖, f, g ∈ X, j = 1, 2, 3.

Hence, the operator Tj is strictly contractive, since 0 < L/|aj | < 1 for j =
1, 2, 3.

Next

‖Tjhj − hj‖ =
∥
∥p3L3ϕ + p2L2ϕ + p1Lϕ − ϕ

∥
∥ ≤ ε, j = 1, 2, 3.

Therefore, according to Theorem 1, for each j ∈ {1, 2, 3}, the sequence
{T n

j hj} converges to a fixed point Fj of Tj and

‖hj − Fj‖ ≤ |aj |
|aj | − L

ε.

Moreover, LFj = ajFj , which means that Fj is an eigenvector of L for j =
1, 2, 3.

Let us note that

ϕ = α1h1 + α2h2 + α3h3,
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where

α1 =
a2a3

(a2 − a1)(a3 − a1)
, α2 =

a1a3

(a1 − a2)(a3 − a2)
,

α3 =
a1a2

(a1 − a3)(a2 − a3)
.

Put
ψ := α1F1 + α2F2 + α3F3.

Since Fi is an eigenvector of L, we have

p3L3Fi + p2L2Fi + p1LFi − Fi = (p3a3
i + p2a

2
i + p1ai − 1)Fi = 0 (8)

for i = 1, 2, 3. Therefore, ψ, as a linear combination of F1, F2 and F3, fulfils

Pψ = p3L3ψ + p2L2ψ + p1Lψ = ψ.

Moreover

‖ϕ − ψ‖ ≤
∣
∣
∣

a2a3

(a2 − a1)(a3 − a1)

∣
∣
∣‖h1 − F1‖

+
∣
∣
∣

a1a3

(a1 − a2)(a3 − a2)

∣
∣
∣‖h2 − F2‖

+
∣
∣
∣

a1a2

(a1 − a3)(a2 − a3)

∣
∣
∣‖h3 − F3‖,

whence
‖ϕ − ψ‖ ≤ Cε.

To prove the uniqueness, suppose that ψ1 and ψ2 are fixed points of P
(that is solutions of Eq. (4)), such that ‖ψ1 − ϕ‖ < ∞ and ‖ψ2 − ϕ‖ < ∞.
Then, ‖ψ1 − ψ2‖ is finite. Let

Gi := L2ψi − (a1 + a2)Lψi + a1a2ψi, i ∈ {1, 2}.

Fix an i ∈ {1, 2}. Then

LGi = L3ψi − (a1 + a2)L2ψi + a1a2Lψi.

Since ψi satisfies (4), we have

LGi = (a1 + a2 + a3)L2ψi − (a1a2 + a1a3 + a2a3)Lψi + a1a2a3ψi

−(a1 + a2)L2ψi + a1a2Lψi.

Consequently

LGi = a3L2ψi − (a1a3 + a2a3)Lψi + a1a2a3ψi,

whence LGi = a3Gi.
Since L is linear, we have

G1 − G2 = L2(ψ1 − ψ2) − (a1 + a2)L(ψ1 − ψ2) + a1a2(ψ1 − ψ2).

Hence

‖G1 − G2‖ ≤ (L2 + |a1 + a2|L + |a1a2|)‖ψ1 − ψ2‖,

which means that ‖G1 − G2‖ is finite.
Furthermore, LGi = a3Gi for i = 1, 2 and L < |a3| (see (5)), so we have

‖G1 − G2‖ =
1

|a3|
‖LG1 − LG2‖ ≤ L

|a3|
‖G1 − G2‖ < ‖G1 − G2‖.
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Hence, G1 = G2, and by the definition of G1 and G2, we obtain

L2(ψ1 − ψ2) − (a1 + a2)L(ψ1 − ψ2) + a1a2(ψ1 − ψ2) = 0.

This means that the function Ψ := ψ1 − ψ2 satisfies the equation:
1

a1a2
L2Ψ −

( 1
a1

+
1
a2

)
LΨ + Ψ = 0. (9)

Write

Ψ1 :=
1
a2

LΨ − Ψ.

Then, in view of (9), it is easy to check that LΨ1 = a1Ψ1, and analogously
as in the case of G1 − G2, from (5) we deduce that Ψ1 = 0. Consequently,
LΨ = a2Ψ, whence (5) yields Ψ = 0. This implies that ψ1 = ψ2. �

3. Applications to Ulam stability

Let Y be a complex Banach space, S be a nonempty set, C be a linear
subspace of Y S and L : C → C be a linear operator. We assume that Y E is
endowed with the extended supremum norm (cf. Remark 1) and C is closed
with respect to that extended norm.

It is easily seen that Theorem 2 yields the following stability result for
Eq. (2).

Theorem 3. Assume that ai �= aj �= 0 for i, j ∈ {1, 2, 3}, i �= j, and L satisfies
the Lipschitz condition:

‖Lf − Lg‖ ≤ L‖f − g‖, f, g ∈ C, (10)

with a positive constant L < min {|a1|, |a2|, |a3|}. Then, for every function
ϕ ∈ C with

ε :=
∥
∥
∥p3L3ϕ + p2L2ϕ + p1Lϕ − ϕ

∥
∥
∥ < ∞,

there is a unique solution ψ ∈ C of (2) with ‖ϕ − ψ‖ < ∞; moreover

‖ϕ − ψ‖ ≤ Cε,

where C is given by (7).

Below, we provide two simple and natural examples of linear operators
L fulfilling (10) with suitable a1, a2, a3.

• Let C = Y S , n ∈ N, and Lf =
∑n

i=1 Ψi ◦ f ◦ ξi, where Ψi : Y → Y is
linear and bounded and ξi : S → S is fixed for i = 1, . . . , n. Then

‖Lf(x) − Lh(x)‖ ≤
n∑

i=1

λi‖f(ξi(x)) − h(ξi(x))‖

for every f, h ∈ XS and x ∈ S, with

λi := inf {L ∈ R : ‖Ψi(w)‖ ≤ L‖w‖ for w ∈ X}.

Hence (10) is valid for L :=
∑n

i=1 λi.
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• Let a, b ∈ R, a < b, S = [a, b], C be the family of all continuous functions
mapping the interval [a, b] into C, n ∈ N, A1, . . . , An ∈ C, ξ1, . . . , ξn :
S → S be continuous and

Lf(x) =
n∑

i=1

∫ x

a

Aif(ξi(t))dt, f ∈ C, x ∈ S.

Then it is easily seen that (10) is fulfilled with L := (b − a)
∑n

j=1 |Aj |.

4. Final comments

It is easy to observe that from [30, Theorem 2.3] we can derive the following
analogue of Theorem 2:

Theorem 4. Let a1, a2, a3 ∈ C be the roots of the characteristic polynomial of
Eq. (4) with p3 = 1, C be as in the previous section, L : C → C be a linear
operator and

P0ψ := L3ψ + p2L2ψ + p1Lψ, ψ ∈ C.

If (10) holds with a positive constant L < min {|a1|, |a2|, |a3|} and ϕ ∈ X
satisfies

ε := ‖P0g − g‖ < ∞, (11)
then P0 has a unique fixed point ψ ∈ C, such that

‖ϕ − ψ‖ ≤ C0ε,

where

C0 =
1

(|a1| − L)(|a2| − L)(|a3| − L)
. (12)

Note that, in the situation considered in Theorem 4, we have a1a2a3 =
p3 = 1, whence (7) takes the form:

C =
(

1
|a2 − a1| |a3 − a1| (|a1| − L)

+
1

|a1 − a2| |a3 − a2|(|a2| − L)

+
1

|a1 − a3| |a2 − a3| (|a3| − L)

)
. (13)

Clearly, C = ρC0, where

ρ :=
(|a2| − L)(|a3| − L)
|a2 − a1| |a3 − a1|

+
(|a1| − L)(|a3| − L)
|a1 − a2| |a3 − a2|

+
(|a1| − L)(|a2| − L)
|a1 − a3| |a2 − a3|

.

Hence, C < C0 if and only if ρ < 1.
Let a1 = −a2 =

√
2/2 +

√
2/2i and a3 = i. Then a1a2a3 = p3 = 1 and

|ai| = 1 for i = 1, 2, 3. Clearly, the closer L is to 1, the smaller is ρ.
Certainly, if p3 �= 1, then the restriction that L < 1 is not neces-

sary in Theorem 2; actually, L can be arbitrarily large provided that L <
mini=1,2,3 |ai|.

Note yet that the assumption that

p3 =
1

a1a2a3
�= 0
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is important in the proof of Theorem 2. This means that we cannot take
p3 = 0 in Theorem 2 and deduce in this way similar results for the operator
P2 : X → X, given by:

P2ψ := p2L2ψ + p1Lψ, ψ ∈ X. (14)

However, an analogous outcome can be easily derived from a somewhat in-
volved [7, Theorem 2.1] and has the following form (a1 and a2 are the roots
of the polynomial P (x) = p2x

2 + p1x − 1).

Theorem 5. Let C be as in the previous section, L : C → C be a linear operator
and

P2ψ := p2L2ψ + p1Lψ, ψ ∈ C.

Assume that a1a2 �= 0 and there is a positive constant L < min {|a1|, |a2|},
such that

‖Lf − Lh‖ ≤ L‖f − h‖, f, h ∈ C. (15)
Then, for every g ∈ C with

ε := ‖P2g − g‖ < ∞, (16)

there exists a unique fixed point ψ of P2 with

‖g − ψ‖ < ∞; (17)

moreover

‖g − F‖ ≤ |a1a2|ε
|a2 − a1|

(
1

|a1| − L
+

1
|a2| − L

)
. (18)

In connection with this observation, there arises a natural question if
analogous results can be obtained, for n > 3, also for operators Pn : X → X,
of the form:

Pnψ :=
n∑

i=1

piLiψ, ψ ∈ X. (19)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons license, and indicate if changes were made.
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[8] Brzdȩk, J., Popa, D., Raşa, I.: Hyers-Ulam stability with respect to gauges. J.
Math. Anal. Appl. 453, 620–628 (2017)
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