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Abstract. In signal processing and image reconstruction, the split fea-
sibility problem (SFP) has been now investigated extensively because
of its applications. A classical way to solve the SFP is to use Byrne’s
CQ-algorithm. However, this method requires the computation of the
norm of the bounded linear operator or the matrix norm in a finite-
dimensional space. In this work, we aim to propose an iterative scheme
for solving the SFP in the framework of Banach spaces. We also intro-
duce a new way to select the step-size which ensures the convergence
of the sequences generated by our scheme. We finally provide examples
including its numerical experiments to illustrate the convergence behav-
ior. The main results are new and complements many recent results in
the literature.
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1. Introduction

Let E and F be two p-uniformly convex real Banach spaces which are also
uniformly smooth. Let C and Q be nonempty, closed and convex subsets of
E and F , respectively. Let A : E → F be a bounded linear operator and
A∗ : F ∗ → E∗ be the adjoint of A which is defined by

〈A∗ȳ, x〉 := 〈ȳ, Ax〉, ∀x ∈ E, ȳ ∈ F ∗.

The split feasibility problem (SFP) is to find a point x ∈ C such that Ax ∈ Q.
We denote by Ω = C ∩ A−1(Q) = {y ∈ C : Ay ∈ Q} the solution set of SFP.
Then we have that Ω is a closed and convex subset of E.

The SFP in finite-dimensional Hilbert spaces was first introduced by
Censor and Elfving [15] for modeling inverse problems which arise from phase
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retrievals, medical image reconstruction and recently in modeling of inten-
sity modulated radiation therapy. The SFP attracts the attention of many
authors due to its application in signal processing. Various algorithms and
some interesting results have been studied in order to solve it (see, for exam-
ple [3–5,13,22,24–26,33])).

In Hilbert spaces, a classical way to solve the SFP is to employ the
CQ-algorithm which was introduced by Byrne [12], which is defined in the
following manner:

xn+1 = PC(xn − μnA∗(I − PQ)Axn), n ≥ 1, (1.1)

where the step-size μn ∈ (0, 2
‖A‖2 ) and PC , PQ are the metric projections on

C and Q, respectively. We note that this algorithm is found to be a gradient-
projection method in convex minimization as a spacial case. It was proved
that {xn} generated by (1.1) converges weakly to a solution of SFP.

However, it is noted that the operator norm ‖A‖ may not be calculated
easily in general. To overcome this difficulty, López et al. [22] suggested the
following self-adaptive method, which permits step-size μn being selected
self-adaptively in such a way:

μn =
ρnf(xn)

‖∇f(xn)‖2
, n ≥ 1, (1.2)

where ρn ∈ (0, 4), f(xn) = 1
2‖(I − PQ)Axn‖2 and ∇f(xn) = A∗(I − PQ)Axn

for all n ≥ 1. It was proved that the sequence {xn} defined by (1.2) converges
weakly to a solution of SFP.

Also, employing the idea of Halpern’s iteration, López et al. [22] pro-
posed the following iteration method:

xn+1 = αnu + (1 − αn)PC(xn − μn∇f(xn)), n ≥ 1, (1.3)

where u is fixed in C, {αn} ⊂ [0, 1] and the step-size μn is chosen as above.
It was shown that {xn} defined by (1.3) converges strongly to a solution of
SFP provided limn→∞ αn = 0 and

∑∞
n=1 αn = ∞. Subsequently, there have

been many modifications of the CQ-algorithm and the self-adaptive method
established in the recent years (see also [37,38]).

For solving the SFP, in the framework of p-uniformly convex and uni-
formly smooth real Banach spaces, Schöpfer [29] proposed the following al-
gorithm: x1 ∈ E and

xn+1 = ΠCJ∗
E [JE(xn) − μnA∗JF (Axn − PQ(Axn))], n ≥ 1, (1.4)

where ΠC denotes the Bregman projection and J the duality mapping.
Clearly, the above algorithm covers the CQ-algorithm as a special case. It
was proved that the sequence {xn} defined by (1.4) converges weakly to a
solution of SFP provided the duality mapping J is weak-to-weak continuous
and μn ∈

(
0, ( q

Cq‖A‖q )
1

q−1

)
where 1

p + 1
q = 1 and Cq is the uniform smoothness

coefficient of E . See some modifications in [30,31].
In this work, motivated by the previous works, we introduce a Halpern-

type iteration process and prove its strong convergence of the sequence gen-
erated by our scheme for solving the SFP without prior knowledge of the
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operator norm in the framework of Banach spaces. Numerical experiments
are included to illustrate the convergence behavior. Our main results comple-
ment the results of López et al. [22] (from Hilbert spaces to Banach spaces)
and Schöpfer [29]. Moreover, our results improve many other results in the
literature. We note that the obtained results seem to be new in this direction.

2. Preliminaries and lemmas

Let E be a real Banach space with norm ‖ · ‖, and E∗ denotes the Banach
dual of E endowed with the dual norm ‖ · ‖∗. We write 〈x, j〉 for the value
of a functional j in E∗ at x in E. As usual, xν → x and xν ⇀ x stand for
the norm and weak convergence of a net {xν} to x in E, respectively. The
modulus of convexity δE : [0, 2] → [0, 1] is defined as

δE(ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ = 1 = ‖y‖, ‖x − y‖ ≥ ε

}

.

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2] and p-uniformly
convex if there is a Cp > 0 such that δE(ε) ≥ Cpε

p for any ε ∈ (0, 2]. The
modulus of smoothness ρE(τ) : [0,∞) → [0,∞) is defined by

ρE(τ) =
{‖x + τy‖ + ‖x − τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}

.

Then E is called uniformly smooth if limτ→0
ρE(τ)

τ = 0 and q-uniformly
smooth if there is a Cq > 0 such that ρE(τ) ≤ Cqτ

q for any τ > 0. Let
1 < q ≤ 2 ≤ p with 1

p + 1
q = 1. It is known (see, for example, [1,18]) that

E is p-uniformly convex if and only if its dual E∗ is q-uniformly smooth.
Furthermore, Hilbert spaces, Lp(or lp) spaces, 1 < p < ∞, and the Sobolev
spaces, W p

m, 1 < p < ∞, are q-uniformly smooth. Hilbert spaces are uniformly
smooth while

Lp(or �p) or W p
m is

{
p − uniformly smooth if 1 < p ≤ 2
2 − uniformly smooth if p ≥ 2.

A continuous strictly increasing function ϕ : R+ → R
+ is said to be a

gauge if

ϕ(0) = 0, lim
t→+∞ϕ(t) = +∞.

The mapping Jϕ : E → 2E∗
defined by

Jϕ(x) = {j ∈ E∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ϕ(‖x‖)}, x ∈ E,

is called the duality mapping with gauge ϕ. When ϕ(t) = t, the duality
mapping Jϕ = J is the normalized duality mapping. In the case ϕ(t) = tp−1

where p > 1, the duality mapping Jϕ = Jp is called the generalized duality
mapping and it is defined by

Jp(x) = {j ∈ X∗ : 〈x, j〉 = ‖x‖‖j‖∗, ‖j‖∗ = ‖x‖p−1}, x ∈ E.
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Example 2.1. Let x = (x1, x2, . . .) ∈ �p (1 < p < ∞). Then the generalized
duality mapping Jp in �p is given by

Jp(x) = (|x1|p−1sgn(x1), |x2|p−1sgn(x2), . . .).

Example 2.2. Let f ∈ Lp([α, β]) (1 < p < ∞). Then the generalized duality
mapping Jp is given by

Jp(f)(t) = |f(t)|p−1sgn(f(t)).

For a gauge ϕ, the function Φ : R+ → R
+ defined by

Φ(t) =
∫ t

0

ϕ(s)ds

is a continuous convex strictly increasing differentiable function on R
+ with

Φ
′
(t) = ϕ(t) and limt→+∞ Φ(t)/t = +∞. When E is uniformly smooth, the

duality mapping Jϕ on E is norm to norm uniformly continuous on bounded
subsets of E (see [1,18]).

We know the following inequality which was proved by Xu [34].

Lemma 2.3. [34] Let x, y ∈ E. If E is q-uniformly smooth, then there exists
Cq > 0 such that

‖x − y‖q ≤ ‖x‖q − q〈y, Jq
E(x)〉 + Cq‖y‖q.

Let C be a nonempty, closed and convex subset of E. The metric pro-
jection PC : E → C is defined by

PCx = argminy∈C

1
2
‖x − y‖2, x ∈ E.

It has been employed successfully in optimization, optimal control, approx-
imation theory, and fixed point theory. In the framework of Hilbert spaces,
the metric projection PC is nonexpansive (i.e., ‖PCx − PCy‖ ≤ ‖x − y‖ for
all x, y in H). However, we note that this is no longer true in the framework
of Banach spaces. Let E be a smooth, strictly convex and reflexive Banach
space. Let C be a nonempty, closed and convex subset of E, and let x ∈ E
and z ∈ C. Then z = PCx if and only if 〈z − y, J(x − z)〉 ≥ 0 for all y ∈ C;
see [32].

We next recall the definition of Bregman distance studied in [6]. Let E
be a real smooth Banach space. The Bregman distance Dϕ(x, y) between x
and y in E is defined by

Dϕ(x, y) = Φ(‖x‖) − Φ(‖y‖) − 〈x − y, Jϕ(y)〉.
We note that Dϕ(x, y) ≥ 0 and Dϕ(x, y) = 0 if and only if x = y (see [21]).
It is easily seen by definition that

Dϕ(x, y) + Dϕ(y, z) − Dϕ(x, z) = 〈x − y, Jϕ(z) − Jϕ(y)〉 (2.1)

and
Dϕ(x, y) + Dϕ(y, x) = 〈x − y, Jϕ(x) − Jϕ(y)〉 (2.2)
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for all x, y, z ∈ E. In the case ϕ(t) = tp−1 where p > 1, the distance Dϕ = Dp

is called the p-Lyapunov functional studied in [7] and it is given by

Dp(x, y) =
‖x‖p

p
+

‖y‖p

q
− 〈x, Jp(y)〉, (2.3)

where 1
p + 1

q = 1. Note that

φ(x, y) := 2D2(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2

is the Lyapunov functional. See [8,9,16]. Let E be a strictly convex, smooth
and reflexive Banach space. Following [2], we make use of the function Vp :
E × E∗ → [0,+∞), which is defined by

Vp(x, x̄) =
1
p
‖x‖p − 〈x, x̄〉 +

1
q
‖x̄‖q, ∀x ∈ E, x̄ ∈ E∗,

where 1
p + 1

q = 1. Then Vp is nonnegative and

Vp(x, x̄) = Dp(x, J−1
p (x̄))

for all x ∈ E and x̄ ∈ E∗. For a proper, lower semicontinuous and convex
function f : E → (−∞,∞], the subdifferential ∂f of f at x ∈ E is defined
by

∂f(x) = {x̄ ∈ E∗ : f(x) + 〈y − x, x̄〉 ≤ f(y) ∀y ∈ E}.

We see that, for each x ∈ E, the mapping g defined by g(x̄) = Vp(x, x̄) for
all x̄ ∈ E∗ is a continuous and convex function from E∗ into R. So, by the
subdifferential of g, we obtain the following inequality:

Vp(x, x̄) + 〈ȳ, J−1
p (x̄) − x〉 ≤ Vp(x, x̄ + ȳ) (2.4)

for all x ∈ E and x̄, ȳ ∈ E∗ (see also [20]). Indeed, we have

∂g(x̄) = ∂

(

−〈x, ·〉 +
1
q
‖ · ‖q

)

(x̄)

= −x + J−1
p (x̄)

for all x̄ ∈ E∗. So we obtain

g(x̄) + 〈J−1
p (x̄) − x, ȳ〉 ≤ g(x̄ + ȳ),

for all x ∈ E and x̄, ȳ ∈ E∗ which consequently implies (2.4).

Proposition 2.4. [10,21] Let E be a smooth and uniformly convex Banach
space. Let {xn} and {yn} be two sequences in E such that Dϕ(xn, yn) → 0.
If {yn} is bounded, then ‖xn − yn‖ → 0.

Proposition 2.5. [11,21] Let C be a nonempty, closed and convex subset of a
reflexive, strictly convex and smooth Banach space E. Let x ∈ E. Then there
exists a unique element x0 in C such that

Dϕ(x0, x) = inf {Dϕ(z, x) : z ∈ C}.
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In this case, we denote the generalized projection from E onto C by
Πϕ

C(x) = x0. When ϕ(t) = t, we have Πϕ
C coincides with the generalized

projection studied in [2]. Let p > 1 and ϕ(t) = tp−1. Then Πϕ
C becomes the

generalized projection with respect to p and is also denoted by ΠC .
We also know the following results.

Proposition 2.6. [21] Let C be a nonempty, closed and convex subset of a
reflexive, strictly convex and smooth Banach space E. Let x0 ∈ C and x ∈ E.
Then the following assertions are equivalent:
(a) x0 = Πϕ

C(x);
(b) 〈z − x0, Jϕ(x0) − Jϕ(x)〉 ≥ 0, ∀z ∈ C.
Moreover, we have

Dϕ(y,Πϕ
C(x)) + Dϕ(Πϕ

C(x), x) ≤ Dϕ(y, x), ∀y ∈ C.

We also need the following tools in analysis which will be used in the
sequel.

Lemma 2.7. [23] Let {sn} be a sequence of real numbers that does not decrease
at infinity in the sense that there exists a subsequence {sni

} of {sn} which
satisfies sni

< sni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0 of integers
as follows:

τ(n) = max {k ≤ n : sk < sk+1},

where n0 ∈ N such that {k ≤ n0 : sk < sk+1} �= ∅. Then, the following hold:
(i) τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n) → ∞;
(ii) sτ(n) ≤ sτ(n)+1 and sn ≤ sτ(n)+1, ∀n ≥ n0.

Lemma 2.8. [35] Let {an} be a sequence of nonnegative real numbers satisfy-
ing the following relation:

an+1 ≤ (1 − αn)an + αnσn + γn, n ≥ 1,

where (i) {αn} ⊂ [0, 1],
∑∞

n=1 αn = ∞; (ii) lim supn→∞ σn ≤ 0; (iii) γn ≥ 0,∑∞
n=1 γn < ∞. Then, an → 0 as n → ∞.

3. Main results

In this section, we prove strong convergence of the sequence generated by our
scheme for solving the split feasibility problem in Banach spaces. Throughout
this paper, let 1 < q ≤ 2 ≤ p < ∞ and 1

p + 1
q = 1 and denote by Jp

X and
Jq

X∗ the duality mappings of a smooth Banach space X and its dual space,
respectively.

Employing the method of proof given by Xu in [36], we prove the follow-
ing fixed point formulation of SFP in a reflexive, strictly convex and smooth
Banach space.

Lemma 3.1. Let E and F be two reflexive, strictly convex and smooth Banach
spaces. Let C and Q be nonempty, closed and convex subsets of E and F ,
respectively. Let A : E → F be a bounded linear operator and A∗ : F ∗ → E∗ be
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the adjoint of A. Let x∗ ∈ E. Then x∗ solves the SFP (i.e., x∗ ∈ C ∩A−1(Q))
if and only if x∗ solves the fixed point equation

x∗ = ΠCJq
E∗

[
Jp

E(x∗) − γA∗Jp
F (Ax∗ − PQ(Ax∗))

]
. (3.1)

Proof. Suppose x∗ solves the SFP. We show that x∗ solves (3.1). Now, x∗

solves SFP implies that x∗ ∈ C and Ax∗ ∈ Q. Therefore,

Ax∗ = PQ(Ax∗) ⇒ Ax∗ − PQ(Ax∗) = 0.

Thus,

Jp
F (Ax∗ − PQ(Ax∗) = 0

and this implies

γA∗Jp
F (Ax∗ − PQ(Ax∗)) = 0.

So

Jq
E∗

[
Jp

E(x∗) − γA∗Jp
F (Ax∗ − PQ(Ax∗))

]
= Jq

E∗

(
Jp

E(x∗)
)

= x∗.

Hence,

ΠCJq
E∗

[
Jp

E(x∗) − γA∗Jp
F (Ax∗ − PQ(Ax∗))

]
= ΠCx∗ = x∗.

Therefore, x∗ solves (3.1).
Conversely, assume that x∗ solves the fixed point equation (3.1). We

next show that x∗ ∈ C, Ax∗ ∈ Q. Now, if

x∗ = ΠCJq
E∗

[
Jp

E(x∗) − γA∗Jp
F (Ax∗ − PQ(Ax∗))

]
,

then by Proposition 2.6 (b) we have

〈Jp
E(x∗) − γA∗Jp

F (Ax∗ − PQ(Ax∗)) − Jp
E(x∗), z − x∗〉 ≤ 0, ∀z ∈ C.

That is,

〈γA∗Jp
F (Ax∗ − PQ(Ax∗)), z − x∗〉 ≥ 0, ∀z ∈ C.

Hence,
〈Jp

F (Ax∗ − PQ(Ax∗)), Ax∗ − Az〉 ≤ 0, ∀z ∈ C. (3.2)
On the other hand, we have from the characterization of metric projection
PQ that

〈Jp
F (Ax∗ − PQ(Ax∗)), v − Ax∗〉 ≤ 0, ∀v ∈ Q. (3.3)

Adding up (3.2) and (3.3), we obtain

〈Jp
F (Ax∗ − PQ(Ax∗)), v − Az〉 ≤ 0, ∀v ∈ Q, z ∈ C.

Putting z = x∗ ∈ C and v = PQ(Ax∗) ∈ Q gives us Ax∗ = PQ(Ax∗) ∈ Q.
This completes the proof. �

Remark 3.2. Our Lemma 3.1 extends the fixed point equivalence of SFP given
by Xu in [36] from real Hilbert spaces to reflexive, strictly convex and smooth
Banach spaces. This fixed point formulation of SFP allows us to construct
a fixed point iteration method to solve the SFP in Banach spaces and this
iterative method is given below in (3.4).
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Theorem 3.3. Let E be a p-uniformly convex and uniformly smooth Banach
space and F a reflexive, strictly convex and smooth Banach space. Let C
and Q be nonempty, closed and convex subsets of E and F , respectively. Let
A : E → F be a bounded linear operator and A∗ : F ∗ → E∗ be the adjoint of
A. Suppose that Ω = C ∩ A−1(Q) �= ∅. Define a sequence {xn} by u, x1 ∈ E
and

xn+1 = ΠCJq
E∗

[
αnJp

E(u)+(1−αn)
(
Jp

E(xn)−ρn
fp−1(xn)

‖∇f(xn)‖p
∇f(xn)

)]
, n ≥ 1,

(3.4)
where f(xn) = 1

p‖(I − PQ)Axn‖p. If αn → 0,
∑∞

n=1 αn = ∞ and {ρn} ⊂
(0,∞) satisfies

inf
n

ρn

(
pq − Cqρ

q−1
n

)
> 0, (3.5)

then xn → ΠΩu.

Proof. We note that ∇f(x) = A∗Jp
F (I−PQ)Ax for all x ∈ E (see Proposition

5.7 in [19]). Set

yn = Jp
E(xn) − ρn

fp−1(xn)
‖∇f(xn)‖p

∇f(xn)

for all n ∈ N. We see that (p − 1)q = p. Then, by Lemma 2.3, we have

‖yn‖q =
∥
∥
∥Jp

E(xn) − ρn
fp−1(xn)

‖∇f(xn)‖p
∇f(xn)

∥
∥
∥

q

≤ ‖xn‖p − qρn
fp−1(xn)

‖∇f(xn)‖p
〈xn,∇f(xn)〉 + Cqρ

q
n

f (p−1)q(xn)
‖∇f(xn)‖pq

‖∇f(xn)‖q

= ‖xn‖p − qρn
fp−1(xn)

‖∇f(xn)‖p
〈xn,∇f(xn)〉 + Cqρ

q
n

fp(xn)
‖∇f(xn)‖p

. (3.6)

From Proposition 2.6 and (3.6), it follows that, for each x∗ ∈ Ω,

Dp(x∗, xn+1) ≤ Dp(x∗, Jq
E∗(αnJp

E(u) + (1 − αn)yn))

=
‖x∗‖p

p
+

1

q
‖αnJp

E(u) + (1 − αn)yn‖q − αn〈x∗, Jp
E(u)〉

− (1 − αn)〈x∗, yn〉
≤ ‖x∗‖p

p
+

1

q
(αn‖u‖p + (1 − αn)‖yn‖q) − αn〈x∗, Jp

Eu〉

− (1 − αn)〈x∗, Jp
E(xn)〉 + (1 − αn)ρn

fp−1(xn)

‖∇f(xn)‖p
〈x∗, ∇f(xn)〉

= αn

(‖x∗‖p

p
+

‖u‖p

q
− 〈x∗, Jp

Eu〉
)

+ (1 − αn)
(‖x∗‖p

p
+

‖yn‖q

q
− 〈x∗, Jp

E(xn)〉
)

+ (1 − αn)ρn
fp−1(xn)

‖∇f(xn)‖p
〈x∗, ∇f(xn)〉

≤ αnDp(x∗, u)

+ (1 − αn)
(‖x∗‖p

p
+

1

q

(‖xn‖p − qρn
fp−1(xn)

‖∇f(xn)‖p
〈xn, ∇f(xn)〉
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+ Cqρ
q
n

fp(xn)

‖∇f(xn)‖p
‖))

− (1 − αn)〈x∗, Jp
E(xn)〉 + (1 − αn)ρn

fp−1(xn)

‖∇f(xn)‖p
〈x∗, ∇f(xn)〉

= αnDp(x∗, u) + (1 − αn)
(‖x∗‖p

p
+

‖xn‖p

q
− 〈x∗, Jp

E(xn)〉
)

+ (1 − αn)
(Cqρ

q
n

q

fp(xn)

‖∇f(xn)‖p
+ ρn

fp−1(xn)

‖∇f(xn)‖p
〈x∗ − xn, ∇f(xn)〉

)

= αnDp(x∗, u) + (1 − αn)Dp(x∗, xn)

+ (1 − αn)
(Cqρ

q
n

q

fp(xn)

‖∇f(xn)‖p
+ ρn

fp−1(xn)

‖∇f(xn)‖p
〈x∗ − xn, ∇f(xn)〉

)
.

(3.7)

On the other hand, we see that

〈∇f(xn), x∗ − xn〉 = 〈A∗Jp
E(I − PQ)Axn, x∗ − xn〉

= 〈Jp
E(I − PQ)Axn, Ax∗ − Axn〉

= 〈Jp
E(I − PQ)Axn, PQAxn − Axn〉

+ 〈Jp
E(I − PQ)Axn, Ax∗ − PQAxn〉

≤ −‖(I − PQ)Axn‖p = −pf(xn). (3.8)

Using (3.7) and (3.8), we obtain

Dp(x∗, xn+1) ≤ αnDp(x∗, u) + (1 − αn)Dp(x∗, xn)

+ (1 − αn)
(Cqρ

q
n

q
− ρnp

) fp(xn)
‖∇f(xn)‖p

,

which implies, by (3.5)

Dp(x∗, xn+1) ≤ αnDp(x∗, u) + (1 − αn)Dp(x∗, xn).

Hence, by induction, {Dp(x∗, xn)} is bounded. So we can conclude that {xn}
is bounded. Set vn = Jq

E∗

[
αnJp

E(u)+(1−αn)
(
Jp

E(xn)−ρn
fp−1(xn)

‖∇f(xn)‖p ∇f(xn)
)]

for all n ∈ N. Using Proposition 2.6 and (2.4), we next consider the following
estimation:

Dp(x∗, xn+1) = Dp(x∗,ΠCvn) ≤ Dp(x∗, vn) − Dp(vn,ΠCvn)
= Dp(x∗, Jq

E∗(αnJp
E(u) + (1 − αn)yn)) − Dp(vn,ΠCvn)

= Vp(x∗, αnJp
E(u) + (1 − αn)yn) − Dp(vn,ΠCvn)

≤ Vp(x∗, αnJp
E(u) + (1 − αn)yn − αn(Jp

E(u) − Jp
E(x∗))

+αn〈Jp
E(u) − Jp

E(x∗), vn − x∗〉 − Dp(vn,ΠCvn)
= Vp(x∗, αnJp

E(x∗) + (1 − αn)yn)
+αn〈Jp

E(u) − Jp
E(x∗), vn − x∗〉 − Dp(vn,ΠCvn)

≤ (1 − αn)Vp(x∗, yn) + αn〈Jp
E(u) − Jp

E(x∗), vn − x∗〉
−Dp(vn,ΠCvn)

= (1−αn)Dp(x∗, Jq
E∗(yn))+αn〈Jp

E(u)−Jp
E(x∗), vn − x∗〉

−Dp(vn,ΠCvn)
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= (1 − αn)
(‖x∗‖p

p
+

‖yn‖q

q
− 〈x∗, yn〉

)

+αn〈Jp
E(u) − Jp

E(x∗), vn − x∗〉 − Dp(vn,ΠCvn)

≤ (1 − αn)Dp(x∗, xn) + (1 − αn)ρn

(Cqρ
q−1
n

q
− p

) fp(xn)
‖∇f(xn)‖p

+αn〈Jp
E(u) − Jp

E(x∗), vn − x∗〉 − Dp(vn,ΠCvn). (3.9)

Let sn = Dp(ΠΩu, xn) for all n ∈ N. Then, by (3.9), we have

sn+1 ≤ (1 − αn)sn + (1 − αn)ρn

(Cqρ
q−1
n

q
− p

) fp(xn)
‖∇f(xn)‖p

+αn〈Jp
E(u) − Jp

E(ΠΩu), vn − ΠΩu〉 − Dp(vn,ΠCvn). (3.10)

Case 1 If {sn} is decreasing, then (1 − αn)ρn

(Cqρq−1
n

q − p
) fp(xn)

‖∇f(xn)‖p → 0
and Dp(vn,ΠCvn) → 0. It follows that f(xn) → 0 by (3.5). Hence ‖Axn −
PQAxn‖ → 0 and ‖vn − ΠCvn‖ → 0 by Lemma 2.4. We also see that

‖Jp
E(vn) − Jp

E(xn)‖ ≤ αn‖Jp
E(u) − Jp

E(xn)‖

+ (1 − αn)
∥
∥
∥ρn

fp−1(xn)
‖∇f(xn)‖p

∇f(xn)
∥
∥
∥

→ 0.

Since Jq
E∗ is norm to norm uniformly continuous on bounded subsets of E∗,

‖vn − xn‖ → 0 as n → ∞. Since {vn} is bounded, there exists a subsequence
{vni

} of {vn} such that vni
⇀ z in ωw(vn). Also, we have a subsequence

{xni
} of {xn} such that xni

⇀ z ∈ ωw(xn). From (2.2) we obtain

Dp(z, ΠCz) ≤ 〈Jp
E(z) − Jp

E(ΠCz), z − ΠCz〉
= 〈Jp

E(z) − Jp
E(ΠCz), z − vni〉 + 〈Jp

E(z) − Jp
E(ΠCz), vni − ΠCvni〉

+ 〈Jp
E(z) − Jp

E(ΠCz), ΠCvni − ΠCz〉
≤ 〈Jp

E(z) − Jp
E(ΠCz), z − vni〉 + 〈Jp

E(z) − Jp
E(ΠCz), vni − ΠCvni〉

→ 0. (3.11)

It follows that z ∈ C. Since xni
⇀ z, Axni

⇀ Az and ‖Axni
− PQAxni

‖ → 0
as i → ∞, we have

‖Az − PQAz‖p = 〈Jp
F (Az − PQAz), Az − PQAz〉

= 〈Jp
F (Az − PQAz), Az − Axni

〉
+ 〈Jp

F (Az − PQAz), Axni
− PQAxni

〉
+ 〈Jp

F (Az − PQAz), PQAxni
− PQAz〉

= 〈Jp
F (Az − PQAz), Az − Axni

〉
+ 〈Jp

F (Az − PQAz), Axni
− PQAxni

〉
→ 0,

as i → ∞. Then we obtain Az ∈ Q and therefore z ∈ Ω = C ∩ A−1Q. We
next show that

lim sup
n→∞

〈Jp
E(u) − Jp

E(ΠΩu), vn − ΠΩ(u)〉 ≤ 0.
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To this end, we choose a subsequence {vni
} of {vn} such that

lim sup
n→∞

〈Jp
E(u) − Jp

E(ΠΩu), vn − ΠΩ(u)〉 = lim
i→∞

〈Jp
E(u) − Jp

E(ΠΩu), vni
− ΠΩu〉.

Since vni
⇀ z ∈ Ω, it follows that

lim sup
n→∞

〈Jp
E(u) − Jp

E(ΠΩu), vn − ΠΩu〉 ≤ 0.

Using Lemma 2.8, we conclude that sn → 0, that is, Dp(ΠΩu, xn) → 0 as
n → ∞. So, by Lemma 2.4, we obtain xn → ΠΩu as n → ∞.
Case 2 Assume that {sn} is not monotonically decreasing and let τ : N → N

be a mapping for all n ≥ n0 (for some n0 large enough) by

τ(n) = max{k ∈ N : k ≤ n, sk ≤ sk+1}.

Clearly, τ(n) is a nondecreasing sequence such that τ(n) → ∞ as n → ∞ and
0 ≤ sτ(n) ≤ sτ(n)+1,∀n ≥ n0. So from (3.10) we can show that ‖Axτ(n) −
PQAxτ(n)‖ → 0 and ‖vτ(n) − ΠCvτ(n)‖ → 0 as n → ∞. By the similar
argument as above in Case 1, we can also show that ‖vτ(n) − xτ(n)‖ → 0 as
n → ∞ and

lim sup
n→∞

〈Jp
E(u) − Jp

E(ΠΩu), vτ(n) − ΠΩu〉 ≤ 0.

Also, from (3.10), we see that

sτ(n) ≤ 〈Jp
E(u) − Jp

E(ΠΩu), vτ(n) − ΠΩu〉.
It follows that lim sup

n→∞
sτ(n) ≤ 0 and thus lim

n→∞sτ(n) = 0. We next show that

lim
n→∞sτ(n)+1 = 0. To show this, it suffices to prove that ‖xτ(n)+1 −xτ(n)‖ → 0
as n → ∞. Indeed, we observe that

‖xτ(n)+1 − xτ(n)‖ ≤ ‖xτ(n)+1 − vτ(n)‖ + ‖vτ(n) − xτ(n)‖
= ‖ΠCvτ(n) − vτ(n)‖ + ‖vτ(n) − xτ(n)‖
→ 0.

From (2.1), it follows that

Dp(ΠΩu, xτ(n)+1) + Dp(xτ(n)+1, xτ(n)) − Dp(ΠΩu, xτ(n))

= 〈ΠΩu − xτ(n)+1, J
p
E(xτ(n)) − Jp

E(xτ(n)+1)〉.
Hence

sτ(n)+1 = Dp(ΠΩu, xτ(n)+1) ≤ Dp(ΠΩu, xτ(n))

+ 〈ΠΩu − xτ(n)+1, J
p
E(xτ(n)) − Jp

E(xτ(n)+1)〉
→ 0.

Thus, by Lemma 2.7, we obtain sn ≤ sτ(n)+1, which implies that limn→∞ sn =
0. This shows that xn → ΠΩu as n → ∞. We thus complete the proof. �

We consequently obtain the following result in Hilbert spaces which was
studied by Yao et al. [37].
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Theorem 3.4. (Yao et al. [37]) Let H1 and H2 be Hilbert spaces. Let C and
Q be nonempty, closed and convex subsets of H1 and H2, respectively. Let
A : H1 → H2 be a bounded linear operator and A∗ : H2 → H1 be the adjoint
of A. Suppose that Ω = C∩A−1(Q) �= ∅. Define a sequence {xn} by u, x1 ∈ H1

and

xn+1 = PC

[
αnu + (1 − αn)

(
xn − ρn

f(xn)
‖∇f(xn)‖2

∇f(xn)
)]

, n ≥ 1, (3.12)

where f(xn) = 1
2‖(I − PQ)Axn‖2. If αn → 0,

∑∞
n=1 αn = ∞ and {ρn} ⊂

(0,∞) satisfies
inf
n

ρn(4 − ρn) > 0, (3.13)

then xn → PΩu.

4. Applications

In this section, we apply our result on SFP to split equality problem (SEP) in-
troduced by Moudafi [27,28] in p-uniformly convex real Banach spaces which
are also uniformly smooth. As far as we know, this is the first time SEP is
being studied in higher Banach spaces outside real Hilbert spaces which has
been studied by numerous authors in the literature.

Our interest here is to convert an SEP to SFP in p-uniformly convex
real Banach spaces which are also uniformly smooth. To do this, we need the
following important lemma.

Lemma 4.1. [17,34]
(i) A real Banach space X is p-uniformly convex if and only if there exists

c1 > 0 such that

‖x + y‖p ≥ ‖x‖p + p〈y, Jp
X(x)〉 + c1‖y‖p, ∀x, y ∈ X.

(ii) A real Banach space X is uniformly smooth if and only if there exists a
continuous, strictly increasing and convex function

g : R+ → R
+, g(0) = 0

such that for all x, y ∈ Br := {x ∈ X : ‖x‖ ≤ r}, we have

〈x − y, Jp
X(x) − Jp

X(y)〉 ≤ g(‖x − y‖).

We now give the following lemma which is an analogue of Lemma 4.1 in
product spaces. Furthermore, this lemma will be crucial in our application.

Lemma 4.2. For p > 1, let X and Y be real p-uniformly convex Banach spaces
which are also uniformly smooth. Let E = X × Y with norm

‖z‖E = (‖u‖p
X + ‖v‖p

Y )
1
p

for every arbitrarily z = (u, v) ∈ E. Let E∗ = X∗ × Y ∗ denote the dual space
of E. For each x = (x1, x2) ∈ E, define the mapping Jp

E : E → E∗ by

Jp
E(x) = Jp

E(x1, x2) = (Jp
X(x1), J

p
Y (x2)),
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and for arbitrarily z1 = (u1, v1), z2 = (u2, v2) in E, the duality pair 〈·, ·〉 is
given by

〈z1, J
p
E(z2)〉 = 〈u1, J

p
X(u2)〉 + 〈v1, J

p
Y (v2)〉.

Then we have

(a) Jp
E is a duality mapping on E;

(b) E is p-uniformly convex real Banach space which is also uniformly
smooth.

Proof. (a) Observe that Jp
E is single-valued if and only if E is smooth. For

arbitrarily x = (x1, x2) ∈ E, let Jp
E(x) = Jp

E(x1, x2) = ψp. Then ψp =
(Jp

X(x1), J
p
Y (x2)) ∈ E∗. Observe that for q > 1 with 1

p + 1
q = 1,

‖ψp‖E∗ = ‖(Jp
X(x1), J

p
Y (x2))‖ 1

q

= (‖Jp
X(x1)‖q

X∗ + ‖Jp
Y (x2)‖q

Y ∗)
1
q

= (‖x1‖(p−1)q
X + ‖x2‖(p−1)q

Y )
1
q

= (‖x1‖p
X + ‖x2‖p

Y )
p−1
p

= ‖x‖p−1
E .

Hence ‖ψp‖E∗ = ‖x‖p−1
E . Also, we have

〈x, ψp〉 = 〈(x1, x2), (J
p
X(x1), J

p
Y (x2))〉

= 〈(x1, J
p
X(x1)), (x2, J

p
Y (x2))〉

= ‖x1‖p
X + ‖x2‖p

Y

= (‖x1‖p
X + ‖x2‖p

Y )
1
p (‖x1‖p

X + ‖x2‖p
Y )

p−1
p

= ‖x‖E∗ · ‖ψp‖E∗

= ‖x‖p
E .

Hence Jp
E is a single-valued normalized duality mapping on E.

(b) Let x = (x1, x2), y = (y1, y2) ∈ E. Then

‖x + y‖p
E = ‖(x1 + y1, x2 + y2)‖p

E

= ‖x1 + y1‖p
X + ‖x2 + y2‖p

Y

≥ ‖x1‖p
X + ‖x2‖p

Y + c(‖y1‖p
X + ‖y2‖p

Y )
+ p{〈y1, J

p
X(x1)〉 + 〈y2, J

p
Y (x2)〉}

for some c > 0. Hence

‖x + y‖p
E ≥ ‖x‖p

E + p〈y, Jp
E(x)〉 + c‖y‖p

E .

Therefore, E is p-uniformly convex from Lemma 4.1 (i) . We next show that
E is uniformly smooth. Now,

〈x − y, Jp
E(x) − Jp

E(y)〉 = 〈(x1 − y1, x2 − y2), (J
p
E(x1) − Jp

E(y1), J
p
E(x2) − Jp

E(y2))〉
= 〈x1 − y1, J

p
E(x1) − Jp

E(y1)〉 + 〈x2 − y2, J
p
E(x2) − Jp

E(y2)〉
≤ g1(‖x1 − y1‖) + g2(‖x2 − y2‖),
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where g1, g2 are strictly increasing continuous and convex functions on R
+

and g1(0) = g2(0) = 0. Therefore,

〈x − y, Jp
E(x) − Jp

E(y)〉 ≤ g(‖x − y‖),

where g(‖x − y‖) = g1(‖x1 − y1‖) + g2(‖x2 − y2‖). Hence the result follows
from Lemma 4.1 (ii) that E is uniformly smooth. �

Let E1, E2 and E3 be real p-uniformly convex which are also uniformly
smooth Banach spaces. Suppose C1 ⊆ E1 and Q1 ⊆ E2 are nonempty closed
and convex sets. Let A : E1 → E2 and B : E2 → E3 be bounded linear
operators. The split equality problem (SEP) [27,28] is defined by

find x ∈ C1 and y ∈ Q1 such that Ax = By. (4.1)

Our interest here is to transform (4.1) into the SFP. Now suppose E =
E1 × E2, F = E3 × E3, C = C1 × Q1 ⊂ E and Q = {(z, w) ∈ F : z = w}.
We know from Lemma 4.2 that E and F are p-uniformly convex real Banach
spaces which are also uniformly smooth.

Define an operator T : E → F by

T (x, y) = (Ax,By)

for all (x, y) ∈ E. Since if z1 = (x1, y1), z2 = (x2, y2), then

T (αz1 + βz2) = T [(αx1, αy1) + (βx2, βy2)]
= T (αx1 + βx2, αy1 + βy2)
= (A(αx1 + βx2), B(αy1 + βy2))
= (αAx1 + βAx2, αBy1 + βBy2)
= α(Ax1, By1) + β(Ax2, By2)
= αTz1 + βTz2,

which shows that T is linear. Also, it is easy to see that T is bounded from
the boundedness of A and B. Set S = {(x, y) ∈ C : T (x, y) ∈ Q}. Hence
(x, y) ∈ E solves (4.1) (using Lemma 3.1) if and only if

(x, y) = ΠCJq
E∗(Jp

E(x, y) + γT ∗Jp
F (PQ − I)T (x, y)),

where

PQ(z, w) = (
z + w

2
,
z + w

2
), (z, w) ∈ F,

T ∗Jp
F (z, w) = (A∗Jp

E3
(z), B∗Jp

E3
(w)),

Jp
E(x, y) = (Jp

E1
(x), Jp

E2
(y)) for all (x, y) ∈ E,

and

ΠCJq
E∗(x, y) = (ΠC1J

q
E∗

1
(x), PQ2J

q
E∗

2
(y)) for all (x, y) ∈ E∗.

Using the fixed point formulation (4.2), we construct an iterative method
for solving SEP (4.1) and obtain the following convergence theorem for solv-
ing SEP (4.1) by applying the result of Theorem 3.3.
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Theorem 4.3. Let E1 and E2 be two real p-uniformly convex which are also
uniformly smooth Banach spaces and E3 a reflexive, strictly convex and
smooth Banach space. Suppose C1 ⊆ E1 and Q1 ⊆ E2 are nonempty closed
and convex sets. Let A : E1 → E3 and B : E2 → E3 be bounded linear op-
erators. Let A∗ : E∗

3 → E∗
1 and B∗ : E∗

3 → E∗
2 be the adjoints of A and B

respectively. Suppose that Ω denotes the set of solutions of SEP (4.1) and
Ω �= ∅. Define a sequence {(xn, yn)} by x1, y1 ∈ E1 and
⎧
⎪⎨

⎪⎩

xn+1 = ΠC1Jq
E1∗

[
αnJp

E1
(x1) + (1 − αn)

(
Jp

E1
(xn) + ρn

2
A∗Jp

E3
(Byn−Axn)

)]
, n ≥ 1,

yn+1 = PQ1Jq
E2∗

[
αnJp

E2
(y1) + (1 − αn)

(
Jp

E2
(yn) + ρn

2
B∗Jp

E3
(Axn − Byn)

)]
, n ≥ 1.

(4.2)

If αn → 0,
∑∞

n=1 αn = ∞ and {ρn} ⊂ (0,∞) satisfies inf
n

ρn

(
pq −Cqρ

q−1
n

)
>

0, then {(xn, yn)} converges strongly to (x∗, y∗) which simultaneously solves
SEP (4.1) and is the nearest point to the initial guess (x1, y1).

5. Examples and numerical results

In this section, we present some numerical examples to illustrate the perfor-
mance of our algorithm. All codes were written in Matlab 2012b and run on
Hp i − 5 Dual-Core 8.00 GB (7.78 GB usable) RAM laptop.

Example 5.1. We consider the problem in (L2([α, β]), || · ||L2) and also give
numerical examples using Theorem 3.3. Now take

C := {x ∈ L2([α, β]) : 〈a, x〉 ≤ b},

where 0 �= a ∈ L2([α, β]) and b ∈ R, then (see [14])

ΠC(x) = PC(x) =

{
b−〈a,x〉
||a||2L2

a + x, 〈a, x〉 > b

x, 〈a, x〉 ≤ b.

Let

Q = {x ∈ L2([α, β]) : ||x − d||L2 ≤ r}
be a closed ball centered at d ∈ L2([α, β]) with radius r > 0, then

PQ(x) =
{

d + r x−d
||x−d|| , x /∈ Q

x, x ∈ Q.

Define an operator A : L2([0, 2π]) → L2([0, 2π]) by Ax(t) = x(t)
2 , t ∈ [0, 2π]

for all x ∈ L2([0, 2π]). Then it can be easily verified that A is continuous and
bounded linear operator.

Now, suppose

C =
{

x ∈ L2([0, 2π]) :
∫ 2π

0

etx(t)dt ≤ 1
}

and

Q =
{

x ∈ L2([0, 2π]) :
∫ 2π

0

|x(t) − sin(t)|2dt ≤ 16
}

.
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Figure 1. Different cases with Choice 1

Let us consider the following problem:

find x∗ ∈ C such that Ax∗ ∈ Q. (5.1)

Observe that the set of solutions of problem (5.1) is nonempty (since x(t) =
0, a.e. is in the set of solutions). Take αn = 1

n+1 , ∀n ≥ 1, then our iterative
scheme (3.4) becomes

xn+1 = PC

[
1

n + 1
(u) +

(

1 − 1

n + 1

) (

xn − ρn
f(xn)

‖∇f(xn)‖2 ∇f(xn)

)]

, n ≥ 1,

(5.2)

where f(xn) = 1
2‖Axn − PQAxn‖2 for all n ∈ N.

We now study the effect (in terms of convergence, stability, number of
iterations required and the cpu time) of the sequence {ρn} ⊂ (0,∞) on the
iterative scheme by choosing different ρn such that inf

n
ρn(4 − ρn) > 0 in the

following cases (Figs. 1, 2, 3, 4; Table 1).

Case 1: ρn = n
4n+1 ;

Case 2: ρn = n
2n+1 ;

Case 3: ρn = n
n+1 ;

Case 4: ρn = 2n
n+1 ;

Case 5: ρn = 3n
n+1 .

For each case mentioned above, using stopping criterion ||xn+1−xn||
||x2−x1|| <

10−4, we also consider different choices of x1 and u as
Choice 1: x1 = 2tcos(3t)e3t and 3(t7 − 1)e−5t;
Choice 2: x1 = 2tsin(3t)e2t and t2sin(5πt);
Choice 3: x1 = 3t2e4t−1 and t3 − t2 + 4t + 1;
Choice 4: x1 = 2t3e5t and t4 + 3t2 + 5.
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Figure 2. Different cases with Choice 2

Figure 3. Different cases with Choice 3

Remark 5.2. We make the following observations from the numerical results
presented above.

1. The numerical results from different Cases and different Choices show
that our proposed Algorithm (5.2) is fast, stable, efficient, easy to im-
plement and required small number of iterations.

2. We have that the number of iterations and the cpu run time are de-
creasing starting from Case 1 to Case 5. However, there is no significant
difference in both cpu run time and number of iterations for different
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Figure 4. Different cases with Choice 4

Table 1. Algorithm (5.2) with different cases of ρn and
different choices of x1 and u

Case 1 Case 2 Case 3 Case 4 Case 5

Choice 1

No. of Iter. 34 21 13 7 3

cpu (time) 5.5602×10−3 3.7686×10−3 2.2286×10−3 1.0621×10−3 3.8957×10−4

Choice 2

No. of Iter. 35 22 14 7 3

cpu (time) 6.1863×10−3 4.2536×10−3 2.1723×10−3 1.0322×10−3 3.8020×10−4

Choice 3

No. of Iter. 33 21 13 7 3

cpu (time) 5.7544×10−3 4.2300×10−3 2.1799×10−3 1.0746×10−3 4.1189×10−4

Choice 4

No. of Iter. 33 21 13 7 3

cpu (time) 5.4273×10−3 3.5084×10−3 2.1014×10−3 1.0581×10−3 3.8690×10−4

Choices of x1 and u. So, initial guess does not have any significant effect
on the convergence of the algorithm.
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