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1. Introduction

The Banach contraction principle is one of the most famous results on metric
fixed point theory. There have been many generalizations and extensions of
this principle in the literature. One of the important and remarkable general-
izations is due to Meir and Keeler [11]. Their result can be stated as follows:
let (X, d) be a complete metric space and let T : X → X be a given mapping.
Suppose that for every ε > 0, there exists δ(ε) > 0 such that

(x, y) ∈ X × X, ε ≤ d(x, y) < ε + δ(ε) =⇒ d(Tx, Ty) < ε. 2.1

Then, T has a unique fixed point x∗ ∈ X. Moreover, for any x ∈ X, the
Picard sequence {Tnx} converges to x∗.

The class of Meir–Keeler contractions includes the class of Banach con-
tractions and many other classes of nonlinear contractions (see, for exam-
ple [4,10,16]). Meir and Keeler’s theorem was source of further investiga-
tions in metric fixed point theory. For more details, we refer the reader to
[1,3,7,10,14,18,22,23], and the references therein.

Recently, Jleli and Samet [8] introduced the notion of JS-metric spaces,
which extends a number of abstract metric spaces: b-metric spaces [5], dis-
located metric spaces [6], modular spaces with the Fatou property [12,13],
etc. They also established some fixed point theorems in such spaces includ-
ing the Banach contraction principle. Since then, the study of fixed points in
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JS-metric spaces attracted the attention of some researchers. In [9], Karap-
inar et al. established some fixed point results under more general contractive
conditions using a reflexive and transitive binary relation. In [20], Senapati
et al. generalized the notion of F-contraction introduced by Wardowski [24]
to JS-metric spaces. For other related results, see, for example [2,17,21], and
the references therein.

In this paper, our aim is to obtain some extensions of the Meir–Keeler
fixed point theorem to JS-metric spaces. We introduce two classes of Meir–
Keeler type contractions and, for each class, we provide sufficient conditions
for the existence of fixed points. Next, some interesting consequences are
derived from our main results.

The paper is organized as follows. In Sect. 2, we recall the notion of
JS-metric spaces and introduce two classes of Meir–Keeler type contractions
in the framework of such spaces. Some examples of mappings that belong to
the suggested classes are presented. Section 3 is devoted to state and prove
the main results of this paper. In Sect. 4, some particular cases are discussed.

2. Preliminaries

Through this paper, we denote by N the set of natural numbers, that is,
N = {0, 1, 2, . . .}. We denote by N

∗ the set N\{0}. We denote by Z the set of
integers, that is, Z = N ∪ (−N).

We start this section with recapitulating some essential points of the
concept of JS-metric spaces introduced in [8].

Let X be a nonempty set and let D : X × X → [0,+∞] be a given
mapping. For every x ∈ X, we define the set

C(D,X, x) =
{

{xn} ⊂ X : lim
n→∞ D(xn, x) = 0

}
.

Definition 2.1. We say that D is a JS-metric on X if the following conditions
are satisfied:
(D1) (x, y) ∈ X × X, D(x, y) = 0 =⇒ x = y.
(D2) D(x, y) = D(y, x), for all (x, y) ∈ X × X.
(D3) There exists C > 0 such that

(x, y) ∈ X × X, {xn} ∈ C(D,X, x) =⇒ D(x, y) ≤ C lim sup
n→+∞

D(xn, y).

In this case, the pair (X,D) is said to be a JS-metric space.

Definition 2.2. Let (X,D) be a JS-metric space.
(i) A sequence {xn} ⊂ X is said to be D-convergent to x ∈ X if {xn} ∈

C(D,X, x).
(ii) A sequence {xn} ⊂ X is said to be D-Cauchy if

lim
n,m→+∞ D(xn, xm) = 0.

(iii) (X,D) is D-complete if every D-Cauchy sequence in X is D-convergent
to some element in X.
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It was proved in [8] that the limit of a D-convergent sequence is unique,
that is, for all (x, y) ∈ X × X, we have

C(D,X, x) ∩ C(D,X, y) 
= ∅ =⇒ x = y.

Let (X,D) be a JS-metric space, and let Y be a nonempty subset of X.
We denote by Y the closure of Y , that is,

y ∈ Y ⇔ ∃{yn} ⊂ Y : lim
n→+∞ D(yn, y) = 0.

Let T : X → X be a given mapping. We say that T is continuous on Y if

{yn} ⊂ Y, lim
n→+∞ D(yn, y) = 0, y ∈ Y =⇒ lim

n→+∞ D(Tyn, T y) = 0.

A large list of abstract metric spaces that can be seen as particular cases
of JS-metric spaces can be found in [8]. For other examples, we refer to [9].
Now, we add another example of JS-metric spaces that will be used later.

Example 2.1. Let X = N
∗, and let D : X × X → [0,+∞] be defined as

follows:

i ≤ j =⇒ D(i, j) =
{ 1

1+2i−j if j ≤ 2i,

2 − 1
1+j−2i if j > 2i;

and

D(i, j) = D(j, i), (i, j) ∈ X × X.

We claim that

D(i, j) ≥ 1
1 + min{i, j} , (i, j) ∈ X × X. (2.1)

First, suppose that i ≤ j. If j ≤ 2i, then

D(i, j) =
1

1 + 2i − j
=

1
1 + i + (i − j)

≥ 1
1 + i

=
1

1 + min{i, j} .

If j > 2i, then

D(i, j) = 2 − 1
1 + j − 2i

≥ 1 ≥ 1
1 + i

=
1

1 + min{i, j} .

Therefore, (2.1) holds for every (i, j) ∈ X × X with i ≤ j. Now, if i > j, by
symmetry, we have

D(i, j) = D(j, i) ≥ 1
1 + min{i, j} .

Hence, (2.1) holds for every pair (i, j) ∈ X × X.
Next, we shall prove that (X,D) is a JS-metric space. It is clear that

D(i, j) > 0, for all (i, j) ∈ X × X. Therefore, the condition (D1) is satisfied.
The condition (D2) is satisfied by the definition of the mapping D. Further,
let i ∈ X be fixed, and suppose that {in} ∈ C(D,X, i), that is, {in} is a
sequence in X such that

lim
n→+∞ D(in, i) = 0.
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Then, for n large enough, we have

D(in, i) <
1

1 + i
.

On the other hand, from (2.1), we have

D(in, i) ≥ 1
1 + min{in, i} ≥ 1

1 + i
,

for all n, which is a contradiction. Hence, we deduce that C(D,X, i) = ∅, for
every i ∈ X. Then, the condition (D3) is also satisfied. Thus, we proved that
(X,D) is a JS-metric space.

Next, we shall prove that X has no D-Cauchy sequences. We argue by
contradiction by supposing that there exists a certain D-Cauchy sequence
{in} in X. We divide the proof into two cases.
Case 1: There exists k such that

in ≤ 2ik, n > k.

In this case, the sequence {in} has only finite different terms. Without loss
of generality, we may assume that the finite pairwise distinct terms are
{r1, r2, . . . , rp}. So, we obtain

D(in, im) ≥ min
i,j=1,2,...,p

D(ri, rj) > 0, (n,m) ∈ N × N,

which leads to a contradiction.
Case 2: For any k, there exists nk > k such that

ink
> 2ik.

By the definition of D, for all k, we have

D(ik, ink
) = 2 − 1

1 + ink
− 2ik

≥ 1,

which leads to a contradiction.
Consequently, we conclude that X has no D-Cauchy sequences.
From the above study, we deduce that (X,D) is a D-complete JS-metric

space.
Further, we shall prove additional properties of the JS-metric D that

will be used later. First, we shall prove that

{D(i, j) : i, j ∈ X} = {ak}k∈Z, (2.2)

where

ak =

⎧
⎨
⎩

1
k+1 if k ≥ 0,

1 + k
k−1 if k < 0.

From the definition of D, it can be easily seen that

{D(i, j) : i, j ∈ X} ⊂ {ak}k∈Z.

Next, let k ∈ Z be fixed. If k = 0, then

a0 = 1 = D(1, 2) ∈ {D(i, j) : i, j ∈ X}.
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If k > 0, then

ak =
1

k + 1
= D(k, k) ∈ {D(i, j) : i, j ∈ X}.

If k < 0, then

ak = 1 +
k

k − 1
= D(1,−k + 2) ∈ {D(i, j) : i, j ∈ X}.

Hence,

{ak}k∈Z ⊂ {D(i, j) : i, j ∈ X}.

Therefore, (2.2) holds.
Next, we shall establish that

(i, j) ∈ X × X, k ∈ Z, D(i, j) = ak =⇒ D(i + 1, j + 1) = ak+1. (2.3)

Let (i, j) ∈ X × X be such that D(i, j) = ak, k ∈ Z. Without restriction of
the generality, we may suppose that i ≤ j. We divide the proof into three
cases.

Case 1: k ≥ 0. If j > 2i, then

D(i, j) = 2 − 1
1 + j − 2i

=
1

k + 1
,

which yields

k =
2i − j

1 + 2j − 4i
< 0,

which is a contradiction. Therefore, we have j ≤ 2i and

D(i, j) =
1

1 + 2i − j
= ak =

1
k + 1

.

So, 2i − j = k and 0 ≤ k ≤ i. Note that i + 1 ≤ j + 1 ≤ 2(i + 1) and
2(i + 1) − (j + 1) = k + 1. Thus, we have

D(i + 1, j + 1) =
1

1 + 2(i + 1) − (j + 1)
=

1
(k + 1) + 1

= ak+1.

Case 2: k ≤ −2. In this case, j > 2i and

2 − 1
1 + j − 2i

= D(i, j) = ak = 1 +
k

k − 1
= 2 +

1
k − 1

.

So, j − 2i = −k ≥ 2. Note that j +1 > 2(i+1) and 2(i+1)− (j +1) = k +1.
Then

D(i + 1, j + 1) = 2 − 1
1 + (j + 1) − 2(i + 1)

= 2 − 1
1 − (k + 1)

= 2 +
1
k

= ak+1.

Case 3: k = −1. In this case, j > 2i and
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2 − 1
1 + j − 2i

= D(i, j) = a−1 = 1 +
−1

−1 − 1
=

3
2
.

So, j − 2i = 1. Note that j + 1 = 2(i + 1). Therefore,

D(i + 1, j + 1) = 2 − 1
1 + (j + 1) − 2(i + 1)

= 1 = a0.

Therefore, (2.3) holds.

Let (X,D) be a JS-metric space. Let T : X → X be a certain self-
mapping on X. For n ∈ N, we denote by Tn the nth iterates of T (it is
supposed that T 0 is the identity mapping on X).

We introduce the following concepts that will be used later.

Definition 2.3. We say that T : X → X is a strong Meir–Keeler contrac-
tion on a nonempty subset Y of X, if there exists a mapping δ : (0,+∞) →
(0,+∞) such that for every ε > 0, we have

(x, y) ∈ Y × Y, ε ≤ D(x, y) < ε + δ(ε) =⇒ D(Tx, Ty) < ε (2.4)

and
R > 0 =⇒ 0 < lim inf

r↑R
δ(r) < +∞. (2.5)

We have the following property concerning the class of strong Meir–
Keeler contraction mappings.

Lemma 2.1. Let T : X → X be a strong Meir–Keeler contraction on a
nonepmty subset Y of X. Then

(x, y) ∈ Y × Y, 0 < D(x, y) ≤ +∞ =⇒ D(Tx, Ty) ≤ D(x, y).

Proof. Let (x, y) ∈ Y × Y . If D(x, y) = +∞, then the desired inequality is
trivial. If 0 < D(x, y) < +∞, taking ε = D(x, y), and since

ε ≤ D(x, y) < ε + δ(ε),

we obtain from (2.4) that

D(Tx, Ty) < ε = D(x, y). �

Further, we present some examples of strong Meir–Keeler contractions.

Example 2.2. Let T : X → X be a k-contraction on a certain nonempty sub-
set Y of X, that is,

D(Tx, Ty) ≤ kD(x, y), (x, y) ∈ Y × Y,

where 0 < k < 1. Then, T is a strong Meir–Keeler contraction on Y . Indeed,
for any ε > 0, we have

(x, y) ∈ Y × Y, ε ≤ D(x, y) < ε +
(

1
k

− 1
)

ε =⇒ D(Tx, Ty) < ε.

Therefore, (2.4) is satisfied with

δ(ε) =
(

1
k

− 1
)

ε, ε > 0.
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Moreover, for any R > 0, we have

lim inf
r↑R

δ(r) =
(

1
k

− 1
)

R > 0.

Therefore, (2.5) is satisfied.

Example 2.3. Let Φ be the set of functions ϕ : [0,+∞) → [0,+∞) satisfying
the following conditions:
(Φ1) ϕ(0) = 0.
(Φ2) ϕ(t) > 0, for all t > 0.
(Φ3) There exists δ : (0,+∞) → (0,+∞) such that

R > 0 =⇒ 0 < lim inf
r↑R

δ(r) < +∞,

and for every s > 0,

s ≤ t ≤ s + δ(s) =⇒ ϕ(t) ≤ s.

Note that Φ is a subset of the class of L-functions introduced by Lim [10].
Next, let T : X → X be a mapping satisfying

(x, y) ∈ Y × Y, 0 < D(x, y) < +∞ =⇒ D(Tx, Ty) < ϕ(D(x, y)),

where Y is a nonempty subset of X and ϕ ∈ Φ. We claim that T is a strong
Meir–Keeler contraction on Y . In order to prove this claim, let us fix a certain
ε > 0. Let (x, y) ∈ Y × Y be such that

ε ≤ D(x, y) < ε + δ(ε).

Then

ϕ(D(x, y)) ≤ ε,

which yields

D(Tx, Ty) < ϕ(D(x, y)) ≤ ε.

Therefore, T is a strong Meir–Keeler contraction on Y .

Remark 2.1. As an example of functions that belong to the set Φ, we can
take

ϕ(t) = kt, t ≥ 0,

where 0 < k < 1 is a constant. It can be seen that the conditions (Φ1), (Φ2)
and (Φ3) are satisfied with

δ(s) =
(

1
k

− 1
)

s, s > 0.

Given p ∈ N
∗, let

MT,p(x, y)

= max{D(T ix, T jy),D(T ix, T jx),D(T iy, T jy) : 0 ≤ i, j ≤ p},

for all (x, y) ∈ X × X.
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Definition 2.4. We say that T : X → X is a strong generalized Meir–Keeler
contraction on a nonempty subset Y of X, if there exists a mapping δ : (0,+∞)
→ (0,+∞) such that for every ε > 0, we have

(x, y) ∈ Y × Y, ε ≤ MT,p(x, y) < ε + δ(ε) =⇒ D(T px, T py) < ε (2.6)

where p = 1, 2, . . . , and

R > 0 =⇒ 0 < lim inf
r↑R

δ(r) < +∞.

Lemma 2.2. Let T : X → X be a strong generalized Meir–Keeler contraction
on a nonepmty subset Y of X. Then

D(T px, T py) ≤ MT,p(x, y), (x, y) ∈ Y × Y.

Proof. Let (x, y) ∈ Y × Y . We discuss three possible cases.

Case 1: MT,p(x, y) = +∞. In this case, obviously, we have

D(T px, T py) ≤ +∞ = MT,p(x, y).

Case 2: MT,p(x, y) = 0. In this case, we have D(x, y) = 0, which implies
from the property (D1) that x = y. Therefore, we have

D(T px, T py) = D(T px, T px) ≤ MT,p(x, y).

Case 3: 0 < MT,p(x, y) < +∞. In this case, taking ε = MT,p(x, y), and since

ε ≤ MT,p(x, y) < ε + δ(ε),

we obtain

D(T px, T py) < ε = MT,p(x, y).

�

Example 2.4. Let T : X → X be a generalized k-contraction on a certain
nonempty subset Y of X, that is,

D(T px, T py) ≤ kMT,p(x, y), (x, y) ∈ Y × Y,

where 0 < k < 1. Then, T is a strong generalized Meir–Keeler contraction on
Y .

Example 2.5. Let T : X → X be a mapping satisfying

(x, y) ∈ Y × Y, 0 < MT,p(x, y) < +∞ =⇒ D(T px, T py) < ϕ(MT,p(x, y)),

where Y is a nonempty subset of X and ϕ ∈ Φ. Then, T is a strong generalized
Meir–Keeler contraction on Y . The proof is similar to that given in Example
2.3.
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3. Main results

In this section, we state and prove our main results. First, let us fix some
notations that will be used through this section.

Let T : X → X be a given mapping and let x0 ∈ X. We denote by
OT (x0) the subset of X defined by

OT (x0) = {Tnx0 : n ∈ N}.

Let

δ(D,T, x0) = sup{D(T ix0, T
jx0) : i, j ∈ N}.

For n ∈ N, let

δn = sup{D(T ix0, T
jx0) : i, j ≥ n}.

3.1. Existence of fixed points for the class of strong Meir–Keeler contractions

The following lemma will be useful later.

Lemma 3.1. Let (X,D) be a JS-metric space and let T : X −→ X be a strong
Meir–Keeler contraction on OT (x0), where x0 ∈ X. Suppose that

(x, y) ∈ OT (x0) × OT (x0), D(x, y) = 0 =⇒ D(Tx, Ty) = 0. (3.1)

If δn 
→ 0 as n → +∞, then there exists N ∈ N
∗ and Δ ∈ (0,+∞] such that

δn = δn+1 = · · · = Δ, n ≥ N.

Proof. We divide the proof into several cases.
Case 1: For any n ∈ N, δn = +∞. In this case, we only need to take N = 1

and Δ = +∞.
Case 2: There exists n0 ∈ N such that δn0 < +∞. In this case, we have

δn+1 ≤ δn ≤ δn0 < +∞, n ≥ n0.

Then, there exists some Δ > 0 such that

δn ↓ Δ as n → +∞. (3.2)

Since T is a strong Meir–Keeler contraction on OT (x0), there exists δ :=
δΔ > 0 such that

(x, y) ∈ OT (x0) × OT (x0), Δ ≤ D(x, y) < Δ + δ =⇒ D(Tx, Ty) < Δ,

that is,

Δ ≤ D(T kx0, T
lx0) < Δ + δ =⇒ D(T k+1x0, T

l+1x0) < Δ, (k, l) ∈ N×N.
(3.3)

On the other hand, from (3.2), there exists n1 > n0 such that

Δ ≤ δn < Δ + δ, n ≥ n1.

Case 2.1: δn1 = Δ. In this case, we have

Δ ≤ δn ≤ δn1 = Δ, n ≥ n1.

Therefore,

δn = δn+1 = · · · = Δ, n ≥ n1.
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Case 2.2: Δ < δn1 < Δ + δ. Let

An1 = {(k, l) : Δ < D(T kx0, T
lx0) < Δ + δ, k ≥ n1, l ≥ n1},

Bn1 = {(k, l) : 0 < D(T kx0, T
lx0) ≤ Δ, k ≥ n1, l ≥ n1},

and

Cn1 = {(k, l) : D(T kx0, T
lx0) = 0, k ≥ n1, l ≥ n1},

Let (k, l) ∈ N × N be such that k ≥ n1 and l ≥ n1. If (k, l) ∈ An1 , then from
(3.3) we have

D(T k+1x0, T
l+1x0) < Δ.

If (k, l) ∈ Bn1 , by Lemma 2.1, we have

D(T k+1x0, T
l+1x0) ≤ D(T kx0, T

lx0) ≤ Δ.

If (k, l) ∈ Cn1 , then by (3.1), we have

D(T k+1x0, T
l+1x0) = 0 < Δ.

Therefore,

D(T ix0, T
jx0) ≤ Δ, i, j ≥ n1 + 1,

which yields

δn1+1 = Δ,

and thus by the same reason stated in Case 2.1, we have

δn = δn+1 = · · · = Δ, n ≥ n1 + 1.

The lemma is proved. �

We have the following fixed point result concerning the class of strong
Meir–Keeler contractions.

Theorem 3.1. Let (X,D) be a complete JS-metric space and let T : X → X

be a strong Meir–Keeler contraction on OT (x0), for some x0 ∈ X, satisfying

(x, y) ∈ OT (x0) × OT (x0), D(x, y) = 0 =⇒ D(Tx, Ty) = 0. (3.4)

Suppose that δ(D,T, x0) < +∞. Then, {Tnx0} is D-convergent to some
ω ∈ OT (x0), where ω is a fixed point of T . Moreover, if ω′ ∈ OT (x0) is a
fixed point of T such that D(ω, ω′) < +∞, then ω = ω′.

Proof. We claim that
lim

n→+∞ δn = 0. (3.5)

Suppose the contrary, then by Lemma 3.1, there exists N ∈ N
∗ and ε ∈

(0,+∞] such that
δn = δn+1 = · · · = ε, n ≥ N. (3.6)

Since δ(D,T, x0) < +∞, then 0 < ε < +∞. Let

c = lim inf
r↑ε

δ(r).
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From (2.5), we know that 0 < c < +∞. Then, there exists some μ > 0 such
that

δ(r) >
c

2
, r ∈ (ε − μ, ε) ∩ (0,+∞).

Let δ′ = min
{
μ, c

2

}
. Then, for any r ∈ (ε − δ′, ε) ∩ (0,+∞), we have

δ′ < δ(r),

and thus

(x, y) ∈ OT (x0) × OT (x0), r ≤ D(x, y) < r + δ′ =⇒ D(Tx, Ty) < r. (3.7)

Now, let n ≥ N be fixed, and let r ∈ (ε − δ′, ε) ∩ (0,+∞) be fixed. Let
(k, l) ∈ N

∗ × N
∗ be such that k ≥ n and l ≥ n. From (3.6), we have

D(T kx0, T
lx0) ≤ ε.

We distinguish two cases.
Case 1: r < D(T kx0, T

lx0) ≤ ε. In this case, from (3.7), we obtain

D(T k+1x0, T
l+1x0) < r.

Case 2: D(T kx0, T
lx0) ≤ r. In this case, using Lemmas 2.1 and (3.4), we

obtain

D(T k+1x0, T
l+1x0) ≤ D(T kx0, T

lx0) ≤ r.

In consequence, we deduce that

δn+1 ≤ r < ε, n ≥ N,

which contradicts (3.6). Hence, (3.5) holds.
Next, let α > 0 be fixed. From (3.5), there exists some q ∈ N such that

n ≥ q =⇒ δn < α.

Therefore, we have

i, j ≥ q =⇒ D(T ix0, T
jx0) ≤ δq < α.

Then

lim
i,j→+∞

D(T ix0, T
jx0) = 0,

which proves that {Tnx0} is a D-Cauchy sequence. Since (X,D) is D-complete,
there exists some ω ∈ OT (x0) such that

lim
n→+∞ D(Tnx0, ω) = 0. (3.8)

On the other hand, by Lemmas 2.1 and (3.4), we have

0 ≤ D(Tn+1x0, Tω) ≤ D(Tnx0, ω), n ∈ N.

Passing to the limit as n → +∞ and using (3.8), we get

lim
n→+∞ D(Tn+1x0, Tω) = 0.

By uniqueness of the limit, we obtain ω = Tω, i.e., ω is a fixed point of T .
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Next, suppose that ω′ ∈ OT (x0) is a fixed point of T such that D(ω, ω′) <
+∞. If D(ω, ω′) > 0, then by Lemma 2.1 (see the proof of Lemma 2.1 in the
case 0 < D(x, y) < +∞) we have

D(ω, ω′) = D(Tω, Tω′) < D(ω, ω′),

which is a contradiction. Therefore, D(ω, ω′) = 0, which implies from the
property (D1) that ω = ω′. �

Note that in the absence of the condition (2.5), the result given by
Theorem 3.1 is not valid. The following example shows this fact.

Example 3.1. Let (X,D) be the JS-metric space defined in Example 2.1. We
proved previously that (X,D) is a D-complete JS-metric space. Define the
mapping T : X → X by

Ti = i + 1, i ∈ X.

Note that for any (i, j) ∈ X × X, we have D(i, j) > 0. Therefore, (3.4) is
satisfied. Moreover, for any (i, j) ∈ X × X, we have D(i, j) < 2. Therefore,

δ(D,T, i) < 2 < +∞, i ∈ X.

Next, let ε > 0 be fixed. We consider two possible cases.
Case 1: ε ≥ 2. In this case, there are no (i, j) ∈ X ×X satisfying D(i, j) ≥ ε.
Case 2: 0 < ε < 2. In this case, it can be easily seen that

ak(ε)+1 < ε ≤ ak(ε),

where k(ε) ∈ Z is given by

k(ε) =

⎧
⎪⎨
⎪⎩

[
1
ε

] − 1 if 0 < ε ≤ 1,

[
1 − 1

2−ε

]
if 1 < ε < 2.

Let δ : (0,+∞) → (0,+∞) be the function defined by

δ(r) =

⎧
⎨
⎩

ak(r)−1 − r if 0 < r < 2,
3 − r if 2 ≤ r < 3,
c if r > 3,

where c > 0 is a fixed real number. Next, if

ε ≤ D(i, j) < ε + δ(ε) = ak(ε)−1,

then D(i, j) = ak(ε), which implies from (2.3) that

D(Ti, T j) = D(i + 1, j + 1) = ak(ε)+1 < ε.

In consequence, we deduce that for any ε > 0, we have

(i, j) ∈ X × X, ε ≤ D(i, j) < ε + δ(ε) =⇒ D(Ti, T j) < ε.

Therefore, (2.4) is satisfied with Y = OT (i), for any i ∈ X. On the other
hand, we have

lim inf
r↑3

δ(r) = 0.

Thus, the condition (2.5) is not satisfied. Note that the set of fixed points of
T is empty.
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3.2. Existence of fixed points for the class of strong generalized Meir–Keeler
contractions

Lemma 3.2. Let (X,D) be a JS-metric space and let T : X −→ X be a strong
generalized Meir–Keeler contraction on OT (x0), where x0 ∈ X. If δn 
→ 0 as
n → +∞, then there exists N ∈ N

∗ and Δ ∈ (0,+∞] such that

δn = δn+1 = · · · = Δ, n ≥ N.

Proof. As in the proof of Lemma 3.1, without restriction of the generality,
we may suppose that there exists n0 ∈ N such that δn0 < +∞. In this case,
we have

δn+1 ≤ δn ≤ δn0 < +∞, n ≥ n0.

Then, there exists some Δ > 0 such that

δn ↓ Δ as n → +∞.

Since T is a strong generalized Meir–Keeler contraction on OT (x0), there
exists δ := δΔ > 0 such that

(x, y) ∈ OT (x0) × OT (x0), Δ ≤ MT,p(x, y) < Δ + δ =⇒ D(T px, T py) < Δ,

that is, for all (k, l) ∈ N × N,

Δ ≤ max{D(T ix0, T
jx0); (i, j) ∈ [k, k + p] ∪ [l, l + p]} < Δ + δ

=⇒ D(T k+px0, T
l+px0) < Δ. (3.9)

On the other hand, there exists n1 > n0 such that

Δ ≤ δn < Δ + δ, n ≥ n1.

We distinguish two possible cases.
Case 1: δn1 = Δ. In this case, we have

δn = δn+1 = · · · = Δ, n ≥ n1.

Case 2: Δ < δn1 < Δ + δ. Let

An1 = {(k, l) : Δ < MT,p(T kx0, T
lx0) < Δ + δ, k ≥ n1, l ≥ n1},

Bn1 = {(k, l) : 0 ≤ MT,p(T kx0, T
lx0) ≤ Δ, k ≥ n1, l ≥ n1}.

Let (k, l) ∈ N × N be such that k ≥ n1 and l ≥ n1. If (k, l) ∈ An1 , then from
(3.9) we have

D(T k+px0, T
l+px0) < Δ.

If (k, l) ∈ Bn1 , by Lemma 2.2, we have

D(T k+px0, T
l+px0) ≤ MT,p(T kx0, T

lx0) ≤ Δ.

Therefore,

D(T ix0, T
jx0) ≤ Δ, i, j ≥ n1 + p,

which yields

δn1+p = Δ,
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and thus by the same reason stated in Case 1, we have

δn = δn+1 = · · · = Δ, n ≥ n1 + p.

The lemma is proved. �

We have the following fixed point result for the class of strong general-
ized Meir–Keeler contractions.

Theorem 3.2. Let (X,D) be a complete JS-metric space, and let T : X → X
be a strong generalized Meir–Keeler contraction on OT (x0), for some x0 ∈
X. Suppose that δ(D,T, x0) < +∞ and T is continuous on OT (x0). Then,
{Tnx0} is D-convergent to some ω ∈ OT (x0), where ω is a fixed point of T .

Proof. Suppose that δn 
→ 0 as n → +∞. Then by Lemma 3.2, there exists
N ∈ N

∗ and ε ∈ (0,+∞] such that

δn = δn+1 = · · · = ε, n ≥ N.

Since δ(D,T, x0) < +∞, then 0 < ε < +∞. Let

c = lim inf
r↑ε

δ(r).

From (2.5), we know that 0 < c < +∞. Then, there exists some μ > 0 such
that

δ(r) >
c

2
, r ∈ (ε − μ, ε) ∩ (0,+∞).

Let δ′ = min
{
μ, c

2

}
. Then, for any r ∈ (ε − δ′, ε) ∩ (0,+∞), we have

δ′ < δ(r),

and thus

(x, y) ∈ OT (x0) × OT (x0), r ≤ MT,p(x, y) < r + δ′ =⇒ D(T px, T py) < r.

Now, let n ≥ N be fixed, and let r ∈ (ε − δ′, ε) ∩ (0,+∞) be fixed. Let
(k, l) ∈ N

∗ × N
∗ be such that k ≥ n and l ≥ n. Then, we have

MT,p(T kx0, T
lx0) ≤ δn = ε.

We distinguish two cases.
Case 1: r < MT,p(T kx0, T

lx0) ≤ ε. In this case, we obtain

D(T k+px0, T
l+px0) < r.

Case 2: MT,p(T kx0, T
lx0) ≤ r. In this case, using Lemma 2.2, we obtain

D(T k+px0, T
l+px0) ≤ MT,p(T kx0, T

lx0) ≤ r.

In consequence, we deduce that

ε = δn+p ≤ r < ε, n ≥ N,

which is a contradiction. Therefore, we proved that

lim
n→+∞ δn = 0,
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which implies that {Tnx0} is a D-Cauchy sequence. Since (X,D) is D-
complete, there exists some ω ∈ OT (x0) such that

lim
n→+∞ D(Tnx0, ω) = 0.

Since T is continuous on OT (x0), we have

lim
n→+∞ D(Tn+1x0, Tω) = 0,

ss which implies by the uniqueness of the limit that ω = Tω, i.e., ω is a fixed
point of T . �

4. Some consequences

In this section, some fixed point results are deduced from the obtained results
in Sect. 3.

The following results are consequences of Theorem 3.1.

Corollary 4.1. Let (X,D) be a complete JS-metric space, and let T : X → X

be a k-contraction on OT (x0), for some x0 ∈ X, that is,

D(Tx, Ty) ≤ kD(x, y), (x, y) ∈ OT (x0) × OT (x0),

where k ∈ (0, 1) is a constant. Suppose that δ(D,T, x0) < +∞. Then, {Tnx0}
is D-convergent to some ω ∈ OT (x0), where ω is a fixed point of T . Moreover,
if ω′ ∈ OT (x0) is a fixed point of T such that D(ω, ω′) < +∞, then ω = ω′.

Proof. First, it can be easily seen that the condition (3.4) of Theorem 3.1 is
satisfied. On the other hand, from Example 2.2, we know that T is a strong
Meir–Keeler contraction on OT (x0). Therefore, the desired results follow from
Theorem 3.1. �

Remark 4.1. Corollary 4.1 is a generalization of [8, Theorem 3.3], where the
contraction was supposed to be satisfied for every pair of points (x, y) ∈
X × X.

Corollary 4.2. Let (X,D) be a complete JS-metric space and let T : X → X
be a mapping satisfying

(x, y) ∈ OT (x0) × OT (x0), D(x, y) = 0 =⇒ D(Tx, Ty) = 0

and

(x, y) ∈ OT (x0) × OT (x0), 0 < D(x, y) < +∞ =⇒ D(Tx, Ty) < ϕ(D(x, y)),

where x0 ∈ X and ϕ ∈ Φ (the set of functions defined in Example 2.3).
Suppose that δ(D,T, x0) < +∞. Then, {Tnx0} is D-convergent to some
ω ∈ OT (x0), where ω is a fixed point of T . Moreover, if ω′ ∈ OT (x0) is a
fixed point of T such that D(ω, ω′) < +∞, then ω = ω′.

Proof. From Example 2.3, we know that T is a strong Meir–Keeler con-
traction on OT (x0). Therefore, applying Theorem 3.1, we obtain the desired
results.
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The next fixed point results follow from Theorem 3.2.

Corollary 4.3. Let (X,D) be a complete JS-metric space and let T : X → X
be a generalized k-contraction on OT (x0), for some x0 ∈ X, that is,

D(T px, T py) ≤ kMT,p(x, y), (x, y) ∈ OT (x0) × OT (x0),

where k ∈ (0, 1) is a constant. Suppose that δ(D,T, x0) < +∞ and T is
continuous on OT (x0). Then, {Tnx0} is D-convergent to some ω ∈ OT (x0),
where ω is a fixed point of T .

Proof. From Example 2.4, we know that T is a strong generalized Meir–
Keeler contraction on OT (x0). Therefore, the result follows from Theorem
3.2. �
Corollary 4.4. Let (X,D) be a complete JS-metric space and let T : X → X
be a mapping satisfying

(x, y) ∈ OT (x0) × OT (x0), 0 < MT,p(x, y) < +∞ =⇒ D(Tpx, Tpy) < ϕ(MT,p(x, y)),

where x0 ∈ X and ϕ ∈ Φ. Suppose that δ(D,T, x0) < +∞ and T is contin-
uous on OT (x0). Then, {Tnx0} is D-convergent to some ω ∈ OT (x0), where
ω is a fixed point of T .

Proof. From Example 2.5, we know that T is a strong generalized Meir–
Keeler contraction on OT (x0). Therefore, applying Theorem 3.2, we get the
desired result. �

Next, using an argument of Samet [19], we will show that it is possible
to deduce easily an extension of Ran-Reurings fixed point theorem [15] to a
dislocated metric space, which is a particular JS-metric space.

First, recall that a mapping d : X × X → [0,+∞) is said to be a dislo-
cated metric on X (see [6]) if the following conditions are satisfied:
(d1) (x, y) ∈ X × X, d(x, y) = 0 =⇒ x = y.
(d2) d(x, y) = d(y, x), for all (x, y) ∈ X × X.
(d3) d(x, y) ≤ d(x, z) + d(z, y), for all (x, y, z) ∈ X × X × X.
Clearly, any dislocated metric on X is a JS-metric on X with C = 1 (see [8]).
Moreover, we have

lim
n→+∞ d(xn, x) = lim

n→+∞ d(yn, y) = 0 =⇒ lim
n→+∞ d(xn, yn) = d(x, y).

Let (X, d) be a dislocated metric space and let � be a certain partial
order on X.

We say that T : X → X is non-decreasing with respect to � if

(x, y) ∈ X × X, x � y =⇒ Tx � Ty.

We have the following result, which can be deduced from Corollary 4.1.

Corollary 4.5. Let (X, d) be a complete dislocated metric space. Suppose that
X is partially ordered by a certain binary relation �. Let T : X → X be a
continuous mapping and non-decreasing with respect to �. Suppose that there
exists 0 < k < 1 such that

(x, y) ∈ X × X, x � y =⇒ d(Tx, Ty) ≤ kd(x, y).
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Suppose also that there exists a certain x0 ∈ X such that x0 � Tx0. Then,
{Tnx0} is d-convergent to a fixed point of T .

Proof. Let (x, y) ∈ OT (x0) × OT (x0). There exists a sequence {Tnkx0} ⊂
OT (x0) such that

lim
k→+∞

d(Tnkx0, x) = 0.

Similarly, there exists a sequence {Tnlx0} ⊂ OT (x0) such that

lim
l→+∞

d(Tnlx0, y) = 0.

fyin, since T is non-decreasing with respect to �, and x0 � Tx0, we have

x0 � Tx0 � T 2x0 � · · · � Tnx0 � Tn+1x0 � · · ·
Therefore, for every (k, l) ∈ N × N, we have

Tnkx0 � Tnlx0 or Tnlx0 � Tnkx0.

Hence, by symmetry of d (see the condition (d2)), we have

d(Tnk+1x0, T
nl+1x0) ≤ kd(Tnkx0, T

nlx0), (k, l) ∈ N × N.

Fixing l ∈ N, and passing to the limit as k → +∞, by the continuity of T ,
we obtain

d(Tx, Tnl+1x0) ≤ kd(x, Tnlx0), l ∈ N.

Next, passing to the limit as k → +∞, and using again the continuity of T ,
we obtain

d(Tx, Ty) ≤ kd(x, y).

Therefore, we have

d(Tx, Ty) ≤ kd(x, y), (x, y) ∈ OT (x0) × OT (x0).

Moreover, using the condition (d3), it can be easily seen that

δ(d, T, x0) < +∞.

Finally, applying Corollary 4.1, we obtain the desired result. �
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