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Abstract. The aim of this paper is to introduce and solve the following
generalized radical cubic functional equation
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x3
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⎞
⎠ =

k∑
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f(xi), k ∈ N2.

We also investigate some hyperstability results for this equation in non-
Archimedean Banach spaces.
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1. Introduction

Throughout this paper, we will denote the set of natural numbers by N,
N0 := N ∪ {0}, Nm the set of natural numbers greater than or equal to m,
R+ = [0,∞), R0 = R\{0} and we write BA to mean the family of all functions
mapping from a nonempty set A into a nonempty set B. Let us recall (see, for
instance, [22]) some basic definitions and facts concerning non-Archimedean
normed spaces.

Definition 1.1. By a non-Archimedean field, we mean a field K equipped with
a function (valuation) | · | : K → [0,∞) such that for all r, s ∈ K, the following
conditions hold:
(1) |r| = 0 if and only if r = 0,
(2) |rs| = |r||s|,
(3) |r + s| ≤ max

{
|r|, |s|

}
.
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The pair (K, | · |) is called a valued field.

In any non-Archimedean field we have |1| = | − 1| = 1 and |n| ≤ 1 for
n ∈ N0. In any field K the function | · | : K → R+ given by

|x| :=
{

0, x = 0,
1, x �= 0,

is a valuation which is called trivial, but the most important examples of
non-Archimedean fields are p-adic numbers which have gained the interest of
physicists for their research in some problems coming from quantum physics,
p-adic strings and superstrings.

Definition 1.2. Let X be a vector space over a scalar field K with a non-
Archimedean non-trivial valuation | · |. A function || · ||∗ : X → R is a non-
Archimedean norm (valuation) if it satisfies the following conditions:
(1) ‖x‖∗ = 0 if and only if x = 0,
(2) ‖rx‖∗ = |r| ‖x‖∗ (r ∈ K, x ∈ X),
(3) The strong triangle inequality (ultrametric); namely

‖x + y‖∗ ≤ max
{
‖x‖∗, ‖y‖∗

}
x, y ∈ X.

Then (X, ‖ · ‖∗) is called a non-Archimedean normed space or an ultrametric
normed space.

Definition 1.3. Let {xn} be a sequence in a non-Archimedean normed space
X.
(1) A sequence{xn}∞

n=1 in a non-Archimedean space is a Cauchy sequence
if and only if the sequence {xn+1 − xn}∞

n=1 converges to zero;
(2) The sequence {xn} is said to be convergent if there exists x ∈ X such

that, for any ε > 0, there is a positive integer N such that ‖xn−x‖∗ ≤ ε,
for all n ≥ N . Then, the point x ∈ X is called the limit of the sequence
{xn}, which is denoted by limn→∞xn = x;

(3) If every Cauchy sequence in X converges, then the non-Archimedean
normed space X is called a non-Archimedean Banach space or an ultra-
metric Banach space.

The stability of functional equations has been a very popular subject
of investigations for nearly the last fifty years. There are hundreds of papers
and many books published over the last fifty years on this important issue.
Its main motivation was given by Ulam [28] in his talk at the University of
Wisconsin.

Ulam’s Problem 1940:
Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group with a metric d(., .).
Given ε > 0, does there exist a δ > 0 such that if a mapping h : G1 → G2

satisfies the inequality

d
(
h(x ∗1 y), h(x) ∗2 h(y)

)
< δ

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d
(
h(x),H(x)

)
< ε

for all x ∈ G1?
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In 1941, Hyers [20] gave the first answer to this question, in the case of
Banach space. The next theorem is an example of the most classical results.

Theorem 1.4. [20] Let E1 and E2 be two Banach spaces and f : E1 → E2 be
a mapping such that

‖f(x + y) − f(x) − f(y)‖ ≤ δ

for some δ > 0 and for all x, y ∈ E1. Then, the limit

A(x) := lim
n→∞ 2−nf(2nx)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive mapping such
that

‖f(x) − A(x)‖ ≤ δ

for all x ∈ E1.

Aoki [5] and Bourgin [7] considered the stability problem with unboun-
ded Cauchy differences. In 1978, Rassias [26] provided a generalization of
Hyers’ theorem by proving the existence of unique linear mappings near
approximate additive mappings. It was shown by Gajda [17], as well as by
Rassias and Šemrl [27] that one cannot prove a stability theorem of the
additive equation for a specific function. Găvruţa [18] obtained a generalized
result of Rassias’ theorem which allows the Cauchy difference to be controlled
by a general unbounded function.

The hyperstability is the notion which is strictly connected with the
well-known issue of Ulam’s stability for various equations.

Definition 1.5. Let X be a nonempty set, (Y, d) be a metric space, ε ∈ R
Xn

+

and F1, F2 be operators mapping from a nonempty set D ⊂ Y X into Y Xn

.
We say that the operator equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn), (x1, . . . , xn ∈ X) (1.1)

is ε-hyperstable provided that every ϕ0 ∈ D which satisfies

d (F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)) ≤ ε(x1, . . . , xn), (x1, . . . , xn ∈ X)

fulfills (1.1).

For further information concerning the notion of hyperstability, we refer
to the survey paper [14]. Recently, the stability problem of the radical func-
tional equations in various spaces was proved in [1–3,15,16,21,23].

In this paper, we achieve the general solutions of the following general-
ized radical cubic functional equation:

f

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠ =

k∑
i=1

f(xi), k ∈ N2 (1.2)

and discuss the Hyers–Ulam stability problem in non-Archimedean Banach
spaces using Brzdȩk’s fixed point result.
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2. Fixed point theorem

Brzdȩk et al. [8] proved the fixed point theorem for a nonlinear operator in
metric spaces and used this result to study the Hyers–Ulam stability of some
functional equations in non-Archimedean metric spaces. They also obtained
the fixed point result in arbitrary metric spaces as follows:

Theorem 2.1. [8] Let X be a nonempty set, (Y, d) be a complete metric space,
and Λ : Y X → Y X be a non-decreasing operator satisfying the hypothesis

lim
n→∞ Λδn = 0

for every sequence {δn}n∈N in Y X with

lim
n→∞ δn = 0.

Suppose that T : Y X → Y X is an operator satisfying the inequality

d
(
T ξ(x), T μ(x)

)
≤ Λ
(
Δ(ξ, μ)

)
(x), ξ, μ ∈ Y X , x ∈ X,

where Δ : Y X × Y X → R
X
+ is a mapping which is defined by

Δ(ξ, μ)(x) := d
(
ξ(x), μ(x)

)
ξ, μ ∈ Y X , x ∈ X.

If there exist functions ε : X → R+ and ϕ : X → Y such that

d
(
(T ϕ)(x), ϕ(x)

)
≤ ε(x)

and
ε∗(x) :=

∑
n∈N0

(
Λnε
)
(x) < ∞

for all x ∈ X, then the limit

lim
n→∞

(
(T nϕ)

)
(x) (2.1)

exists for each x ∈ X. Moreover, the function ψ ∈ Y X defined by

ψ(x) := lim
n→∞

(
(T nϕ)

)
(x) (2.2)

is a fixed point of T with

d
(
ϕ(x), ψ(x)

)
≤ ε∗(x) (2.3)

for all x ∈ X.

In 2013, Brzdȩk [9] gave the fixed point result by applying Theorem 2.1
as follows:

Theorem 2.2. [9] Let X be a nonempty set, (Y, d) be a complete metric space,
f1, . . . , fr : X → X and L1, . . . , Lr : X → R+ be given mappings. Suppose
that T : Y X → Y X and Λ : R

X
+ → R

X
+ are two operators satisfying the

conditions

d
(
T ξ(x), T μ(x)

)
≤

r∑
i=1

Li(x)d
(
ξ
(
fi(x)

)
, μ
(
fi(x)

))
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for all ξ, μ ∈ Y X , x ∈ X and

Λδ(x) :=
r∑

i=1

Li(x)δ
(
fi(x)

)
, δ ∈ R

X
+ , x ∈ X.

If there exist functions ε : X → R+ and ϕ : X → Y such that

d
(
T ϕ(x), ϕ(x)

)
≤ ε(x)

and

ε∗(x) :=
∞∑

n=0

(
Λnε
)
(x) < ∞

for all x ∈ X, then the limit (2.1) exists for each x ∈ X. Moreover, the
function (2.2) is a fixed point of T with (2.3) for all x ∈ X.

Using this theorem, Brzdȩk [9] improved, extended and complemented
several earlier classical stability results concerning the additive Cauchy equa-
tion. Over the last few years, many mathematicians have investigated various
generalizations, extensions and applications of the Hyers–Ulam stability of
a number of functional equations (see, for instance, [4,6,8–10,19,24,25] and
references therein).

Thanks to a result due to Brzdȩk and Ciepliñski [13, Remark 2], we state
an analogue of Theorem 2.2 in non-Archimedean Banach spaces. We use it
to assert the existence of a unique fixed point of operator T : Y X −→ Y X .

Theorem 2.3. Let X be a nonempty set,
(
Y, ‖ · ‖∗

)
be a non-Archimedean

Banach space, f1, . . . , fk : X → X and L1, . . . , Lk : X → R+ be given
mappings. Suppose that T : Y X → Y X and Λ : RX

+ → R
X
+ are two operators

satisfying the conditions
∥∥T ξ(x) − T μ(x)

∥∥
∗ ≤ max

1≤i≤k

{
Li(x)

∥∥∥ξ
(
fi(x)

)
− μ
(
fi(x)

)∥∥∥
∗

}
,

for all ξ, μ ∈ Y X , x ∈ X and

Λδ(x) := max
1≤i≤k

{
Li(x)δ

(
fi(x)

)}
, δ ∈ R

X
+ , x ∈ X. (2.4)

If there exist functions ε : X → R+ and ϕ : X → Y such that
∥∥∥T ϕ(x) − ϕ(x)

∥∥∥
∗

≤ ε(x), x ∈ X, z ∈ Y

and
lim
n→∞ Λnε(x) = 0, x ∈ X.

Then, there exists a unique fixed point ψ ∈ Y X of T with

‖ϕ(x) − ψ(x)‖∗ ≤ sup
n∈N0

Λnε(x), x ∈ X.

Moreover,
ψ(x) := lim

n→∞ T nϕ(x), x ∈ X.
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3. Solution of generalized radical cubic functional Eq.(1.2)

In this section, we give the general solution of the functional Eq. (1.2). The
following theorem can be derived from the results in [11] (see also [12]).

Theorem 3.1. Let Y be a linear space. A mapping f : R → Y satisfies the
functional Eq. (1.2) if and only if

f(x) = F (x3), x ∈ R, (3.1)

with some additive mapping F : R → Y .

Proof. Indeed, it is not hard to check without any problem that if f : R → Y
satisfies (3.1), then it is a solution of (1.2).

On the other hand, if f : R → Y is a solution of (1.2), then [11, Theorem
2.1] implies that f(x) = F0(x3) for x ∈ R, where F0 is a solution to the
functional equation

F0

(
k∑

i=1

xi

)
=

k∑
i=1

F0(xi)

for all xi ∈ R with i = 1, 2, . . . , k. It is easily seen that F0 is additive and this
completes the proof. �

4. New hyperstability results for the generalized radical cubic
functional Eq. (1.2)

In the following theorem, we use Theorem 2.3 to investigate the Hyers–
Ulam stability of the generalized radical cubic functional Eq. (1.2) in non-
Archimedean Banach spaces. Hereafter, we assume that

(
Y, ‖ · ‖∗

)
is a non-

Archimedean Banach space.

Theorem 4.1. Let hi : R0 → R+ be functions such that

U :=

{
n ∈ N : αn := max

{
k∏

i=1

λi

(
(k − 1)n3 + 1

)
, (k − 1)

k∏
i=1

λi(n3)

}

< 1} �= φ (4.1)

is an infinite set, where

λi(n) := inf
{

t ∈ R+ : hi(nx3) ≤ t hi(x3), x ∈ R0

}

for all n ∈ N, with i = 1, 2, . . . , k such that

lim
n→∞

k−1∏
i=1

λi(n) = 0.

Assume that f : R → Y satisfies f(0) = 0 and the inequality
∥∥∥∥∥∥
f

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠−

k∑
i=1

f(xi)

∥∥∥∥∥∥
∗

≤
k∏

i=1

hi(x3
i ) (4.2)

for all xi ∈ R0 with i = 1, 2, . . . , k, then (1.2) holds.
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Proof. For i = 1, 2, . . . , (k − 1), replacing xi with mx and xk with x, where
xi ∈ R0 and m ∈ N, in (4.2), we get
∥∥∥∥f
(

3

√(
(k − 1)m3 + 1

)
x3

)
− (k − 1)f(mx) − f(x)

∥∥∥∥
∗

≤ hk(x3)
k−1∏
i=1

hi(m3x3)

(4.3)
for all x ∈ R0. For each m ∈ N, we define the operator Tm : Y R → Y R by

Tmξ(x) := ξ

(
3

√(
(k − 1)m3 + 1

)
x3

)
− (k − 1)ξ(mx), ξ ∈ Y R, x ∈ R0.

Further, put

εm(x) := hk(x3)
k−1∏
i=1

hi(m3x3), x ∈ R0 (4.4)

and observe that

εm(x) = hk(x3)
k−1∏
i=1

hi(m3x3) ≤
k−1∏
i=1

λi(m3)
k∏

i=1

hi(x3), x ∈ R0, m ∈ N.

(4.5)
Then, (4.3) takes the form

∥∥Tmf(x) − f(x)
∥∥

∗ ≤ εm(x), x ∈ R0.

Furthermore, for every x ∈ R0, ξ, μ ∈ Y R, we obtain
∥∥∥Tmξ(x) − Tmμ(x)

∥∥∥
∗

=
∥∥∥ξ
(

3

√(
(k − 1)m3 + 1

)
x3

)
− (k − 1)ξ(mx)

− μ

(
3

√(
(k − 1)m3 + 1

)
x3

)
+ (k − 1)μ(mx)

∥∥∥
∗

≤ max
{∥∥∥(ξ − μ)

(
3

√(
(k − 1)m3 + 1

)
x3

)∥∥∥
∗

,

(k − 1)
∥∥∥(ξ − μ)(mx)

∥∥∥
∗

}
.

This brings us to define the operator Λm : RR
+ → R

R
+ by

Λmδ(x) := max
{

δ

(
3

√(
(k − 1)m3 + 1

)
x3

)
, (k − 1)δ(mx)

}
,

δ ∈ R
R

+, x ∈ R0.

For each m ∈ N, the above operator has the form described in (2.4) with

f1(x) = 3

√(
(k − 1)m3 + 1

)
x3, f2(x) = mx and L1(x) = 1, L2(x) = k − 1

for all x ∈ R0. By the mathematical induction, we will show that for each
x ∈ R0, n ∈ N0, and m ∈ U , we have

Λn
mεm(x) ≤

k−1∏
i=1

λi(m3)αn
m

k∏
i=1

hi(x3), (4.6)
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where αn
m is given by (4.1). From (4.4) and (4.5), we obtain that the inequality

(4.6) holds for n = 0. Next, we will assume that (4.6) holds for n = r, where
r ∈ N. Then, we have

Λr+1
m εm(x) = Λm (Λr

mεm(x))

= max
{

Λr
mεm

(
3

√(
(k − 1)m3 + 1

)
x3

)
, (k − 1)Λr

mεm(mx)
}

≤ max

{
k−1∏
i=1

λi(m3)αr
m

k∏
i=1

hi

((
(k − 1)m3 + 1

)
x3
)
,

(k − 1)
k−1∏
i=1

λi(m3)αr
m

k∏
i=1

hi(m3x3)

}

≤
k−1∏
i=1

λi(m3)αr
m

k∏
i=1

hi(x3)max

{
k∏

i=1

λi

(
(k − 1)m3 + 1

)
,

×(k − 1)
k∏

i=1

λi(m3)

}

=
k−1∏
i=1

λi(m3)αr+1
m

k∏
i=1

hi(x3)

for all x ∈ R0 and m ∈ U . This shows that (4.6) holds for n = r +1. Now, we
can conclude that the inequality (4.6) holds for all n ∈ N0. Hence, we obtain

lim
n→∞ Λn

mεm(x) = 0

for all x ∈ R0 and m ∈ U . Thus, according to Theorem 2.3, for each m ∈ U ,
the mapping Qm : R → Y , given by Qm(x) := limn→∞ T n

mf(x) for x ∈ R0

and Qm(0) = 0, is a unique fixed point of Tm, i.e.,

Qm(x) = Qm

(
3

√(
(k − 1)m3 + 1

)
x3

)
− (k − 1)Qm(mx), x ∈ R,m ∈ U .

Moreover,
∥∥f(x) − Qm(x)

∥∥
∗ ≤ sup

n∈N0

Λn
mεm(x), x ∈ X, m ∈ U .

We show that∥∥∥∥∥∥
T n
mf

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠−

k∑
i=1

T n
mf(xi)

∥∥∥∥∥∥
∗

≤ αn
m

k∏
i=1

hi(x3) (4.7)

for each n ∈ N0, m ∈ U and x1, x2, . . . , xk ∈ R0. Since the case n = 0 is just
(4.2), take r ∈ N and assume that (4.7) holds for n = r and every xi ∈ R0

and all m ∈ U . Then, for each xi ∈ R and m ∈ U , we get
∥∥∥∥∥∥
T r+1
m f

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠−

k∑
i=1

T r+1
m f(xi)

∥∥∥∥∥∥
∗
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=

∥∥∥∥∥∥
T r
mf

⎛
⎝ 3

√√√√((k − 1)m3 + 1
) k∑

i=1

x3
i

⎞
⎠

−(k − 1)T r
mf

⎛
⎝m 3

√√√√ k∑
i=1

x3
i

⎞
⎠−

k∑
i=1

T r
mf

(
3

√(
(k − 1)m3 + 1

)
x3
i

)

+(k − 1)
k∑

i=1

T r
mf(mxi)

∥∥∥∥∥
∗

≤ max

⎧⎨
⎩

∥∥∥∥∥∥
T r
mf

⎛
⎝ 3

√√√√((k − 1)m3 + 1
) k∑

i=1

x3
i

⎞
⎠

−
k∑

i=1

T r
mf

(
3

√(
(k − 1)m3 + 1

)
x3
i

)∥∥∥∥∥
∗
,

(k − 1)

∥∥∥∥∥∥
T r
mf

⎛
⎝m 3

√√√√ k∑
i=1

x3
i

⎞
⎠−

k∑
i=1

T r
mf(mxi)

∥∥∥∥∥∥
∗

⎫⎬
⎭

≤ max

{
αr
m

k∏
i=1

hi

((
(k − 1)m3 + 1

)
x3
)

, (k − 1)αr
m

k∏
i=1

hi(m3x3)

}

≤ αr
m

k∏
i=1

hi(x3)max

{
k∏

i=1

λi

((
(k − 1)m3 + 1

))
, (k − 1)

k∏
i=1

λi(m3)

}

= αr+1
m

k∏
i=1

hi(x3).

Thus, by induction, we have shown that (4.7) holds for every xi ∈ R0, n ∈ N0,
and m ∈ U . Letting n → ∞ in (4.7), we obtain the equality

Qm

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠ =

k∑
i=1

Qm(xi), xi ∈ R0,m ∈ U . (4.8)

In this way, for each m ∈ U , we obtain a function Qm such that (4.8) holds
for x1, x2, . . . , xk ∈ R and

∥∥f(x) − Qm(x)
∥∥

∗ ≤ sup
n∈N0

Λn
mεm(x) ≤

k−1∏
i=1

λi(m3)αn
m

k∏
i=1

hi(x3),

for all x ∈ X and all m ∈ U . Since

lim
m→∞

k−1∏
i=1

λi(m) = 0,

it follows, with m → ∞, that f fulfils (1.2). �

According to Theorem 4.1, we derive the following particular case.
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Corollary 4.2. Let Y be a non-Archimedean space, θ ≥ 0 and qi ∈ R with
i = 1, 2, . . . , k such that

∑k
i=1 qi < 0. Suppose that f : R → Y satisfies

f(0) = 0 and the inequality
∥∥∥∥∥∥
f

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠−

k∑
i=1

f(xi)

∥∥∥∥∥∥
∗

≤ θ
k∏

i=1

∣∣x3
i

∣∣qi , xi ∈ R0. (4.9)

Then, f satisfies (1.2) on R.

Proof. The proof follows from Theorem 4.1 by defining hi : R\{0} → R+

by hi(xi) = θi
∣∣xi

∣∣qi with θi ∈ R+ and qi ∈ R such that
∏k

i=1 θi = θ and∑k
i=1 qi < 0.

For each n ∈ N, we have

λi(n) = inf
{
t ∈ R+ : hi(nx3) ≤ t hi(x3), x ∈ R0

}

= inf
{
t ∈ R+ : θi

∣∣nx3
∣∣qi ≤ t θi

∣∣x3
∣∣qi , x ∈ R0

}

= nqi .

Clearly, we can find n0 ∈ N such that
k∏

i=1

λi

(
(k − 1)n3 + 1

)
+ (k − 1)

k∏
i=1

λi(n3) =
(
(k − 1)n3 + 1

)∑k
i=1 qi

+(k − 1)
(
n3
)∑k

i=1 qi
< 1

for all n ≥ n0. Since
∑k

i=1 qi < 0, one of qi must be positive. Assume that
qk > 0. Then,

{
limn→∞

∏k−1
i=1 λi(n) = limn→∞ n

∑k−1
i=1 qi = 0,

limn→∞
∏k

i=1 λi(n) = limn→∞ n
∑k

i=1 qi = 0.

Thus, according to Theorem 4.1, we get the desired result. �

The next corollary proves the hyperstability results for the inhomoge-
neous radical functional equation.

Corollary 4.3. Let θ, qi ∈ R such that θ ≥ 0 and
∑k

i=1 qi < 0. Assume that
G : Rk → Y and f : R → Y satisfy f(0) = 0 and the inequality
∥∥∥∥∥∥
f

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠−

k∑
i=1

f(xi) − G(x1, x2, . . . , xk)

∥∥∥∥∥∥
∗

≤ θ

k∏
i=1

∣∣x3
∣∣qi (4.10)

for all xi ∈ R0. If the functional equation

f

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠ =

k∑
i=1

f(xi) + G(x1, x2, . . . , xk), x1, x2, . . . , xk ∈ R0, (4.11)

has a solution f0 : R → Y , then f is a solution of (4.11).
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Proof. From (4.10), we get that the function K : R → Y defined by K :=
f −f0 satisfies (4.9). Consequently, Corollary 4.2 implies that K is a solution
of the radical functional Eq. (1.2). Therefore,

f

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠−

k∑
i=1

f(xi) − G(x1, x2, . . . , xk)

= K

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠+ f0

⎛
⎝ 3

√√√√ k∑
i=1

x3
i

⎞
⎠

−
k∑

i=1

K(xi) −
k∑

i=1

f0(xi) − G(x1, x2, ..., xk)

= 0

for all x1, x2, . . . , xk ∈ R0, which means that f is a solution of (4.11). �
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