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Abstract. Very recently, Miculescu and Mihail in (J. Fixed Point The-
ory Appl 19:2153–2163, 2017) gave a sufficient condition for Cauchy-
ness on sequences in b-metric spaces. In this paper, we give a weaker
sufficient condition. Also, to show the new sufficient condition is rea-
sonably weak, we give an example. Using the new sufficient condition,
we prove fixed point theorems for set-valued F -contractions in complete
b-metric spaces. We also prove a fixed point theorem for single-valued
F -contractions in complete b-metric spaces.
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1. Introduction

We begin by recalling the concept of a semimetric space.

Definition 1. Let X be a nonempty set and let d be a function from X × X
into [0,∞). Then (X, d) is said to be a semimetric space if the following hold:
(D1) d(x, x) = 0.
(D2) d(x, y) = 0 ⇒ x = y.
(D3) d(x, y) = d(y, x). (symmetry)

The following concept is called a b-metric space or a pseudometric space.

Definition 2. ([2,3]) Let (X, d) be a semimetric space and let K ≥ 1. Then
(X, d,K) is said to be a b-metric space or pseudometric space if the following
hold:
(D4) d(x, z) ≤ K

(
d(x, y) + d(y, z)

)
. (K-relaxed triangle inequality)

We note that in the case where K = 1, every b-metric space is obviously
a metric space. So this concept is a weaker concept than that of metric space.
Very recently, Miculescu and Mihail proved the following lemma. The author
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strongly believes that this lemma will play a very important role in the fixed
point theory.

Lemma 3. (Lemma 2.2 in [6]) Let (X, d,K) be a b-metric space. Let {xn} be
a sequence in X. Assume {d(xn, xn+1)} ∈ O(rn) for some r ∈ (0, 1). Then
{xn} is Cauchy.

Remark. See Definition 5 for the definition of O(rn). To speak exactly, the
assumption in [6] is a little stronger than Lemma 3. However, from the proof
in [6], we can tell that Miculescu and Mihail proved the above lemma in [6].

Wardowski in [11] introduced the concept of F -contraction and proved
the following fixed point theorem.

Theorem 4. (Theorem 2.1 in Wardowski [11]) Let (X, d) be a complete metric
space and let T be a F-contraction on X, that is, there exist a function F
from (0,∞) into R and real numbers τ ∈ (0,∞) and k ∈ (0, 1) satisfying the
following :
(F1) F is strictly increasing.
(F2) For any sequence {αn} of positive numbers, limn αn = 0 ⇔

limn F (αn) = −∞.
(F3) lim[tk F (t) : t → +0] = 0.
(F4) τ + F ◦ d(Tx, Ty) ≤ F ◦ d(x, y) for any x, y ∈ X with Tx 
= Ty.
Then T has a unique fixed point z. Moreover, {Tnx} converges to z for all
x ∈ X.

In this paper, we generalize Lemma 3 (see Lemma 11). To show that
the assumption of Lemma 11 is reasonably weak, we give an example (see
Example 26). Using Lemma 11 essentially, we prove fixed point theorems
(Theorems 13 and 14) for set-valued F -contractions in complete b-metric
spaces. We also prove a fixed point theorem (Theorem 23) for single-valued
F -contractions in complete b-metric spaces.

2. Preliminaries

Throughout this paper, we denote by N the set of all positive integers and by
R the set of all real numbers. For an arbitrary set A, we also denote by #A
the cardinal number of A. For t ∈ R, we denote by [t] the maximum integer
not exceeding t.

Definition 5. Let {an} be a sequence in [0,∞) and let {bn} be a sequence in
(0,∞). Then we write {an} ∈ O(bn) if there exists C > 0 satisfying an ≤ C bn

for all n ∈ N.

The following proposition is well known and is easily proved.

Proposition 6. Let r, s ∈ (0, 1) satisfy r < s and let α, β ∈ (1,∞) satisfy
α < β. Then the following hold :

(i) O(rn) ⊂ O(n−α).
(ii) {n−α} 
∈ O(rn).
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(iii) O(rn) ⊂ O(sn).
(iv) {sn} 
∈ O(rn).
(v) O(n−β) ⊂ O(n−α).
(vi) {n−α} 
∈ O(n−β).

Definition 7. Let (X, d) be a semimetric space, let {xn} be a sequence in X
and let x ∈ X.

• {xn} is said to converge to x if limn d(xn, x) = 0.
• {xn} is said to be Cauchy if limn sup{d(xn, xm) : m > n} = 0.
• X is said to be Hausdorff if limn d(xn, x) = 0 and limn d(xn, y) = 0

imply x = y.
• X is said to be complete if every Cauchy sequence converges.

In general, not every semimetric space is metrizable. However, it is well
known that every b-metric space is metrizable. So we can define the closed-
ness. See Proposition 14.5 in [3] and others.

Definition 8. Let (X, d,K) be a b-metric space. Let A be a subset of X.

• A is said to be closed if for any convergent sequence in A, its limit
belongs to A.

• A is said to be bounded if sup{d(x, y) : x, y ∈ A} < ∞.

Let (X, d,K) be a b-metric space and let CB(X) be the set of all
nonempty, bounded and closed subsets of X. For x ∈ X and any subset A
of X, we define d(x,A) = inf{d(x, y) : y ∈ A}. Then the Hausdorff–Pompeiu
metric H with respect to d is defined by

H(A,B) = max
{
sup{d(u,B) : u ∈ A}, sup{d(v,A) : v ∈ B}}

for all A,B ∈ CB(X).

Lemma 9. Define a function f from N into N ∪ {0} by

f(n) = −[− log2 n]. (1)

Then the following hold:

(i) 2k−1 < n ≤ 2k ⇔ f(n) = k for any n ∈ N and k ∈ N ∪ {0}.
(ii) (Lemma 7 in [8]) f is nondecreasing.

Proof. Obvious. �

Lemma 10. (Lemma 5 in [8]) Let (X, d,K) be a b-metric space. Define f by
(1). For n ∈ N and (x0, . . . , xn) ∈ Xn+1,

d(x0, xn) ≤ Kf(n)
n−1∑

j=0

d(xj , xj+1)

holds.
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3. Lemmas

In this section, we prove two lemmas, which are used in Sect. 4. We first
generalize Lemma 3.

Lemma 11. Let (X, d,K) be a b-metric space. Let {xn} be a sequence in X.
Assume

{d(xn, xn+1)} ∈
⋃

{O(n−β) : β > 1 + log2 K}.

Then {xn} is Cauchy.

Remark. We do not know that the above assumption is best possible. How-
ever, at least, we can tell that the number 1 + log2 K is best possible. See
Example 26 below. There exists a sequence {xn} in a b-metric space (X, d,K)
such that {xn} is not Cauchy and {d(xn, xn+1)} ∈ O(n−(1+log2 K)) holds.

Proof. From the assumption, there exist β > 1+log2 K and C > 0 satisfying

d(xn, xn+1) ≤ C n−β

for any n ∈ N. We note 2K < 2β . Choose μ ∈ N satisfying 2K1+1/μ < 2β .
Then we have

2μ Kμ+1 < 2μ β and hence Kμ+1 2μ (1−β) < 1. (2)

Define a function h from N into itself by

h(n):=2 +
2μ n − 1
2μ − 1

= 2 +
n−1∑

j=0

2μ j .

For k,m, n ∈ N with h(k) ≤ m < n ≤ h(k +1), we have by Lemmas 9 and 10

d(xm, xn) ≤ Kf(n−m)
n−1∑

j=m

d(xj , xj+1) (3)

≤ Kf
(
h(k+1)−h(k)

) h(k+1)−1∑

j=h(k)

d(xj , xj+1)

= Kf(2µ k)

h(k+1)−1∑

j=h(k)

d(xj , xj+1)

= Kμ k

h(k+1)−1∑

j=h(k)

d(xj , xj+1)

≤ C Kμ k

h(k+1)−1∑

j=h(k)

j−β

≤ C Kμ k

∫ h(k+1)−1

h(k)−1

t−β dt

≤ C Kμ k

∫ h(k+1)−2+1/(2µ−1)

h(k)−2+1/(2µ−1)

t−β dt
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=
C Kμ k

1 − β

[
t1−β

] 2µ (k+1)/(2µ−1)

2µ k/(2µ−1)

= C Kμ k 1 − 2μ (1−β)

β − 1
(2μ − 1)β−1 2μ k (1−β)

= M (K 21−β)μ k,

where we put M :=C (1 − 2μ (1−β)) (2μ − 1)β−1/(β − 1) > 0. Since

(K 21−β)μ = Kμ+1 2μ (1−β)/K < 1/K ≤ 1

holds by (2), we note

lim
k→∞

M (K 21−β)μ k = 0. (4)

For k, �,m, n ∈ N with k < �, h(k) ≤ m < h(k + 1) and h(�) < n ≤ h(� + 1),
we have by (2) and (3)

d(xm, xn)

≤ K d(xm, xh(k+1)) + K d(xh(k+1), xn)

≤ K M (K 21−β)μ k + K2 d(xh(k+1), xh(k+2)) + K2 d(xh(k+2), xn)

≤
2∑

i=0

Ki+1 M (K 21−β)μ (k+i) + K3 d(xh(k+3), xn)

≤ · · · ≤
�−k−1∑

i=0

Ki+1 M (K 21−β)μ (k+i) + K�−k d(xh(�), xn)

≤
�−k−1∑

i=0

Ki+1 M (K 21−β)μ (k+i) + K�−k M (K 21−β)μ �

≤
�−k∑

i=0

Ki+1 M (K 21−β)μ (k+i)

≤
∞∑

i=0

Ki+1 M (K 21−β)μ (k+i)

= K M (K 21−β)μ k 1
1 − Kμ+1 2μ (1−β)

.

Noting (4), we obtain that {xn} is Cauchy. �

The following lemma is essentially proved in the proof of Theorem 2.1
in [11].

Lemma 12. ([11]) Let {tn} be a sequence in (0,∞). Assume that there exist
a function F from (0,∞) into R and real numbers τ ∈ (0,∞) and k ∈ (0, 1)
satisfying (F2),(F3) and the following:

• n τ + F (tn+1) ≤ F (t1).

Then {tn} ∈ O(n−1/k) holds.
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Proof. From the assumption, we have limn F (tn) = −∞. By (F2), we have
limn tn = 0. So, using (F3), we obtain limn tn

k F (tn) = 0. We have

0 = lim
n→∞ tn

k
(
F (tn) − F (t1) − τ

)

≤ lim inf
n→∞ (−tn

k n τ) ≤ lim sup
n→∞

(−tn
k n τ)

≤ 0,

which implies limn n tn
k = 0. Choose ν ∈ N satisfying n tn

k ≤ 1 for any
n ≥ ν. Then we have tn ≤ n−1/k for any n ≥ ν. We obtain the desired result.

�

4. Set-valued mappings

We prove fixed point theorems for set-valued F -contractions in complete b-
metric spaces.

Theorem 13. Let (X, d,K) be a complete b-metric space. Let T be a mapping
from X into CB(X). Assume that there exist a function F from (0,∞) into
R,

k ∈ (
0, 1/(1 + log2 K)

)

and τ ∈ (0,∞) satisfying (F2),(F3) and the following:

(F5) For any x, y ∈ X and u ∈ Tx, there exists v ∈ Ty such that either
v = u or

τ + F ◦ d(u, v) ≤ F ◦ d(x, y)

holds.

Then T has a fixed point.

Remark. We do not need (F1). On the other hand, we do need (F3). Compare
Theorem 13 with Theorem 23.

Proof. Arguing by contradiction, we assume that T does not have a fixed
point. Fix u1 ∈ X and u2 ∈ Tu1. We note u2 
= u1. Since u2 
∈ Tu2, from the
assumption, we can choose u3 ∈ Tu2 satisfying

τ + F ◦ d(u2, u3) ≤ F ◦ d(u1, u2).

Continuing this argument, we can choose a sequence {un} in X satisfying

un+1 ∈ Tun and τ + F ◦ d(un+1, un+2) ≤ F ◦ d(un, un+1)

for any n ∈ N. So it is obvious that

n τ + F ◦ d(un+1, un+2) ≤ F ◦ d(u1, u2)

holds for any n ∈ N. By Lemma 12, {d(un, un+1)} ∈ O(n−1/k) holds. Since

1/k ∈ (1 + log2 K,∞)
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holds, by Lemma 11, we obtain that {un} is Cauchy. Since X is complete,
{un} converges to some z ∈ X. For n ∈ N, there exists zn ∈ Tz such that
either

zn = un+1 or τ + F ◦ d(un+1, zn) ≤ F ◦ d(un, z)

holds. Let {f(n)} be an arbitrary subsequence of the sequence {n} in N. We
consider the following two cases:

• #{n ∈ N : zf(n) = uf(n)+1} = ∞.
• #{n ∈ N : zf(n) = uf(n)+1} < ∞.

In the first case, there exists a subsequence {g(n)} of {n} in N satisfying
zf◦g(n) = uf◦g(n)+1. It is obvious that limn d(zf◦g(n), z) = 0 holds. In the
second case, there exists a subsequence {g(n)} of {n} in N satisfying

τ + F ◦ d(uf◦g(n)+1, zf◦g(n)) ≤ F ◦ d(uf◦g(n), z).

Since limn d(un, z) = 0 holds, we have limn d(uf◦g(n)+1, zf◦g(n)) = 0 by
(F2). We have

lim
n→∞ d(zf◦g(n), z) ≤ lim

n→∞ K
(
d(zf◦g(n), uf◦g(n)+1) + d(uf◦g(n)+1, z)

)
= 0.

Therefore, we have proved limn d(zf◦g(n), z) = 0 in both cases. Since f is
arbitrary, we obtain limn d(zn, z) = 0. Since Tz is closed, we have z ∈ Tz.
This is a contradiction. Therefore, we have shown that T has a fixed
point. �

Altun, Mınak and Dăg in [1] proved a fixed point theorem for set-valued
F -contractions in complete metric spaces under the following assumption:
(F6) F (inf A) = inf F (A) for all A ⊂ (0,∞) with inf A ∈ (0,∞).
It is obvious that under (F1),(F6) and the following are equivalent.
(F7) F is upper semicontinuous.

We extend Theorem 2.5 in [1] to b-metric spaces.

Theorem 14. Let (X, d,K) be a complete b-metric space. Let T be a mapping
from X into CB(X). Assume that there exist a function F from (0,∞) into
R, k ∈ (

0, 1/(1 + log2 K)
)

and τ ∈ (0,∞) satisfying (F1)–(F3),(F7) and the
following:
(F8) For any x, y ∈ X with Tx 
= Ty,

τ + F ◦ H(Tx, Ty) ≤ F ◦ d(x, y)

holds.
Then T has a fixed point.

Remark. Considering the continuous function t 
→ ln(t), we find that The-
orem 14 is a generalization of Corollary 14 in [8]. See also Example 2.1 in
[11].

Proof. Fix x, y ∈ X and u ∈ Tx. We consider the following two cases:
• d(u, Ty) = 0.
• d(u, Ty) > 0.
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In the first case, since Ty is closed, we have u ∈ Ty. In the second case, we
have Tx 
= Ty. So,

τ + F ◦ H(Tx, Ty) ≤ F ◦ d(x, y)

holds. From (F1) and d(u, Ty) ≤ H(Tx, Ty), we have

τ + F ◦ d(u, Ty) ≤ F ◦ d(x, y).

From (F6), we have

inf{F ◦ d(u,w) : w ∈ Ty} = F ◦ d(u, Ty) ≤ F ◦ d(x, y) − τ

< F ◦ d(x, y) − τ/2.

So we can choose v ∈ Ty satisfying

τ/2 + F ◦ d(u, v) ≤ F ◦ d(x, y).

Thus, we have shown (F5) with τ :=τ/2. By Theorem 13, we obtain the desired
result. �

5. Preliminaries, part 2

Throughout this section, we let η be a function from [0,∞) into itself. We
define the following condition:
(H1) For any sequence {an} in [0,∞), limn η(an) = 0 ⇔ limn an = 0. (See

Lemma 6 in Jachymski [4])
The proofs of the following lemmas are obvious.

Lemma 15. ([9]) The following are equivalent:
(i) η satisfies (H1).
(ii) The conjunction of the following holds:

(a) For any ε > 0, there exists δ > 0 such that t < δ implies η(t) < ε.
(b) For any δ > 0, there exists ε > 0 such that η(t) < ε implies t < δ.

Lemma 16. (Lemma 2.2 in [10]) Let η satisfy (H1). Then η−1(0) = {0} holds,
that is, η(α) = 0 ⇔ α = 0.

Lemma 17. ([9]) Let (X, d) be a semimetric space and let η satisfy (H1).
Define a function p from X × X into [0,∞) by p = η ◦ d. Let {xn} be a
sequence in X and let x ∈ X. Then the following hold:

(i) (X, p) is a semimetric space.
(ii) {xn} converges to x in (X, d) iff {xn} converges to x in (X, p).
(iii) {xn} is Cauchy in (X, d) iff {xn} is Cauchy in (X, p).
(iv) (X, d) is complete iff (X, p) is complete.
(v) (X, d) is Hausdorff iff (X, p) is Hausdorff.

We will show that (D4) implies the following (D5).

Lemma 18. Let (X, d,K) be a b-metric space. Then the following holds:
(D5) For any ε > 0, there exists δ > 0 such that d(x, y) < δ and d(y, z) < δ

imply d(x, z) < ε.
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Proof. Fix ε > 0. Put δ:=ε/(2K) > 0. Let x, y, z ∈ X satisfy d(x, y) < δ and
d(y, z) < δ. Then we have by (D4)

d(x, z) ≤ K
(
d(x, y) + d(y, z)

)
< 2K δ = ε.

Therefore, we obtain (D5). �

Lemma 19. Let (X, d) be a semimetric space. Assume (D5). Let η satisfy
(H1). Then (D5) with d:=η ◦ d holds.

Proof. Define p by p = η ◦ d. Fix ε′ > 0. Then by Lemma 15, there exists
ε > 0 such that t < ε implies η(t) < ε′. By (D5), there exists δ > 0 such
that d(x, y) < δ and d(y, z) < δ imply d(x, z) < ε. By Lemma 15 again, there
exists δ′ > 0 such that η(t) < δ′ implies t < δ. We let x, y, z ∈ X satisfy
p(x, y) < δ′ and p(y, z) < δ′. Then we have d(x, y) < δ and d(y, z) < δ. From
the above, d(x, z) < ε holds. Hence, p(x, z) < ε′ holds. We have shown (D5)
with d:=p. �

Lemma 20. Let (X, d) be a semimetric space. Assume (D5). Then (X, d) is
Hausdorff.

Proof. Assume limn d(xn, x) = 0 and limn d(xn, y) = 0. Fix ε > 0. Then
there exists δ > 0 such that d(u, v) < δ and d(v, w) < δ imply d(u,w) < ε.
For sufficiently large n ∈ N, we have

d(x, xn) = d(xn, x) < δ and d(xn, y) < δ.

Hence, d(x, y) < ε holds. Since ε > 0 is arbitrary, we obtain x = y. �

6. Single-valued mappings

We prove a fixed point theorem for single F -contractions in b-metric spaces,
using the following splendid fixed point theorem proved by Jachymski,
Matkowski and Świa̧tkowski in [5].

Theorem 21. (a corollary of Theorem 1 in [5]) Let (X, d) be a Hausdorff,
complete semimetric space. Assume the following:

(D6) There exist δ > 0 and ε > 0 such that d(x, y) < δ and d(y, z) < δ imply
d(x, z) < ε.

Let T be a contraction on X, that is, there exists r ∈ [0, 1) satisfying

d(Tx, Ty) ≤ r d(x, y)

for all x, y ∈ X. Then T has a unique fixed point z. Moreover, {Tnx} con-
verges to z for all x ∈ X.

Theorem 22. Let (X, d) be a complete semimetric space. Assume (D5). Let T
be a mapping on X. Assume that there exist a function F from (0,∞) into R

and a real number τ ∈ (0,∞) satisfying (F2) and (F4). Then T has a unique
fixed point z. Moreover, {Tnx} converges to z for all x ∈ X.
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Proof. Define a function η from [0,∞) into itself by

η(t) =

{
0 if t = 0
exp ◦F (t) if t > 0.

From (F2), it is obvious that η satisfies (H1). By (F4), we also have

η ◦ d(Tx, Ty) ≤ exp(−τ) η ◦ d(x, y)

for any x, y ∈ X with Tx 
= Ty. It is obvious that this inequality holds even
when Tx = Ty. We note exp(−τ) < 1. Define a function p by p = η ◦ d.
Then by Lemmas 17, 19 and 20, (X, p) is a Hausdorff, complete semimetric
space satisfying (D5). We note that (D6) is weaker than (D5). Thus, we have
shown all the assumptions of Theorem 21. So by Theorem 21, we obtain the
desired result. �

Theorem 23. Let (X, d,K) be a complete b-metric space. Let T be a mapping
on X. Assume that there exist a function F from (0,∞) into R and a real
number τ ∈ (0,∞) satisfying (F2) and (F4). Then T has a unique fixed point
z. Moreover, {Tnx} converges to z for all x ∈ X.

Remark. We need neither (F1) nor (F3).

Proof. By Lemma 18, (D5) holds. So by Theorem 22, we obtain the desired
result. �

Using Theorem 23, we obtain the following corollary.

Corollary 24. Let (X, d) be a complete metric space. Let T be a mapping
on X. Assume that there exist a function F from (0,∞) into R and a real
number τ ∈ (0,∞) satisfying (F2) and (F4). Then T has a unique fixed point
z. Moreover, {Tnx} converges to z for all x ∈ X.

Remark. Considering the proof of Theorem 22, we can tell that Corollary 24
is a corollary of Theorem 9 in Jachymski [4]. See also Remark below the proof
of Theorem 17 in [7].

7. Counterexample

We give a counterexample concerning Lemma 11.

Lemma 25. Let {tn} be a sequence in (0,∞). Assume that there exist μ ∈
(1,∞), β,C ∈ (0,∞) and ν ∈ R such that

μk + ν ≤ n implies tn ≤ C

μβ k

for any k, n ∈ N. Then {tn} ∈ O(n−β) holds.

Proof. Choose κ ∈ N satisfying μκ + ν < μκ+1. It is obvious that

μk + ν < μk+1
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holds for any k ≥ κ because ν < μκ (μ − 1) ≤ μk (μ − 1). Fix n ∈ N with
n ≥ μκ + ν. We choose k ∈ N satisfying

μk + ν ≤ n < μk+1 + ν.

Then we have

nβ < (μk+1 + ν)β < (μk+2)β = μβ k μ2 β .

Hence,

tn ≤ C

μβ k
≤ C μ2 β

nβ

holds. Noting #{n ∈ N : n < μκ +ν} < ∞, we obtain the desired result. �

Example 26. (Example 11 in [8]) Let K > 1. Let X be a subset of [1,∞)
satisfying N ⊂ X and #

(
X ∩ [n, n+1)

)
= 2n for any n ∈ N. Define a strictly

increasing function χ from N into X satisfying χ(N) = X. Define a sequence
{νj} in N satisfying χ(νj) = j for any j ∈ N. Define a sequence {αn} in
(0,∞) by αn = 2−n K−n. Define a function f from N into N ∪ {0} by (1).
Define a function g from N ∪ {0} into [0,∞) by

g(0) = 0,

g(n) = (2n − 2f(n))Kf(n) + (2f(n) − n)Kf(n)−1

for n ∈ N. Define a function d from X × X into [0,∞) by

d
(
χ(m), χ(n)

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if m = n

g(n − m)αk if νk ≤ m < n ≤ νk+1 for some k ∈ N

d
(
χ(m), j + 1

)
if νj ≤ m < νj+1 ≤ νk

+

k−1∑

i=j+1

d(i, i + 1) + d
(
k, χ(n)

)
< n ≤ νk+1 for some j, k ∈ N

d
(
χ(n), χ(m)

)
if m > n

for all m,n ∈ N. Then the following assertions hold:

(i) (X, d,K) is a b-metric space.
(ii) {χ(n)} is not Cauchy.
(iii) {d

(
χ(n), χ(n + 1)

)} ∈ O(n−(1+log2 K)).

Proof. We have proved (i) and (ii) in [8]. Let us prove (iii). We note

2k ≤ n + 1 < 2k+1 ⇒ d
(
χ(n), χ(n + 1)

)
= αk =

1
(2K)k

= 2−(1+log2 K) k

for any n, k ∈ N. By Lemma 25, we obtain
{
d
(
χ(n), χ(n + 1)

)} ∈
O(n−(1+log2 K)). �
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