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1. Introduction

In the last decades, fixed point theory has been extended to various abstract
spaces and has also been used extensively in the study of all kinds of scientific
problems successfully, establishing a connection between pure and applied ap-
proaches and even including very relevant computational issues. In particular,
several applications of fixed point theory have been introduced for the study
and calculation of solutions to differential equations, integral equations, dy-
namical systems, models in economy and related areas, game theory, physics,
engineering, computer science, or neural networks, among many others. Be-
sides, they are basic tools for the study of nonlinear systems, by setting a
framework which helps to elevate some basic properties of the solutions to lin-
ear models in order to deduce (or approximate) the behavior of the nonlinear
ones, whose solutions can be found as the fixed points of a certain opera-
tor. Among them, the most influential and celebrating fixed point theorem,
known as the Banach contraction principle (see [3]), was proved by the Polish
mathematician Banach in 1922. Since then, fixed point theory has had a rapid
development. In [2] or [5], the author introduced b-metric space as a sharp
generalization of metric space, and proved fixed point theorems in b-metric
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spaces, which generalized the famous Banach contraction principle. Subse-
quently, several papers have dealt with fixed point theory or the variational
principle for single-valued and multi-valued operators in b-metric spaces (see
[4,6,9,10,18–21]). In recent years, stability results for fixed point iteration
procedures become the center of strong research activity in applications of
many branches of mathematics. There are numerous works about stabilities
for iteration procedures in various spaces (see, for example, [1,7,13,14]). But
the most important iteration procedure among them, is Picard’s iteration,
whose stability occupies a prominent place in many areas. On the other hand,
quite a few authors are interested in the P properties of fixed points for some
mappings (see [7,8]). In this article, we obtain some fixed point theorems for
a class of contractive mappings in b-metric spaces. Moreover, we consider the
T -stability of Picard’s iteration and the P property for such mappings. The
results greatly improve and generalize the previous results from [6,8,9,14].
Besides this, we illustrate our assertions with an example. In addition, we
give some applications to two classes of ordinary differential equations with
initial value conditions. We verify the existence and uniqueness of solution
to such equations. Further, we give the concrete mathematical expressions
of solutions to such equations. To the best of our knowledge, by using dif-
ferent methods of fixed point theory, many authors usually merely deal with
the existence and uniqueness of solution for various differential or integral
equations. However, they seldom consider the expression of solution. On this
basis alone our results are quite valuable.

In the sequel, we always denote by N, R, R
+ the sets of positive integers,

real numbers and nonnegative real numbers, respectively.
First of all, let us recall the concept of b-metric space.

Definition 1.1. [2,5,9] Let X be a (nonempty) set and s ≥ 1 be a given real
number. A function d : X × X → R

+ is called a b-metric on X if, for all
x, y, z ∈ X, the following conditions hold:
(b1) d(x, y) = 0 if and only if x = y;
(b2) d(x, y) = d(y, x);
(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].
In this case, the pair (X, d) is called a b-metric space or metric type space.

For some examples of b-metric spaces, the reader may refer to [2,4,5,10,
18–21] and the references therein. Motivated by Example 1.2 of [6], we give
an example of unusual b-metric space as follows.

Example 1.2. Let Hp(U) = {f ∈ H(U) : ‖f‖Hp < ∞} (0 < p < 1) be Hp

space defined on the unit disk U , where H(U) is the set of all holomorphic
functions on U and

‖f‖Hp = sup
0<r<1

(
1
2π

∫ π

−π

|f(reiθ)|pdθ

) 1
p

.

Denote X = Hp(U). Define a mapping d : X × X → R
+ by

d(f, g) = sup
0<r<1

(
1
2π

∫ π

−π

|f(reiθ) − g(reiθ)|pdθ

) 1
p

(1.1)
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for all f, g ∈ X. Then (X, d) is a b-metric space with coefficient s = 2
1
p−1.

Indeed, we only prove that condition (b3) in Definition 1.1 is satisfied.
To this end, letting f, g, h ∈ X, by (1.1), we need to show that

sup
0<r<1

(
1
2π

∫ π

−π

|f(reiθ) − h(reiθ)|pdθ

) 1
p

≤ 2
1
p−1

[
sup

0<r<1

(
1
2π

∫ π

−π

|f(reiθ) − g(reiθ)|pdθ

) 1
p

+ sup
0<r<1

(
1
2π

∫ π

−π

|g(reiθ) − h(reiθ)|pdθ

) 1
p

]
. (1.2)

Denote u(reiθ) = f(reiθ) − g(reiθ), v(reiθ) = g(reiθ) − h(reiθ), it follows
immediately from (1.2) that

sup
0<r<1

(
1
2π

∫ π

−π

|u(reiθ) + v(reiθ)|pdθ

) 1
p

≤ 2
1
p−1

[
sup

0<r<1

(
1
2π

∫ π

−π

|u(reiθ)|pdθ

) 1
p

+ sup
0<r<1

(
1
2π

∫ π

−π

|v(reiθ)|pdθ

) 1
p

]
. (1.3)

To prove (1.3), notice that the following inequalities:

(a + b)p ≤ ap + bp (a, b ≥ 0, 0 < p ≤ 1),
(a + b)p ≤ 2p−1(ap + bp) (a, b ≥ 0, p ≥ 1), (1.4)

then

sup
0<r<1

(
1
2π

∫ π

−π

|u(reiθ) + v(reiθ)|pdθ

) 1
p

≤ sup
0<r<1

(
1
2π

∫ π

−π

(|u(reiθ)| + |v(reiθ)|)pdθ

) 1
p

≤ sup
0<r<1

(
1
2π

∫ π

−π

(|u(reiθ)|p + |v(reiθ)|p)dθ

) 1
p

= sup
0<r<1

(
1
2π

∫ π

−π

|u(reiθ)|pdθ +
1
2π

∫ π

−π

|v(reiθ)|pdθ

) 1
p

≤ 2
1
p−1 sup

0<r<1

[(
1
2π

∫ π

−π

|u(reiθ)|pdθ

) 1
p

+
(

1
2π

∫ π

−π

|v(reiθ)|pdθ

) 1
p

]

≤ 2
1
p−1

[
sup

0<r<1

(
1
2π

∫ π

−π

|u(reiθ)|pdθ

) 1
p

+ sup
0<r<1

(
1
2π

∫ π

−π

|v(reiθ)|pdθ

) 1
p

]
.

Definition 1.3. [18,19] Let (X, d) be a b-metric space and {xn} a sequence in
X. We say that
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(1) {xn} b-converges to x ∈ X if d(xn, x) → 0 as n → ∞;
(2) {xn} is a b-Cauchy sequence if d(xm, xn) → 0 as m,n → ∞;
(3) (X, d) is b-complete if every b-Cauchy sequence in X is b-convergent.

Each b-convergent sequence in a b-metric space has a unique limit and it
is also a b-Cauchy sequence. Moreover, in general, a b-metric is not necessarily
continuous. The following example illustrates this claim.

Example 1.4. [10] Let X = N ∪ {∞}. Define a mapping d : X × X → R
+ as

follows:

d(m,n)

=

⎧⎪⎪⎨
⎪⎪⎩

0, if m = n;
| 1
m − 1

n |, if one of m,n (m 	= n) is even and the other is even or ∞;
5, if one of m,n (m 	= n) is odd and the other is odd or ∞;
2, others.

It is not hard to verify that

d(m, p) ≤ 5
2
[d(m,n) + d(n, p)] (m,n, p ∈ X).

Then (X, d) is a b-metric space with coefficient s = 5
2 . Choose xn = 2n (n ∈

N), then

d(xn,∞) =
1
2n

→ 0 (n → ∞),

that is, xn → ∞ (n → ∞). However, d(xn, 1) = 2 � 5 = d(∞, 1) (n → ∞).

Recently, Qing and Rhoades [14] established the notion of T -stability of
Picard’s iteration in metric space as follows.

Definition 1.5. [14] Let (X, d) be a metric space and T a self-map on X.
Let x0 be a point of X, and assume that xn+1 = f(T, xn) is an iteration
procedure, involving T , which yields a sequence {xn} of points from X. Then
the iteration procedure xn+1 = f(T, xn), is said to be T -stable with respect to
T if {xn} converges to a fixed point q of T and whenever {yn} is a sequence in
X with limn→∞ d(yn+1, f(T, yn)) = 0, we have limn→∞ yn = q. Particularly,
if these conditions hold for Picard’s iteration procedure xn+1 = Txn, then
we will say that Picard’s iteration is T -stable.

In the following, we simplify Definition 1.5 and introduce the concept
of T -stability of Picard’s iteration in b-metric space.

Definition 1.6. Let (X, d) be a b-metric space, x0 ∈ X and T : X → X be a
mapping with F (T ) 	= ∅, where F (T ) denotes the set of all fixed points of T
and similarly hereinafter. Then Picard’s iteration xn+1 = Txn is said to be
T -stable with respect to T if limn→∞ xn = q ∈ F (T ) and whenever {yn} is a
sequence in X with limn→∞ d(yn+1, T yn) = 0, we have limn→∞ yn = q.

For the convenience of reader, we recall the well-posedness of fixed point
problems as defined and studied in [15–17] as follows.
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Definition 1.7. [15–17] Let (K, ρ) be a bounded complete metric space. We
say that the fixed point problem for a mapping T : K → K is well posed
if there exists a unique q ∈ K such that q ∈ F (T ) and whenever {yn} is a
sequence in X with limn→∞ d(yn, T yn) = 0 we have limn→∞ yn = q.

Remark 1.8. Comparing Definitions 1.6 to 1.7, we see that the T -stability
is different from the well-posedness. Indeed, on the one hand, their space
is different since (X, d) is a b-metric space and (K, ρ) is a bounded com-
plete metric space. On the other hand, Definition 1.6 aims at Picard’s iter-
ative sequence and Definition 1.7 aims at a general sequence. In addition,
limn→∞ d(yn+1, T yn) = 0 and limn→∞ d(yn, T yn) = 0 differ from each other
in many ways. Limited by the length of paper, this article only discusses the
T -stability of fixed point problems.

What follows is a useful lemma for the proof of our main results.

Lemma 1.9. [11] Let {an}, {cn} be nonnegative sequences satisfying an+1 ≤
han + cn for all n ∈ N, 0 ≤ h < 1, limn→∞ cn = 0. Then, limn→∞ an = 0.

The following lemma was frequently utilized by many authors in order
to overcome the problem of discontinuity for b-metric. However, throughout
this paper, we do not use this lemma because we avoid such problem.

Lemma 1.10. [10] Let (X, d) be a b-metric space with coefficient s ≥ 1 and
let {xn} and {yn} be b-convergent to points x, y ∈ X, respectively. Then we
have

1
s2

d(x, y) ≤ lim inf
n→∞ d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y).

In particular, if x = y, then we have limn→∞ d(xn, yn) = 0. Moreover, for
each z ∈ X, we have

1
s
d(x, z) ≤ lim inf

n→∞ d(xn, z) ≤ lim sup
n→∞

d(xn, z) ≤ sd(x, z).

2. Main results

In this section, we firstly give a useful lemma, which greatly generalizes and
implements the counterpart of the existing literature. Secondly, we give sev-
eral fixed point theorems for contractive mappings on b-complete b-metric
spaces. Thirdly, we deduce the T -stability of Picard’s iteration and the P
property for such mappings. Fourthly, we give an example to illustrate our
conclusions.

Lemma 2.1. Let (X, d) be a b-metric space with coefficient s ≥ 1 and T : X →
X be a mapping. Suppose that {xn} is a sequence in X induced by xn+1 =
Txn such that

d(xn, xn+1) ≤ λd(xn−1, xn), (2.1)

for all n ∈ N, where λ ∈ [0, 1) is a constant. Then {xn} is a b-Cauchy
sequence.
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Proof. Let x0 ∈ X and xn+1 = Txn for all n ∈ N. We divide the proof into
three cases.

Case 1 λ ∈ [0, 1
s ) (s > 1). By (2.1), we have

d(xn, xn+1) ≤ λd(xn−1, xn)
≤ λ2d(xn−2, xn−1)
...
≤ λnd(x0, x1).

Thus, for any n > m and n,m ∈ N, we have

d(xm, xn)
≤ s[d(xm, xm+1) + d(xm+1, xn)]
≤ sd(xm, xm+1) + s2[d(xm+1, xm+2) + d(xm+2, xn)]
≤ sd(xm, xm+1) + s2d(xm+1, xm+2) + s3[d(xm+2, xm+3) + d(xm+3, xn)]
≤ sd(xm, xm+1) + s2d(xm+1, xm+2) + s3d(xm+2, xm+3)

+ · · · + sn−m−1d(xn−2, xn−1) + sn−m−1d(xn−1, xn)
≤ sλmd(x0, x1) + s2λm+1d(x0, x1) + s3λm+2d(x0, x1)

+ · · · + sn−m−1λn−2d(x0, x1) + sn−m−1λn−1d(x0, x1)
≤ sλm(1 + sλ + s2λ2 + · · · + sn−m−2λn−m−2 + sn−m−1λn−m−1)d(x0, x1)

≤ sλm

[ ∞∑
i=0

(sλ)i

]
d(x0, x1)

=
sλm

1 − sλ
d(x0, x1) → 0 (m → ∞),

which implies that {xn} is a b-Cauchy sequence. In other words, {Tnx0} is a
b-Cauchy sequence.

Case 2 Let λ ∈ [1s , 1) (s > 1). In this case, we have λn → 0 as n → ∞, so
there is n0 ∈ N such that λn0 < 1

s . Thus, by Case 1, we claim that

{(Tn0)nx0}∞
n=0 := {xn0 , xn0+1, xn0+2, . . . , xn0+n, . . .}

is a b-Cauchy sequence. Then

{xn}∞
n=0 = {x0, x1, x2, . . . , xn0−1} ∪ {xn0 , xn0+1, xn0+2, . . . , xn0+n, . . .}

is a b-Cauchy sequence in X.

Case 3 Let s = 1. Similar to the process of Case 1, the claim holds. �

Remark 2.2. Lemma 2.1 expands the range of [9, Lemma 3.1] from λ ∈
[0, 1

s ) to λ ∈ [0, 1). Clearly, this is a sharp generalization. Otherwise, though
Lemma 2.1 is the special case of [12, Lemma 2.2], our proof of Lemma 2.1
is straightforward without utilizing [12, Lemma 2.1] while the proof of [12,
Lemma 2.2] strongly relies on this lemma.
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Theorem 2.3. Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1
and T : X → X be a mapping such that

d(Tx, Ty) ≤ λ1d(x, y) + λ2
d(x, Tx)d(y, Ty)

1 + d(x, y)
+ λ3

d(x, Ty)d(y, Tx)
1 + d(x, y)

+λ4
d(x, Tx)d(x, Ty)

1 + d(x, y)
+ λ5

d(y, Ty)d(y, Tx)
1 + d(x, y)

, (2.2)

where λ1, λ2, λ3, λ4 and λ5 are nonnegative constants with λ1 + λ2 + λ3 +
sλ4 + sλ5 < 1. Then T has a unique fixed point in X. Moreover, for any
x ∈ X, the iterative sequence {Tnx} (n ∈ N) b-converges to the fixed point.

Proof. Choose x0 ∈ X and construct a Picard iterative sequence {xn} by
xn+1 = Txn (n ∈ N). If there exists n0 ∈ N such that xn0 = xn0+1, then
xn0 = xn0+1 = Txn0 , i.e., xn0 is a fixed point of T . Next, without loss of
generality, let xn 	= xn+1 for all n ∈ N. By (2.2), we have

d(xn, xn+1)
= (Txn−1, Txn)

≤ λ1d(xn−1, xn) + λ2
d(xn−1, Txn−1)d(xn, Txn)

1 + d(xn−1, xn)

+λ3
d(xn−1, Txn)d(xn, Txn−1)

1 + d(xn−1, xn)

+λ4
d(xn−1, Txn−1)d(xn−1, Txn)

1 + d(xn−1, xn)
+ λ5

d(xn, Txn)d(xn, Txn−1)
1 + d(xn−1, xn)

= λ1d(xn−1, xn) + λ2
d(xn−1, xn)d(xn, xn+1)

1 + d(xn−1, xn)
+ λ3

d(xn−1, xn+1)d(xn, xn)
1 + d(xn−1, xn)

+λ4
d(xn−1, xn)d(xn−1, xn+1)

1 + d(xn−1, xn)
+ λ5

d(xn, xn+1)d(xn, xn)
1 + d(xn−1, xn)

≤ λ1d(xn−1, xn) + λ2d(xn, xn+1) + sλ4[d(xn−1, xn) + d(xn, xn+1)].

It follows that

(1 − λ2 − sλ4)d(xn, xn+1) ≤ (λ1 + sλ4)d(xn−1, xn). (2.3)

Again by (2.2), we have

d(xn, xn+1)

= d(Txn, Txn−1)

≤ λ1d(xn, xn−1)+λ2
d(xn, Txn)d(xn−1, Txn−1)

1+d(xn, xn−1)
+λ3

d(xn, Txn−1)d(xn−1, Txn)

1+d(xn, xn−1)

+λ4
d(xn, Txn)d(xn, Txn−1)

1 + d(xn, xn−1)
+ λ5

d(xn−1, Txn−1)d(xn−1, Txn)

1 + d(xn, xn−1)

= λ1d(xn, xn−1) + λ2
d(xn, xn+1)d(xn−1, xn)

1 + d(xn, xn−1)
+ λ3

d(xn, xn)d(xn−1, xn+1)

1 + d(xn, xn−1)

+λ4
d(xn, xn+1)d(xn, xn)

1 + d(xn, xn−1)
+ λ5

d(xn−1, xn)d(xn−1, xn+1)

1 + d(xn, xn−1)

≤ λ1d(xn−1, xn) + λ2d(xn, xn+1) + sλ5[d(xn−1, xn) + d(xn, xn+1)].
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This establishes that

(1 − λ2 − sλ5)d(xn, xn+1) ≤ (λ1 + sλ5)d(xn−1, xn). (2.4)

Adding up (2.3) and (2.4) yields

d(xn, xn+1) ≤ 2λ1 + sλ4 + sλ5

2 − 2λ2 − sλ4 − sλ5
d(xn−1, xn).

Put λ = 2λ1+sλ4+sλ5
2−2λ2−sλ4−sλ5

. In view of λ1 + λ2 + λ3 + sλ4 + sλ5 < 1, then
0 ≤ λ < 1. Thus, by Lemma 2.1, {xn} is a b-Cauchy sequence in X. Since
(X, d) is b-complete, then there exists some point x∗ ∈ X such that xn → x∗

as n → ∞.
By (2.2), it is easy to see that

d(xn+1, Tx∗) (2.5)
= d(Txn, Tx∗)

≤ λ1d(xn, x∗) + λ2
d(xn, Txn)d(x∗, Tx∗)

1 + d(xn, x∗)
+ λ3

d(xn, Tx∗)d(x∗, Txn)
1 + d(xn, x∗)

+λ4
d(xn, Txn)d(xn, Tx∗)

1 + d(xn, x∗)
+ λ5

d(x∗, Tx∗)d(x∗, Txn)
1 + d(xn, x∗)

= λ1d(xn, x∗) + λ2
d(xn, xn+1)d(x∗, Tx∗)

1 + d(xn, x∗)
+ λ3

d(xn, Tx∗)d(x∗, xn+1)
1 + d(xn, x∗)

+λ4
d(xn, xn+1)d(xn, Tx∗)

1 + d(xn, x∗)
+ λ5

d(x∗, Tx∗)d(x∗, xn+1)
1 + d(xn, x∗)

. (2.6)

Taking the limit as n → ∞ from both sides of (2.6), we get limn→∞ d(xn+1,
Tx∗) = 0. That is, xn → Tx∗ (n → ∞). Hence, by the uniqueness of limit of
b-convergent sequence, it gives that Tx∗ = x∗. In other words, x∗ is a fixed
point of T .

Finally, we show the uniqueness of the fixed point. Indeed, if there is
another fixed point y∗, then by (2.2),

d(x∗, y∗) = d(Tx∗, T y∗)

≤ λ1d(x∗, y∗) + λ2
d(x∗, Tx∗)d(y∗, T y∗)

1 + d(x∗, y∗)
+ λ3

d(x∗, T y∗)d(y∗, Tx∗)
1 + d(x∗, y∗)

+λ4
d(x∗, Tx∗)d(x∗, T y∗)

1 + d(x∗, y∗)
+ λ5

d(y∗, T y∗)d(y∗, Tx∗)
1 + d(x∗, y∗)

= λ1d(x∗, y∗) + λ3
d(x∗, y∗)d(x∗, y∗)

1 + d(x∗, y∗)
≤ (λ1 + λ3)d(x∗, y∗). (2.7)

Because λ1 + λ2 + λ3 + sλ4 + sλ5 < 1 implies λ1 + λ3 < 1, we conclude from
(2.7) that d(x∗, y∗) = 0, i.e., x∗ = y∗. �

Corollary 2.4. Let (X, d) be a complete metric space and T : X → X be a
mapping such that
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d(Tx, Ty) ≤ λ1d(x, y) + λ2
d(x, Tx)d(y, Ty)

1 + d(x, y)
+ λ3

d(x, Ty)d(y, Tx)
1 + d(x, y)

+λ4
d(x, Tx)d(x, Ty)

1 + d(x, y)
+ λ5

d(y, Ty)d(y, Tx)
1 + d(x, y)

,

where λ1, λ2, λ3, λ4 and λ5 are nonnegative constants with λ1+λ2+λ3+λ4+
λ5 < 1. Then T has a unique fixed point in X. Moreover, for any x ∈ X, the
iterative sequence {Tnx} (n ∈ N) converges to the fixed point.

Proof. Take s = 1 in Theorem 2.3, thus the claim holds. �

Remark 2.5. Take λ2 = λ3 = λ4 = λ5 in Theorem 2.3 or in Corollary 2.4,
then Theorem 2.3 and Corollary 2.4 are reduced to [6, Corollary 2.3] and Ba-
nach contraction principle, respectively. From this point of view, our results
are genuine generalizations of the previous results. Otherwise, by the whole
proof of Theorem 2.3, we are able to see that Lemma 1.10 does not be used
since we dismiss the problem of whether the b-metric being continuous or dis-
continuous. However, some previous results strongly lie on the discontinuity
of b-metric and hence they often have to make the most of Lemma 1.10 (see
[10,18–21]).

Theorem 2.6. Under the conditions of Theorem 2.3, if 2sλ1 + 2λ3 + (s +
s2)(λ4 + λ5) < 2, then Picard’s iteration is T -stable.

Proof. Taking advantage of Theorem 2.3, we get T has a unique fixed point
x∗ in X. Assume that {yn} is a sequence in X such that d(yn+1, T yn) → 0
as n → ∞.

Making full use of (2.2), on the one hand, we have

d(Tyn, x∗) = d(Tyn, Tx∗)

≤ λ1d(yn, x∗)+λ2
d(yn, T yn)d(x∗, Tx∗)

1+d(yn, x∗)
+λ3

d(yn, Tx∗)d(x∗, T yn)
1+d(yn, x∗)

+λ4
d(yn, T yn)d(yn, Tx∗)

1 + d(yn, x∗)
+ λ5

d(x∗, Tx∗)d(x∗, T yn)
1 + d(yn, x∗)

≤ λ1d(yn, x∗) + λ3d(x∗, T yn) + λ4d(yn, T yn)
≤ (λ1 + sλ4)d(yn, x∗) + (λ3 + sλ4)d(x∗, T yn),

which means that

(1 − λ3 − sλ4)d(x∗, T yn) ≤ (λ1 + sλ4)d(yn, x∗). (2.8)

On the other hand, we have

d(Tyn, x∗) = d(Tx∗, T yn)

≤ λ1d(x∗, yn)+λ2
d(x∗, Tx∗)d(yn, T yn)

1+d(x∗, yn)
+λ3

d(x∗, T yn)d(yn, Tx∗)
1+d(x∗, yn)

+λ4
d(x∗, Tx∗)d(x∗, T yn)

1 + d(x∗, yn)
+ λ5

d(yn, T yn)d(yn, Tx∗)
1 + d(x∗, yn)

≤ λ1d(x∗, yn) + λ3d(x∗, T yn) + λ5d(yn, T yn)
≤ (λ1 + sλ5)d(yn, x∗) + (λ3 + sλ5)d(x∗, T yn),
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which means that

(1 − λ3 − sλ5)d(x∗, T yn) ≤ (λ1 + sλ5)d(yn, x∗). (2.9)

Combining (2.8) and (2.9) yields

(2 − 2λ3 − sλ4 − sλ5)d(x∗, T yn) ≤ (2λ1 + sλ4 + sλ5)d(yn, x∗). (2.10)

As a result, we have

d(x∗, T yn) ≤ 2λ1 + sλ4 + sλ5

2 − 2λ3 − sλ4 − sλ5
d(yn, x∗).

Denote h = s(2λ1+sλ4+sλ5)
2−2λ3−sλ4−sλ5

. It follows immediately from 2sλ1 + 2λ3 + (s +
s2)(λ4 + λ5) < 2 that 0 ≤ h < 1. Let an = d(yn, x∗), cn = sd(yn+1, T yn), by
(2.10), then

an+1 = d(yn+1, x
∗) ≤ s[d(yn+1, T yn) + d(Tyn, x∗)] ≤ han + cn.

Thus, by Lemma 1.9, it leads to an = d(yn, x∗) → 0 (n → ∞), that is,
yn → x∗ (n → ∞). As a consequence, Picard’s iteration is T -stable. �

Corollary 2.7. Under the conditions of Corollary 2.4, Picard’s iteration is
T -stable.

Proof. Let s = 1 in Theorem 2.6, then 2sλ1 + 2λ3 + (s + s2)(λ4 + λ5) < 2
becomes λ1 +λ3 +λ4 +λ5 < 1. Noticing that Corollary 2.4 is the special case
of Theorem 2.3, therefore, by Theorem 2.6, we complete the proof.

It is clear that if T is a map which has a fixed point x∗, then x∗ is also
a fixed point of Tn for each n ∈ N. It is well known that the converse is not
true. If a map T satisfies F (T ) = F (Tn) for each n ∈ N, then it is said to
have the P property (see [7,8]). The following results are generalizations of
the corresponding results in metric spaces.

Theorem 2.8. Let (X, d) be a b-metric space with coefficient s ≥ 1. Let
T : X → X be a mapping such that F (T ) 	= ∅ and that

d(Tx, T 2x) ≤ λd(x, Tx) (2.11)

for all x ∈ X, where 0 ≤ λ < 1 is a constant. Then T has the P property.

Proof. We always assume that n > 1, since the statement for n = 1 is trivial.
Let z ∈ F (Tn). By the hypotheses, it is clear that

d(z, Tz) = d(TTn−1z, T 2Tn−1z) ≤ λd(Tn−1z, Tnz) = λd(TTn−2z, T 2Tn−2z)
≤ λ2d(Tn−2z, Tn−1z) ≤ · · · ≤ λnd(z, Tz) → 0 (n → ∞).

Hence, d(z, Tz) = 0, that is., Tz = z. �

Theorem 2.9. Under the conditions of Theorem 2.3, T has the P property.

Proof. We have to prove that the mapping T satisfies (2.11). In fact, for any
x ∈ X, for one thing, we have
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d(Tx, T 2x) = d(Tx, TTx)

≤ λ1d(x, Tx) + λ2
d(x, Tx)d(Tx, TTx)

1 + d(x, Tx)
+ λ3

d(x, TTx)d(Tx, Tx)
1 + d(x, Tx)

+λ4
d(x, Tx)d(x, TTx)

1 + d(x, Tx)
+ λ5

d(Tx, TTx)d(Tx, Tx)
1 + d(x, Tx)

≤ λ1d(x, Tx) + λ2d(Tx, T 2x) + λ4d(x, T 2x)
≤ (λ1 + sλ4)d(x, Tx) + (λ2 + sλ4)d(Tx, T 2x),

which implies that

(1 − λ2 − sλ4)d(Tx, T 2x) ≤ (λ1 + sλ4)d(x, Tx). (2.12)

For another thing, we have

d(Tx, T 2x) = d(TTx, Tx)

≤ λ1d(Tx, x) + λ2
d(Tx, TTx)d(x, Tx)

1 + d(Tx, x)
+ λ3

d(Tx, Tx)d(x, TTx)
1 + d(Tx, x)

+λ4
d(Tx, TTx)d(Tx, Tx)

1 + d(Tx, x)
+ λ5

d(x, Tx)d(x, TTx)
1 + d(Tx, x)

≤ λ1d(Tx, x) + λ2d(Tx, T 2x) + λ5d(x, T 2x)
≤ (λ1 + sλ5)d(Tx, x) + (λ2 + sλ5)d(Tx, T 2x),

which establishes that

(1 − λ2 − sλ5)d(Tx, T 2x) ≤ (λ1 + sλ5)d(x, Tx). (2.13)

On adding up (2.12) and (2.13), it follows that

(2 − 2λ2 − sλ4 − sλ5)d(Tx, T 2x) ≤ (2λ1 + sλ4 + sλ5)d(x, Tx).

This implies that

d(Tx, T 2x) ≤ 2λ1 + sλ4 + sλ5

2 − 2λ2 − sλ4 − sλ5
d(x, Tx).

Denote that λ = 2λ1+sλ4+sλ5
2−2λ2−sλ4−sλ5

. Note that λ1 +λ2 +λ3 +sλ4 +sλ5 < 1, then
λ < 1. Accordingly, (2.11) is satisfied. Consequently, by Theorem 2.8, T has
the P property. �

Corollary 2.10. Under the conditions of Corollary 2.4, T has the P property.

Proof. Since Corollary 2.4 is the special case of Theorem 2.3, then by Theo-
rem 2.9, we obtain the desired result. �

Example 2.11. Let X = [0, 1] and define a mapping d : X × X → R
+ by

d(x, y) = |x − y|p (p ≥ 1). Taking account of (1.4), we claim that (X, d)
is a b-complete b-metric space with coefficient s = 2p−1. Define a mapping
T : X → X by Tx = ex−λ, where λ > 1 + ln 2 is a constant. Then by mean
value theorem of differentials, for any x, y ∈ X and x 	= y, there exists some
real number ξ belonging to between x and y such that
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Figure 1. The formation of fixed point of the given mapping

d(Tx, Ty) = |ex−λ − ey−λ|p =
(
eξ−λ

)p |x − y|p ≤ (
e1−λ

)p
d(x, y)

≤ λ1d(x, y) + λ2
d(x, Tx)d(y, Ty)

1 + d(x, y)
+ λ3

d(x, Ty)d(y, Tx)
1 + d(x, y)

+λ4
d(x, Tx)d(x, Ty)

1 + d(x, y)
+ λ5

d(y, Ty)d(y, Tx)
1 + d(x, y)

,

where λ1 = (e1−λ)p, λ2 = λ3 = λ4 = λ5 = 0. Obviously, λ1 +λ2 +λ3 + sλ4 +
sλ5 < 1. Hence, all the conditions of Theorem 2.3 are satisfied and T has a
unique fixed point in X. See the following Fig. 1. The abscissa of point A,
i.e., x0, is the fixed point.

Otherwise, by virtue of λ > 1 + ln 2, then λ1 =
(
e1−λ

)p
< 21−p = 1

s , so
2sλ1+2λ3+(s+s2)(λ4+λ5) < 2. Accordingly, all conditions of Theorem 2.6
are satisfied. By Theorem 2.6, Picard’s iteration is T -stable. Indeed, take
yn = n

n+1x0 ∈ X, it follows that

d(yn+1, T yn) =
∣∣∣∣n + 1
n + 2

x0 − e
n

n+1x0−λ

∣∣∣∣
2

→ |x0 − ex0−λ| = 0 (n → ∞).

Note that yn = n
n+1x0 → x0 (n → ∞), the validity of Theorem 2.6 is beyond

all doubt.

3. Applications

In this section, firstly, we apply Theorem 2.3 to the first-order initial value
problem {

x′(t) = f(t, x(t)),
x(t0) = x0,

(3.1)

where f : [t0 − ( 1
k )r−1, t0 + ( 1

k )r−1] × [x0 − k
2 , x0 + k

2 ] → R is a continuous
function and k > 1, r > 2, t0, x0 are four real constants.

Theorem 3.1. Consider the initial value problem (3.1) and suppose that
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(i) f satisfies the Lipschitz condition, i.e.,

|f(t, x(t)) − f(t, y(t))| ≤ k|x(t) − y(t)| (3.2)

for all (t, x), (t, y) ∈ R, where R = {(t, x) : |t − t0| ≤ ( 1
k )r−1, |x − x0| ≤

k
2};

(ii) f is bound on R, i.e.,

|f(t, x)| ≤ kr

2
. (3.3)

Then the initial value problem (3.1) has a unique solution on the interval
I = [t0 − ( 1

k )r−1, t0 + ( 1
k )r−1]. Further, the solution is exhibited as follows:

x(t) = x0 + lim
n→∞

∫ t

t0

f(τ, xn(τ))dτ,

where

x0(t) = x0, xn(t) = x0 +
∫ t

t0

f(τ, xn−1(τ))dτ (n = 1, 2, . . .).

Proof. Let C(I) be the set of all continuous functions on I. Let X = {x ∈
C(I) : |x(t) − x0| ≤ k

2}. Define a mapping d : X × X → R
+ by

d(x, y) = max
t∈I

|x(t) − y(t)|2. (3.4)

Clearly, (C(I), d) is a b-complete b-metric space with coefficient s = 2. Since
X is a closed subspace of C(I), then (X, d) is a b-complete b-metric space
with coefficient s = 2.

Integrating (3.1), we have

x(t) = x0 +
∫ t

t0

f(τ, x(τ))dτ. (3.5)

As a consequence, finding the solution of (3.1) is equivalent to finding the
fixed point of mapping T : X → X defined by

Tx(t) = x0 +
∫ t

t0

f(τ, x(τ))dτ. (3.6)

Note that if τ ∈ I then |τ − t0| ≤ ( 1
k )r−1, and x ∈ X means |x(τ) − x0| ≤ k

2 ,
so (τ, x(τ)) ∈ R. Since f is continuous on R, then the integral (3.6) exists
and T is well-defined for all x ∈ X.

We make a conclusion that T is a self-mapping on X. Indeed, making
full use of (3.3) and (3.6), it follows that

|Tx(t) − x0| =
∣∣∣∣
∫ t

t0

f(τ, x(τ))dτ

∣∣∣∣
≤

∫ t

t0

|f(τ, x(τ))|dτ

≤ kr

2
|t − t0|
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≤ kr

2

(
1
k

)r−1

=
k

2
.

Next, by using (3.2), (3.4) and (3.6), we get

|Tx(t) − Ty(t)|2 =
∣∣∣∣
∫ t

t0

[f(τ, x(τ)) − f(τ, y(τ))]dτ

∣∣∣∣
2

≤
[∫ t

t0

|f(τ, x(τ)) − f(τ, y(τ))|dτ

]2

≤
[∫ t

t0

k|x(τ) − y(τ)|dτ

]2

≤ k2

[∫ t

t0

max
τ∈I

|x(τ) − y(τ)|dτ

]2

= k2 max
τ∈I

|x(τ) − y(τ)|2|t − t0|2

≤ k2 max
τ∈I

|x(τ) − y(τ)|2
(

1
k

)2r−2

=
(

1
k

)2r−4

max
τ∈I

|x(τ) − y(τ)|2

=
(

1
k

)2r−4

d(x, y),

which establishes that

d(Tx, Ty) ≤
(

1
k

)2r−4

d(x, y)

≤ λ1d(x, y) + λ2
d(x, Tx)d(y, Ty)

1 + d(x, y)
+ λ3

d(x, Ty)d(y, Tx)
1 + d(x, y)

+λ4
d(x, Tx)d(x, Ty)

1 + d(x, y)
+ λ5

d(y, Ty)d(y, Tx)
1 + d(x, y)

,

where λ1 =
(
1
k

)2r−4, λ2 = λ3 = λ4 = λ5 = 0. Because k > 1 and r > 2, it
means that λ1 + λ2 + λ3 + sλ4 + sλ5 < 1.

Owing to the above statement, all conditions of Theorem 2.3 are satis-
fied. Hence, T has a unique fixed point. That is to say, there exists a unique
solution to (3.1).

Now, by utilizing successive approximation method, we find the unique
solution of (3.1). For this purpose, put x0(t) = x0 and

xn(t) = x0 +
∫ t

t0

f(τ, xn−1(τ))dτ. (3.7)



Vol. 20 (2018) Fixed point theorems in b-metric spaces with applications Page 15 of 24 52

It is easy to see that

xn−1(t) = x0 +
∫ t

t0

f(τ, xn−2(τ))dτ. (3.8)

Combining (3.7) and (3.8), we deduce

xn(t) − xn−1(t) =
∫ t

t0

[f(τ, xn−1(τ)) − f(τ, xn−2(τ))]dτ. (3.9)

Letting

yn(t) = xn(t) − xn−1(t), y0(t) = x0, (3.10)

we get

xn(t) =
n∑

i=0

yi(t).

Using (3.2), (3.9) and (3.10), we have

|yn(t)| ≤ k

∫ t

t0

|yn−1(τ)|dτ.

Further, we have

|yn(t)| ≤ |x0|kn

n!
|t − t0|n.

Since the series
∑∞

n=1
|x0|kn

n! |t − t0|n is convergent in I, then the series
∑∞

n=1

yn(t) is convergent to some function x(t), that is., xn(t) =
∑n

i=0 yi(t) con-
verges to x(t) as n → ∞.

In the following, we show that x(t) =
∑∞

n=0 yn(t) is the solution of
(3.5). This implies that x(t) =

∑∞
n=0 yn(t) is also the solution of (3.1). For

this reason, assume that

x(t) = xn(t) + �n(t). (3.11)

It is valid that limn→∞ |�n(t)| = 0. Combining (3.7) and (3.11), we get

x(t) − �n(t) = x0 +
∫ t

t0

f(τ, x(τ) − �n−1(τ))dτ.

Thus, we arrive at

x(t) − x0 −
∫ t

t0

f(τ, x(τ))dτ

= �n(t) +
∫ t

t0

[f(τ, x(τ) − �n−1(τ)) − f(τ, x(τ))]dτ.

(3.12)

By (3.2) and (3.12) it yields that∣∣∣∣x(t) − x0 −
∫ t

t0

f(τ, x(τ))dτ

∣∣∣∣
=

∣∣∣∣�n(t) +
∫ t

t0

[f(τ, x(τ) − �n−1(τ)) − f(τ, x(τ))]dτ

∣∣∣∣
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≤ |�n(t)| +
∫ t

t0

|f(τ, x(τ) − �n−1(τ)) − f(τ, x(τ))|dτ

≤ |�n(t)| +
∫ t

t0

k|�n−1(τ)|dτ

≤ |�n(t)| + k

(
1
k

)r−1

max
τ∈I

|�n−1(τ)|. (3.13)

Taking the limit as n → ∞ from both sides of (3.13) and noting limn→∞ |�n

(t)| = 0, it is evident that

x(t) − x0 −
∫ t

t0

f(τ, x(τ))dτ = 0.

Hence, we deduce

x(t) = x0 +
∫ t

t0

f(τ, x(τ))dτ.

Then x(t) =
∑∞

n=0 yn(t) is the solution of (3.5). In other words, x(t) =∑∞
n=0 yn(t) is the solution of (3.1).

Finally, we look for the mathematical expression of the solution of (3.1).
To this end, taking advantage of (3.9) and (3.10), we obtain

x(t) =
∞∑

n=0

yn(t)

= y0(t) + y1(t) +
∞∑

n=2

yn(t)

= y0(t) + y1(t) +
∞∑

n=2

[xn(t) − xn−1(t)]

= x0 + x1(t) − x0 +
∞∑

n=2

∫ t

t0

[f(τ, xn−1(τ)) − f(τ, xn−2(τ))]dτ

= x1(t) +
∞∑

n=2

∫ t

t0

[f(τ, xn−1(τ)) − f(τ, xn−2(τ))]dτ

= x0 +
∫ t

t0

f(τ, x0)dτ +
∫ t

t0

∞∑
n=2

[f(τ, xn−1(τ)) − f(τ, xn−2(τ))]dτ

= x0 +
∫ t

t0

f(τ, x0)dτ +
∫ t

t0

lim
n→∞ f(τ, xn−1(τ))dτ −

∫ t

t0

f(τ, x0)dτ

= x0 + lim
n→∞

∫ t

t0

f(τ, xn(τ))dτ, (3.14)

where xn(t) (n = 1, 2, . . .) is written by (3.7). �

Remark 3.2. In the proof of Theorem 3.1, (3.14) can also be obtained by the
continuity of f . Actually, since f is continuous and x(t) = limn→∞ xn(t) is
the solution of (3.1), then by (3.5), we have
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x(t) = x0 +
∫ t

t0

f(τ, x(τ))dτ

= x0 +
∫ t

t0

f
(
τ, lim

n→∞ xn(τ)
)

dτ

= x0 + lim
n→∞

∫ t

t0

f(τ, xn(τ))dτ.

Secondly, we look for the general solution of nth-order nonhomogeneous
differential equation. In order to start this purpose, we give the following nth-
order initial value problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ an−2(x)

dn−2y

dxn−2
+ · · ·

+ a1(x)
dy

dx
+ a0(x)y = f(x), x ∈ [0, x0],

y(0) = C0, y′(0) = C1, y′′(0) = C2, . . . , y(n−1)(0) = Cn−1,

(3.15)

where an−1(x), an−2(x), . . . , a1(x), a0(x) ∈ C([0, x0]) (the set of all continu-
ous real functions defined on [0, x0]) are given, and C0, C1, C2, . . . , Cn−1 are
constants.

Theorem 3.3. Consider initial value problem (3.15), and set

M = max
0≤t,x≤x0

∣∣∣∣∣
n−1∑
k=0

ak(x)
(n − 1 − k)!

(x − t)n−1−k

∣∣∣∣∣ .

If x0M < 1, then (3.15) has a unique solution in C([0, x0]). Further, the
solution is exhibited as follows:

y =
1

(n − 1)!

∞∑
i=0

∫ x

0

(x − t)n−1ui(t)dt +
n−1∑
k=0

Ck

k!
xk,

where

u0(x) = f(x) −
n−1∑
j=0

n−j−1∑
k=0

aj(x)
Ck+j

k!
xk,

ui(x) = −
n−1∑
k=0

∫ x

0

ak(x)
(n − 1 − k)!

(x − t)n−1−kui−1(t)dt, i = 1, 2, . . .

Proof. Put

u(x) =
dny

dxn
, p(x) =

dn−1y

dxn−1
, q(x) =

dn−2y

dxn−2
, r(x) =

dn−3y

dxn−3
,

then u(x), p(x), q(x), r(x) ∈ C([0, x0]). Considering the initial conditions, we
get that

dn−1y

dxn−1
=

∫ x

0

u(t)dt + Cn−1, (3.16)
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and
dn−2y

dxn−2
=

∫ x

0

p(s)ds + Cn−2

=
∫ x

0

[∫ s

0

u(t)dt + Cn−1

]
ds + Cn−2

=
∫ x

0

∫ s

0

u(t)dt ds + Cn−1x + Cn−2

=
∫ x

0

dt

∫ x

t

u(t)ds + Cn−1x + Cn−2

=
∫ x

0

(x − t)u(t)dt + Cn−1x + Cn−2, (3.17)

and
dn−3y

dxn−3
=

∫ x

0

q(s)ds + Cn−3

=
∫ x

0

[∫ s

0

(s − t)u(t)dt + Cn−1s + Cn−2

]
ds + Cn−3

=
∫ x

0

∫ s

0

(s − t)u(t)dt ds +
∫ x

0

(Cn−1s + Cn−2)ds + Cn−3

=
∫ x

0

dt

∫ x

t

(s − t)u(t)ds +
1
2
Cn−1x

2 + Cn−2x + Cn−3

=
1
2

∫ x

0

(x − t)2u(t)dt +
1
2
Cn−1x

2 + Cn−2x + Cn−3, (3.18)

and
dn−4y

dxn−4
=

∫ x

0

r(s)ds + Cn−4

=
∫ x

0

[
1
2

∫ s

0

(s − t)2u(t)dt +
1
2
Cn−1s

2 + Cn−2s + Cn−3

]
ds

+Cn−4

=
1
2

∫ x

0

∫ s

0

(s − t)2u(t)dt ds +
∫ x

0

(
1
2
Cn−1s

2 + Cn−2s + Cn−3

)
ds

+Cn−4

=
1
2

∫ x

0

dt

∫ x

t

(s − t)2u(t)ds+
1
6
Cn−1x

3 +
1
2
Cn−2x

2 + Cn−3x + Cn−4

=
1
6

∫ x

0

(x − t)3u(t)dt +
1
6
Cn−1x

3 +
1
2
Cn−2x

2 + Cn−3x + Cn−4.

(3.19)

By mathematical induction, we arrive at

dy

dx
=

1
(n − 2)!

∫ x

0

(x − t)n−2u(t)dt+
1

(n − 2)!
Cn−1x

n−2+
1

(n − 3)!
Cn−2x

n−3

+ · · · +
1
6
C4x

3 +
1
2
C3x

2 + C2x + C1, (3.20)
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and

y =
1

(n − 1)!

∫ x

0

(x − t)n−1u(t)dt +
1

(n − 1)!
Cn−1x

n−1 +
1

(n − 2)!
Cn−2x

n−2

+ · · · +
1
6
C3x

3 +
1
2
C2x

2 + C1x + C0. (3.21)

Substituting (3.16)–(3.21) into (3.15), we have

u(x) + an−1(x)
[∫ x

0

u(t)dt + Cn−1

]

+ an−2(x)
[∫ x

0

(x − t)u(t)dt + Cn−1x + Cn−2

]

+ an−3(x)
[
1
2

∫ x

0

(x − t)2u(t)dt +
1
2
Cn−1x

2 + Cn−2x + Cn−3

]

+ an−4(x)
[
1
6

∫ x

0

(x − t)3u(t)dt +
1
6
Cn−1x

3 +
1
2
Cn−2x

2

+Cn−3x + Cn−4]
+ · · ·
+ a1(x)

[
1

(n − 2)!

∫ x

0

(x − t)n−2u(t)dt +
1

(n − 2)!
Cn−1x

n−2

+
1

(n − 3)!
Cn−2x

n−3 + · · · +
1
6
C4x

3 +
1
2
C3x

2 + C2x + C1

]

+ a0(x)
[

1
(n − 1)!

∫ x

0

(x − t)n−1u(t)dt +
1

(n − 1)!
Cn−1x

n−1

+
1

(n − 2)!
Cn−2x

n−2 + · · · +
1
6
C3x

3 +
1
2
C2x

2 + C1x + C0

]

= f(x).

As a consequence, we have

f(x) = u(x) +
∫ x

0

[
an−1(x) + an−2(x)(x − t) +

an−3(x)
2

(x − t)2

+
an−4(x)

6
(x − t)3 + · · · +

a1(x)
(n − 2)!

(x − t)n−2

+
a0(x)

(n − 1)!
(x − t)n−1

]
u(t)dt

+ an−1(x)Cn−1 + an−2(x)(Cn−1x + Cn−2) + an−3(x)

×
(

1
2
Cn−1x

2 + Cn−2x + Cn−3

)

+ an−4(x)
(

1
6
Cn−1x

3 +
1
2
Cn−2x

2 + Cn−3x + Cn−4

)

+ · · ·
+ a1(x)

(
1

(n − 2)!
Cn−1x

n−2 +
1

(n − 3)!
Cn−2x

n−3 + · · ·
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+
1
6
C4x

3 +
1
2
C3x

2 + C2x + C1

)

+ a0(x)
(

1
(n − 1)!

Cn−1x
n−1 +

1
(n − 2)!

Cn−2x
n−2 + · · ·

+
1
6
C3x

3 +
1
2
C2x

2 + C1x + C0

)

= u(x) +
∫ x

0

n−1∑
k=0

ak(x)
(n − 1 − k)!

(x − t)n−1−ku(t)dt + a0(x)
n−1∑
k=0

Ck

k!
xk

+ a1(x)
n−2∑
k=0

Ck+1

k!
xk + a2(x)

n−3∑
k=0

Ck+2

k!
xk

+ · · · + an−4(x)
3∑

k=0

Cn−4+k

k!
xk

+ an−3(x)
2∑

k=0

Cn−3+k

k!
xk + an−2(x)

1∑
k=0

Cn−2+k

k!
xk

+ an−1(x)
0∑

k=0

Cn−1+k

k!
xk

= u(x) +
n−1∑
k=0

∫ x

0

ak(x)
(n − 1 − k)!

(x − t)n−1−ku(t)dt

+
n−1∑
j=0

n−j−1∑
k=0

aj(x)
Ck+j

k!
xk.

Then we speculate that

u(x) = f(x) −
n−1∑
k=0

∫ x

0

ak(x)
(n − 1 − k)!

(x − t)n−1−ku(t)dt

−
n−1∑
j=0

n−j−1∑
k=0

aj(x)
Ck+j

k!
xk

= −
∫ x

0

n−1∑
k=0

ak(x)
(n − 1 − k)!

(x − t)n−1−ku(t)dt

+ f(x) −
n−1∑
j=0

n−j−1∑
k=0

aj(x)
Ck+j

k!
xk. (3.22)

Take

K(x, t) = −
n−1∑
k=0

ak(x)
(n − 1 − k)!

(x − t)n−1−k,
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F (x) = f(x) −
n−1∑
j=0

n−j−1∑
k=0

aj(x)
Ck+j

k!
xk. (3.23)

Now by (3.22) and (3.23), we claim that (3.15) is equivalent to the following
Volterra-type integral equation:

u(x) =
∫ x

0

K(x, t)u(t)dt + F (x).

Let X = C([0, x0]). Put d : X × X → R
+ as d(u, v) = max

0≤x≤x0
|u(x) −

v(x)|2. It is valid that (X, d) is a b-complete b-metric space with coefficient
s = 2.

Define a mapping T : X → X by

Tu(x) =
∫ x

0

K(x, t)u(t)dt + F (x).

For any u, v ∈ X, we have

d(Tu, Tv) = max
0≤x≤x0

∣∣∣∣
∫ x

0

K(x, t)u(t)dt −
∫ x

0

K(x, t)v(t)dt

∣∣∣∣
2

= max
0≤x≤x0

∣∣∣∣
∫ x

0

K(x, t)[u(t) − v(t)]dt

∣∣∣∣
2

≤ x0
2M2 max

0≤t≤x0
|u(t) − v(t)|2 = x0

2M2d(u, v)

≤ λ1d(u, v) + λ2
d(u, Tu)d(v, Tv)

1 + d(u, v)
+ λ3

d(u, Tv)d(v, Tu)
1 + d(u, v)

+λ4
d(u, Tu)d(u, Tv)

1 + d(u, v)
+ λ5

d(v, Tv)d(v, Tu)
1 + d(u, v)

,

where λ1 = x0
2M2, λ2 = λ3 = λ4 = λ5 = 0.

By virtue of x0M < 1, then λ1 < 1, so λ1 + λ2 + λ3 + sλ4 + sλ5 < 1.
Owing to the above statement, all conditions of Theorem 2.3 are satisfied,
then by Theorem 2.3, T has a unique fixed point in X. That is to say, the
initial value problem (3.15) has a unique solution in C([0, x0]).

Eventually, we look for the expression of solution. For this purpose, take

yn(x) =
n∑

i=0

ui(x), x ∈ [0, x0],

where

u0(x) = F (x), ui(x) =
∫ x

0

K(x, t)ui−1(t)dt, i = 1, 2, . . .

Note that

yn+1(x) = u0(x) +
n+1∑
i=1

ui(x)

= F (x) +
n+1∑
i=1

∫ x

0

K(x, t)ui−1(t)dt
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= F (x) +
∫ x

0

[
K(x, t)

n+1∑
i=1

ui−1(t)

]
dt

= F (x) +
∫ x

0

[
K(x, t)

n∑
i=0

ui(t)

]
dt

= F (x) +
∫ x

0

K(x, t)yn(t)dt

= Tyn(x)

for any n ∈ N, so yn+1 = Tyn is a Picard’s iteration. Based on the proof of
Theorem 2.3, it is not hard to verify that {yn} b-converges to the fixed point
u(x) of T . In other words,

u(x) = lim
n→∞ yn(x) =

∞∑
i=0

ui(x).

Substituting u(x) =
∑∞

i=0 ui(x) into (3.21), we easily claim that the solution
of (3.15) is the following form:

y =
1

(n − 1)!

∞∑
i=0

∫ x

0

(x − t)n−1ui(t)dt +
n−1∑
k=0

Ck

k!
xk.
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[7] Huang, H., Xu, S., Liu, H., Radenović, S.: Fixed point theorems and T -stability
of Picard iteration for generalized Lipschitz mappings in cone metric spaces
over Banach algebras. J. Comput. Anal. Appl. 20(5), 869–888 (2016)

[8] Jeong, G.S., Rhoades, B.E.: Maps for which F (T ) = F (Tn). Fixed Point The-
ory Appl. 6, 71–105 (2005)
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