
J. Fixed Point Theory Appl. (2018) 20:2
https://doi.org/10.1007/s11784-018-0486-9
Published online January 17, 2018
c© Springer International Publishing AG,
part of Springer Nature 2018

Journal of Fixed Point Theory
and Applications

Signed and sign-changing solutions
of Kirchhoff type problems

Mengqiu Shao and Anmin Mao

Abstract. We consider the following nonlinear Kirchhoff type problem
of the form{ −(a + b

∫
Ω

|∇u|2)�u = μg(x, u) + f(x, u), in Ω,
u = 0, on ∂Ω,

where Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω and

a > 0, b ≥ 0. The nonlinearity μg(x, u) + f(x, u) may involve a combi-
nation of concave and convex terms. Under some suitable conditions on
f, g ∈ C(Ω ×R,R) and μ ∈ R, we prove the existence of infinitely many
high-energy solutions using Fountain theorem. In particular, using the
method of invariant sets of descending flow, we prove the existence of
at least one sign-changing solutions.
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1. Introduction and main results

In this paper, we investigate the existence of high-energy solutions and sign-
changing solutions to the following Kirchhoff type elliptic equation{−(a + b

∫
Ω

|∇u|2)�u = μg(x, u) + f(x, u), in Ω,
u = 0, on ∂Ω,

(1.1)

where Ω ⊂ R
3 is a bounded domain with smooth boundary ∂Ω and a > 0,

b ≥ 0. The nonlinearity μg(x, u) + f(x, u) may involve a combination of
concave and convex terms. When a ≡ 1, and b ≡ μ ≡ 0, the problem (1.1)
turns out to be the following elliptic equation:{−�u = f(x, u), in Ω,

u = 0, on ∂Ω.
(1.2)

Anmin Mao: Supported by the NSFC(11471187,11571197) and SNSFC(ZR2014AM034).

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-018-0486-9&domain=pdf


2 Page 2 of 20 M. Shao and A. Mao JFPTA

Note that Kirchhoff type problem on a smooth-bounded domain Ω ⊂ R
3

takes the form {−(a + b
∫
Ω

|∇u|2)�u = f(x, u), in Ω,
u = 0, on ∂Ω,

(1.3)

and has been studied extensively. Indeed, such a class of problems is viewed
as being nonlocal because of the presence of the term (

∫
Ω

|∇u|2)�u, which
implies that the equation in (1.3) is no longer a pointwise identity and is very
different from classical elliptic equations. That is to say, such a phenomenon
provokes some mathematical difficulties, which makes the study of such a
class of problems particularly interesting. On the other hand, problem (1.3)
has its physical motivation. Moreover, the equation of (1.3) related to the
following stationary analogue equation:{

utt − (a + b
∫
Ω

|∇u|2)�u = f(x, u), in Ω,
u = 0, on ∂Ω,

(1.4)

where u denotes the displacement, f(x, u) the external force and b the initial
tension while a is related to the intrinsic properties of the string (such as
Young’s modulus). Equation of type (1.4) was first proposed by Kirchhoff
[15] and began to attract researchers’ attention mainly after the work of
Lions [16]. Some interesting results can be found, for example, in [1,5,7,9,
10,14,21,22,24–27]. Similar nonlocal problems also appear in several fields
as biological systems (for example, population density, see [2,8]).

In the last two decades, there are a large number of papers devoted
to problems like (1.3) on the existence of positive solutions, radial and non-
radial solutions, ground states, and sign-changing (see, e.g., [2–23]). Recently,
in almost all the results concerning equation (1.3), the nonlinear term f is
assumed to be superlinear or sublinear, and little has been done for the com-
bination of concave and convex terms. It is the first purpose of our paper to
investigate the Kirchhoff type problems with concave and convex nonlinear-
ities.

Another topic which has increasingly received interest in recent years
is the existence of sign-changing solutions of problems like (1.3). Mao and
Zhang [23] considered the existence of sign-changing and multiple solutions
of problems like (1.3) without the (PS) condition. Deng et al. [11] studied
the following Kirchhoff problem:

− (a + b

∫
R3

|∇u|2)�u + V (|x|)u = f(|x|, u), u ∈ H1(R3) (1.5)

and they proved that, for any positive integer k, the problem has a sign-
changing solution ub

k. In [13], Figueiredo et al. studied the existence of a nodal
solution with minimal energy of (1.3). Using constrained minimization on
the sign-changing Nehari manifold, Ye in [31] proved the following nonlinear
Kirchhoff equation:

− (a + b

∫
RN

|∇u|2)�u + V (x)u = f(u), u ∈ H1(RN ) (1.6)
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has a least energy nodal solution. In [28] W. S studied the existence of least en-
ergy sign-changing solutions for a class of Kirchhoff-type problem in bounded
domains using quantitative deformation lemma and degree theory.

Motivated by and different from above-mentioned papers, we expect to
use the method of invariant sets of descending flow to prove the existence
of sign-changing solutions. Mao and Luan [24] obtained existence of signed
and sign-changing solutions with asymptotically three-linear-bounded non-
linearity via variational methods and invariant sets of descent flow. Batkam
[4] established a new sign-changing version of the symmetric Mountain Pass
theorem and then applied it to prove the existence of a sequence of sign-
changing solutions to (1.3) with higher energy. Note that the nonlinear term
f in [4] is superlinear. Different from the works in the literature, the second
aim of our paper is to study the problem (1.1) with more general nonlinearity
involving concave and convex nonlinearities.

Before stating our main results, we introduce some conditions for f, g ∈
C(Ω × R,R).
(g1) There exist constants 1 < q1 < q2 < · · · < qm < 2 and functions
hi(x) ∈ L

2
2−qi (Ω,R+)(i = 1, . . . ,m) such that

|g(x, u)| ≤
m∑

i=1

hi(x)|u|qi−1, ∀x ∈ Ω, u ∈ R.

(g2) There exists ν ∈ (1, 2) such that

0 < ug(x, u) ≤ νG(x, u), ∀x ∈ Ω, u ∈ R,

where G(x, u) =
∫ u

0
g(x, t)dt.

(f1) There exist C1 > 0 and 2 < p < 6 such that

|f(x, u)| ≤ C1(1 + |u|p−1), ∀x ∈ Ω, u ∈ R.

(f2) lim|u|→0
f(x,u)

u = 0 uniformly in Ω.
(f3) There exists θ > 4 such that

0 < θF (x, u) ≤ uf(x, u), ∀x ∈ Ω, u ∈ R,

where F (x, u) =
∫ u

0
f(x, t)dt.

(f4) There exists R > 0 such that

inf
x∈Ω,|u|≥R

F (x, u) := β > 0.

Our main results read as follows.

Theorem 1.1. Let a > 0, b ≥ 0. Assume (g1), (g2) and (f1)− (f4) hold. Then
there exists μ̃ > 0 such that for μ ∈ [−μ̃, μ̃], problem (1.1) has at least one
nontrivial solutions.

Theorem 1.2. Let a > 0, b ≥ 0. Assume (g1), (g2) and (f1)–(f4) hold and f, g
is odd in u. Then there exists μ̃ > 0 such that for μ ∈ [−μ̃, μ̃], problem (1.1)
has a sequence of solutions (uk) with Iμ(uk) → +∞ as k → ∞.
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Remark 1.3. In general, one uses the Mountain Pass theorem to get the (PS)c

sequences. However, it is difficult to obtain a (PS)c sequence by this method
in the case of sublinear. Moreover, it is hard in the situation of concave and
convex nonlinearities. Thus, we adopt a new technique to prove the existence
of a Mountain Pass geometry in the case of concave and convex nonlinearities.

The combined effect of concave and convex nonlinearities was first in-
vestigated by Ambrosetti et al. [3] on the following elliptic equation:{ − �u = μ|u|q−2u + λ|u|p−2u

u ∈ H1
0 (Ω)

(1.4)

with Ω ⊂ R
N a bounded domain, 1 < q < 2 < p < 2∗, 2∗ = 2N

N−2 . They
proved the existence of infinitely many solutions with negative energy for
0 < μ � λ = 1. Bartsch and Willem extended the results in [29], they proved
the existence of infinitely many solutions with high energy for λ > 0, μ ∈ R

and negative energy for μ > 0, λ ∈ R using Fountain theorem and Dual
Fountain theorem, respectively. Li et al. also considered an elliptic equation
with concave and convex nonlinearities in [19]. In [12], Ding and Liu studied
multiplicity of periodic solutions of a Dirac equation with concave and convex
nonlinearities.

Theorem 1.4. Let a > 0, b ≥ 0. Assume (g1), (g2) and (f1)–(f4) hold. Then
there exists μ0 > 0 such that for μ ∈ (0, μ0], problem (1.1) has at least one
sign-changing solutions.

Remark 1.5. The class of nonlinearities μg(x, u) + f(x, u) satisfying the as-
sumptions of Theorem 1.4 includes the nonlinearity μ|u|q−2u + |u|p−2u with
1 < q < 2, 4 < p < 6. Even in this special case, Theorem 1.4 seems to be the
first attempt in finding sign-changing solutions to (1.1).

The method of invariant sets of descending flow plays an important
role in the study of sign-changing solutions of elliptic problems. We refer to
[17,23,32] and the references therein. Since the pseudo-gradient flow must be
constructed in such a way that keeps the positive and negative cones invari-
ant. However, this invariance property makes the construction of the flow very
complicated because of the nonlocal term (

∫
Ω

|∇u|2)�u. Thus, to construct
the pseudo-gradient flows using an auxiliary operator is more important.

The idea of the proofs of Theorems 1.4 is to use suitable minimax argu-
ments in the presence of invariant sets of a descending flow for the variational
formulation. In particular, we make use of an abstract critical point theory
developed by Wang et al. [17] on the nonlinear Schrödinger systems and by
Liu et al. [18] on the Schrödinger–Poisson system{ − �u + V (x)u + φu = f(u), in R

3,

− �φ = u2, in R
3,

(1.7)

where the pseudo-gradient flows were constructed using an auxiliary operator.
This paper is organized as follows. In Sect. 2, we state the variational

framework of our problem and some preliminary setting. Section 3 is devoted
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to the proof of Theorems 1.1 and 1.2. Finally, the proof of Theorem 1.4 is
presented in Sect. 4.

2. Preliminaries and functional setting

Throughout this paper we denote by → (resp.⇀) the strong (resp.weak)
convergence. We use Ci to denote various positive constants which may vary
from lines to lines and are not essential to the problem.

We make use of the following notations, let H := H1
0 (Ω) with the norm

and the inner product

‖u‖ :=
(∫

Ω

|∇u|2
) 1

2

, (u, v) =
∫

Ω

(∇u∇v).

As usual, for 1 ≤ p < +∞, |u|p :=
(∫

Ω
|u|p) 1

p , u ∈ Lp(Ω).

Lemma 2.1. [29, Theorem 1.9]. If |Ω| < ∞, the following embeddings are
compact:

H1
0 (Ω) ↪→ Lp(Ω), 1 ≤ p < 2∗,

and so there exists ηs such that

|u|s ≤ ηs‖u‖, ∀u ∈ H1
0 (Ω). (2.1)

Next we define the energy functional Iμ on H by

Iμ(u) =
a

2

∫
Ω

|∇u|2 +
b

4

(∫
Ω

|∇u|2
)2

− μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u) (2.2)

under the assumptions(g1) and (f1), Iμ ∈ C1(H,R) and

(I
′
μ(u), v) =

∫
Ω

(∇u∇v) +
∫

Ω

|∇u|2∇u∇v − μ

∫
Ω

g(x, u)v −
∫

Ω

f(x, u)v.

(2.3)

It is easy to verify that u ∈ H is a solution of system (1.1) if and only
if u ∈ H is a critical point of Iμ.

Let X be a Banach space with the norm ‖ · ‖ and X =
⊕∞

i=1 Xi with
dim Xi < +∞ for each i ∈ N. Further, we set

Yk =
k⊕

i=1

Xi, Zk =
∞⊕

i=k

Xi.

Definition 2.2. [29]. Let X be a Banach space, I ∈ C1(X,R), and c ∈ R. The
function I satisfies the (PS)c condition if any sequence {un} ⊂ X such that

I(un) → c, I
′
(un) → 0 as n → ∞

has a convergent subsequence.



2 Page 6 of 20 M. Shao and A. Mao JFPTA

Lemma 2.3. (Mountain Pass theorem [29]). Let X be a Banach space, I ∈
C1(X,R), e ∈ X and r > 0 such that ‖e‖ > r and

inf
‖u‖=r

I(u) > I(0) ≥ I(e).

If I satisfies the (PS)c condition with

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

Γ := {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = e}.

then c is a critical value of I.

Lemma 2.4. [29]. If 1 ≤ p < 2∗ then we have that

βk := sup
u∈Zk,‖u‖=1

|u|p → 0 as k → ∞.

To give the proof of our main result, we need the following critical point
theorem.

Lemma 2.5. (Fountain theorem, Bartsch, 1992 [29]). Let I ∈ C1(X,R) satisfy
I(−u) = I(u). Assume that, for every k ∈ N, there exists ρk > γk > 0 such
that
(A1) ak := maxu∈Yk,‖u‖=ρk

I(u) ≤ 0,
(A2) bk := infu∈Zk,‖u‖=γk

I(u) → +∞ as k → +∞,
(A3) I satisfies the (PS)c condition for every c > 0,
then I has an unbounded sequence of critical values.

3. Proof of Theorems 1.1 and 1.2

3.1. Proof of Theorem 1.1

Lemma 3.1. If (g1), (f1) − (f4) hold, then there exist e ∈ H and r > 0 such
that inf‖u‖=r Iμ(u) > 0 and Iμ(e) < 0 with ‖e‖ > r.

Proof. Since 1 < q1 < q2 < · · · < qm < 2, (g1) together with (2.1) and
Hölder’s inequality imply that, for ‖u‖ large enough,∫

Ω

|G(x, u)| ≤
∫

Ω

m∑
i=1

1
qi

|hi(x)||u|qi

=
m∑

i=1

∫
Ω

1
qi

|hi(x)||u|qi

≤
m∑

i=1

1
qi

|hi(x)| 2
2−qi

|u|qi

2

≤
m∑

i=1

1
qi

|hi(x)| 2
2−qi

ηqi

2 ‖u‖qi

≤ C3‖u‖qm .

(3.1)

(f1) and (f2) imply that for any δ > 0 there exists Cδ > 0 such that

|f(x, u)| ≤ δ|u| + Cδ|u|p−1, ∀u ∈ R, x ∈ Ω, (3.2)
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and then

|F (x, u)| ≤ δ

2
|u|2 +

Cδ

p
|u|p, ∀u ∈ R, x ∈ Ω. (3.3)

It follows from (3.1) and (3.3) that

Iμ(u) =
a

2

∫
Ω

|∇u|2 +
b

4

(∫
Ω

|∇u|2
)2

− μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

=
a

2
‖u‖2 +

b

4
‖u‖4 − μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

≥ a

2
‖u‖2 − |μ|

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

≥ a

2
‖u‖2 − |μ|C3‖u‖qm −

∫
Ω

(
δ

2
|u|2 +

Cδ

p
|u|p

)

≥ a

2
‖u‖2 − |μ|C3‖u‖qm − δ

2
η2
2‖u‖2 − Cδ

p
ηp

p‖u‖p

= ‖u‖2

(
a

2
− δ

2
η2
2 − |μ|C3‖u‖qm−2 − Cδ

p
ηp

p‖u‖p−2

)
.

For δ ≤ 2a−1
2η2

2
satisfying a

2 − δ
2η2

2 ≥ 1
4 , we have

Iμ(u) ≥ ‖u‖2

(
1
4

− |μ|C3‖u‖qm−2 − Cδ

p
ηp

p‖u‖p−2

)
. (3.4)

Let

k(s) = |μ|C3s
qm−2 +

Cδ

p
ηp

psp−2, s ≥ 0, (3.5)

and then we get lims→+∞ k(s) = lims→0+ k(s) = +∞, which implies that
k(s) is bounded below, thus k(s) admits a minimizer s0:

s0 =
( |μ|C3p(2 − qm)

Cδη
p
p(p − 2)

) 1
p−qm

.

From (3.5)

inf
s∈[0,+∞)

k(s) = k(s0)

= |μ|C3

( |μ|C3p(2 − qm)

Cδη
p
p(p − 2)

) qm−2
p−qm

+
Cδ

p
ηp

p

( |μ|C3p(2 − qm)

Cδη
p
p(p − 2)

) p−2
p−qm

= |μ| p−2
p−qm

[
C3

(
C3p(2 − qm)

Cδη
p
p(p − 2)

) qm−2
p−qm

+
Cδη

p
p

p

(
C3p(2 − qm)

Cδη
p
p(p − 2)

) qm−2
p−qm

]
.

Let K = C3

(
C3p(2−qm)
Cδηp

p(p−2)

) qm−2
p−qm + Cδηp

p

p

(
C3p(2−qm)
Cδηp

p(p−2)

) qm−2
p−qm , then k(s0)

= |μ| p−2
p−qm K,

if

|μ| ≤
(

1
4K

) p−qm
p−2

:= μ̃
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then

k(s0) <
1
4
,

thus, there exists r := s0 > 0 such that inf‖u‖=r Iμ(u) > 0 = I(0).
After integrating, we obtain from (f1)–(f4) the existence of C4 > 0 such

that

F (x, u) ≥ C4(|u|θ − |u|2), ∀x ∈ Ω, u ∈ R. (3.6)

For t > 0, note that θ > 4, we have, for some u0 ∈ E

Iμ(tu0) =
a

2
t2‖u0‖2 +

b

4
t4‖u0‖4 − μ

∫
Ω

G(x, tu0) −
∫

Ω

F (x, tu0)

≤ a

2
t2‖u0‖2

E +
b

4
t4‖u0‖4 + |μ|C3t

qm‖u0‖qm − C4t
θ|u0|θθ + C4t

2|u0|22
→ −∞ (t → +∞),

so, there exists e = t0u0 such that ‖e‖ > r and Iμ(e) < 0.

Lemma 3.2. Let a > 0, b ≥ 0 and assume (g1) hold. Set

ψ(u) :=
∫

Ω

G(x, u),

then ψ
′
is weakly continuous and compact.

Proof. The proof is similar to Lemma 2.2 in [30], so we omit it.

Lemma 3.3. Assume (g1), (g2) and (f1)–(f3) hold. Then for every μ ∈ R, Iμ

satisfies (PS)c condition for every c.

Proof. Let {un} ⊂ H be such that Iμ(un) → c and I
′
μ(un) → 0 as n → ∞.

First, we verify the boundedness of {un}. For n large enough, by (g2) and
(f3) we have

c + 1 + ‖un‖ ≥ Iμ(un) − 1
θ
(I

′
μ(un), un)

= a

(
1
2

− 1
θ

)
‖un‖2 + b

(
1
4

− 1
θ

)
‖un‖2 − μ

∫
Ω

(G(x, un)

− 1
θ
g(x, un)un) +

∫
Ω

1
θ
(f(x, un)un − F (x, un))

≥ a

(
1
2

− 1
θ

)
‖un‖2 − μ

∫
R3

(G(x, un) − 1
θ
g(x, un)un)

≥ a

(
1
2

− 1
θ

)
‖un‖2 − |μ|

∫
Ω

(G(x, un) − 1
θ
g(x, un)un).

By (g1), Lemma 2.1 and Hölder’s inequality we can obtain∣∣∣∣
∫

Ω

(G(x, un) − 1
θ
g(x, un)un)

∣∣∣∣ ≤
∫

Ω

|G(x, un| + |1
θ
g(x, un)un|

≤
m∑

i=1

(
1
qi

+
1
θ

)
|hi(x)| 2

2−qi

ηqi

2 ‖un‖qi (3.7)
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Thus,

c + 1 + ‖un‖ ≥ a

(
1
2

− 1
θ

)
‖un‖2 − |μ|

m∑
i=1

(
1
qi

+
1
θ

)
|hi(x)| 2

2−qi

ηqi

2 ‖un‖qi

where 1 < qi < 2, i = 1, . . . ,m, which gives a bound for {un}.
Next, we prove that the sequence {un} has a convergent subsequence.

Going if necessary to a subsequence, we can assume that un ⇀ u in H and
un → u in Ls(Ω), 2 ≤ s < 6. Theorem A.2 in [29] implies that f(x, un) →
f(x, u) in Lq(Ω), q = p

p−1 . Observe that

(a + b‖un‖2)‖un − u‖2

= (I
′
μ(un) − I

′
μ(u), un − u) + b

(∫
Ω

(|∇u|2 − |∇un|2)
∫

Ω

∇u∇(un − u)
)

+ μ

∫
Ω

(g(x, un) − g(x, u))(un − u) +
∫

Ω

(f(x, un) − f(x, u))(un − u).

It is clear that

(I
′
μ(un) − I

′
μ(u), un − u) → 0 as n → ∞. (3.8)

Since {un} is bounded and un ⇀ u in H,

b

∫
Ω

(|∇u|2 − |∇un|2)
∫

Ω

∇u∇(un − u) → 0 as n → ∞. (3.9)

By Lemma 3.2, we know that ψ
′
is compact, thus∣∣∣∣

∫
Ω

(g(x, u) − g(x, u))(un − u)
∣∣∣∣ → 0 as n → ∞. (3.10)

It follows from the Hölder’s inequality that∣∣∣∣
∫

Ω

(f(x, un) − f(x, u))(un − u)
∣∣∣∣ ≤ |f(x, un) − f(x, u)|q|un − u|p → 0

as n → ∞.

(3.11)

By (3.8)–(3.11), we obtain that ‖un − u‖ → 0 as n → ∞. �

Proof of Theorem 1.1. By Lemmas 3.1, 3.3 and using Lemma 2.3, we com-
plete the proof of Theorem 1.1. �

3.2. Proof of Theorem 1.2

In this section, we prove the existence of infinitely many solutions with high
energy to system (1.1).

Proof of Theorem 1.2. On Zk, by Lemma 2.3, we see that

βk := sup
u∈Zk,‖u‖=1

|u|p → 0, k → ∞,

which implies that

|u|p ≤ βk‖u‖, 1 ≤ p < 2∗. (3.12)
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Thus, by (3.1), (3.3), Lemma 2.1 and (3.12) we have,

Iμ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

≥ a

2
‖u‖2 − μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

≥ 1
2
‖u‖2 − |μ|C3‖u‖qm −

∫
Ω

(
δ

2
|u|2 +

Cδ

p
|u|p

)

≥ 1
2
‖u‖2 − |μ|C3‖u‖qm − δ

2
η2
2‖u‖2 − Cδ

p
βp

k‖u‖p

= ‖u‖2

(
1
2

− δ

2
η2
2 − |μ|C3‖u‖qm−2 − Cδ

p
βp

k‖u‖p−2

)
.

For δ ≤ 2a−1
2η2

2
satisfying a

2 − δ
2η2

2 ≥ 1
4 , we have

Iμ(u) ≥ ‖u‖2

(
1
4

− |μ|C3‖u‖qm−2 − Cδ

p
βp

k‖u‖p−2

)
(3.13)

and there exists

γk =
(

(2 − qm)C3p|μ|
(p − 2)Cδβ

p
k

) 1
p−qm

,

such that

bk := inf
u∈Zk,‖u‖=γk

Iμ(u) ≥ 1
8
γ2

k.

By Lemma 2.3 we know that βk → 0 as k → ∞. Moreover, 1 < qm < 2,
2 ≤ p < 6, thus bk → +∞ as k → ∞, (A2) is proved.

On Yk, by (3.1) and (3.6) we have

Iμ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

≤ a

2
‖u‖2 +

b

4
‖u‖4 + |μ|

∫
Ω

G(x, u) −
∫

Ω

C4(|u|θ − |u|2)

≤ a

2
‖u‖2 +

b

4
‖u‖4 + |μ|C3‖u‖qm − C4|u|θθ + C4|u|22.

Since on the finite dimensional space Yk all norms are equivalent, thus there
exists ρk > γk > 0 such that ‖u‖ = ρk and condition (A1) is satisfied for ρk

large enough.
As in the proof of Lemma 3.3 one sees that Iμ satisfies (PS)c condition,

i.e. (A3) hold. Therefore, using Lemma 2.5 we obtain that system (1.1) has
a sequence of of solutions uk such that Iμ(uk) → ∞ as k → ∞. �

4. Proof of Theorem 1.3

In this section, we prove the existence of sign-changing solutions to problem
(1.1).
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4.1. Preliminaries of invariant subset of descending flow

To obtain sign-changing solutions, we make use of the positive and negative
cones. Precisely, define

P+ := {u ∈ X : u ≥ 0} and P− := {u ∈ X : u ≤ 0}.

For ε > 0, we also define

P+
ε := {u ∈ X : dist(u, P+) < ε} and P−

ε := {u ∈ X : dist(u, P−) < ε},

where dist(u, P±) = infv∈P ± ‖u − v‖.
Let X be a Banach space, I ∈ C1(X,R), P,Q ⊂ X be open sets. We

denote by K the set of critical point of I that is K = {u ∈ X : I
′
(u) = 0}

and E = X\K. For c ∈ R, Kc = {x ∈ X : I(x) = c, I
′
(x) = 0} and

Ic = {x ∈ X : I(x) ≤ c}.

Definition 4.1. [18]. {P,Q} is called an admissible family of invariant sets
with respect to I at level c, provided that the following deformation property
holds: if Kc\(P ∩ Q) = ∅, then there exists ε0 > 0 such that for ε ∈ (0, ε0),
there exists η ∈ C(X,X) satisfying

(i) η(P ) ⊂ P , η(Q) ⊂ Q;
(ii) η |Ic−2ε= id;
(iii) η(Ic+ε\(P ∩ Q)) ⊂ Ic−ε.

4.2. Properties of operator A

In the following, we take X = H, P = P+
ε , Q = P−

ε and I = Iμ. Importantly,
we need an auxiliary operator A to construct a locally Lipschitz continuous
operator B on E to define the descending flow. Precisely, the operator A is
defined as follows: for any u ∈ H, v = A(u) is the unique solution to the
equation

− (a + b‖u‖2)�v = μg(x, u) + f(x, u). (4.1)

Then the set of fixed points of A coincide with the set K of critical points of
Iμ. Moreover, the operator A has the following important properties.

Lemma 4.2. The operator A is well defined and is continuous.

Proof. For u ∈ H fixed, we consider the functional

Ju(v) =
1
2
(a + b‖u‖2)

∫
Ω

|∇v|2 − μ

∫
Ω

g(x, u)v −
∫

Ω

f(x, u)v. (4.2)

Obviously, Ju(v) ∈ C1(H,R), coercive, bounded below, weakly lower semi-
continuous and strictly convex. Therefore, Ju admits a unique minimizer
which is the unique solution to the problem (4.1).

In the following, we prove that A is continuous. Let {un} ⊂ H such that
un → u in H. Let v = A(u) and vn = A(un). We need to prove ‖vn −v‖ → 0.
By the definition of A we have for any w ∈ H

(a + b‖un‖2)
∫

Ω

∇A(un)∇w = μ

∫
Ω

g(x, un)w +
∫

Ω

f(x, un)w, (4.3)

(a + b‖u‖2)
∫

Ω

∇A(u)∇w = μ

∫
Ω

g(x, u)w +
∫

Ω

f(x, u)w. (4.4)
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Taking w = vn − v in (4.3) and (4.4) and subtracting we obtain

(a + b‖un‖2)‖vn − v‖2

= b(‖u‖2 − ‖un‖2)
∫

Ω

∇v∇(vn − v)

+ μ

∫
Ω

(g(x, un) − g(x, u))(vn − v) +
∫

Ω

(f(x, un) − f(x, u))(vn − v)

≤ b(‖u‖2 − ‖un‖2)‖v‖‖vn − v‖

+ μ

∫
Ω

(g(x, un) − g(x, u))(vn − v) + |f(x, un) − f(x, u)|q|vn − v|p.

Since ψ
′
is compact and by Theorem A.2 in [29] , we have ‖vn −v‖ → 0, that

is A is continuous.

Lemma 4.3. For any u ∈ H we have

(i) 〈I ′
μ(u), u − A(u)〉 ≥ a‖u − A(u)‖2;

(ii) ‖I
′
μ(u)‖ ≤ (a + b‖u‖2)‖u − A(u)‖.

Proof. Since A(u) is a solution of (4.1), then for any w ∈ H, we have
〈J ′

u(A(u)), w〉 = 0 and

〈I ′
μ(u), u − A(u)〉 = 〈I ′

μ(u), u − A(u)〉 − 〈J ′
u(A(u)), u − A(u)〉

= (a + b‖u‖2)‖u − A(u)‖2

≥ a‖u − A(u)‖2.

For any w ∈ H,

〈I ′
μ(u), w〉 = 〈I ′

μ(u), w〉 − 〈J ′
u(A(u)), w〉

= (a + b‖u‖2)
∫

Ω

∇(u − A(u))∇w

≤ (a + b‖u‖2)‖u − A(u)‖‖w‖,

so

‖I
′
μ(u)‖ ≤ (a + b‖u‖2)‖u − A(u)‖.

Lemma 4.4. There exist ε0 > 0 and μ0 > 0 such that A(P±
ε ) ⊂ P±

ε , ∀ε ∈
(0, ε0), ∀μ ∈ (0, μ0].

Proof. We only prove A(P−
ε ) ⊂ P−

ε , A(P+
ε ) ⊂ P+

ε is similar. Let u ∈ H, and
v = A(u). As usual we denote v+ = max{0, v} and v− = min{0, v}, for any
v ∈ H. Obviously, dist(v, P−) ≤ ‖v+‖. Then, by (g1), (3.2), Lemma 2.1 and
Hölder’s inequality, we have
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(a + b‖u‖2)dist(v, P−)‖v+‖
≤ (a + b‖u‖2)‖v+‖2

= (a + b‖u‖2)(v, v+)

= (a + b‖u‖2)
∫

Ω

∇v+∇v+

= μ

∫
Ω

g(x, u)v+ +
∫

Ω

f(x, u)v+

≤
∫

Ω

[μg(x, u+) + f(x, u+)]v+

≤
(

μη2

m∑
i=1

(|hi(x)| 2
2−qi

|u+|qi−1
2 ) + εη2|u+|2 + Cεηp|u+|p−1

p

)
‖v+‖

≤
(

μη2

m∑
i=1

(|hi(x)| 2
2−qi

dist(u, P−)qi−1)

+ δη2dist(u, P−) + Cδηpdist(u, P−)p−1
) ‖v+‖.

It follows that

dist(v, P
−

) ≤
μη2

∑m

i=1
(|hi(x)| 2

2−qi

dist(u, P
−

)
qi−1

) + δη2dist(u, P
−

) + Cδηpdist(u, P
−

)
p−1

a + b‖u‖2
.

For dist(v, P−) small enough, by 1 < q1 < q2 < · · · < qm < 2, we have

dist(v, P−) ≤ μη2C
′
3dist(u, P−)q1−1 + δη2dist(u, P−) + Cδηpdist(u, P−)p−1

a + b‖u‖2
.

Let

δη2ε + Cδηpε
p−1

a + b‖u‖2
≤ ε

2
and μ

η2C
′
3ε

q1−1

a + b‖u‖2
≤ ε

2
,

and then there exist ε0 > 0 and μ0 > 0 such that for ε ∈ (0, ε0) and μ ∈ [0, μ0]

dist(A(u), P−) = dist(v, P−) < ε,

so, for any u ∈ P−
ε , we have A(u) ∈ P−

ε . �

Remark 4.5. Note that the operator A is not compact and not locally Lip-
schitz continuous. However, it can be used to construct a locally Lipschitz
continuous vector field which inherits its properties.

Lemma 4.6. There exists a locally Lipschitz continuous operator B : E → H
such that

(i) 〈I ′
μ(u), u − B(u)〉 ≥ 1

2‖u − A(u)‖2;
(ii) 1

2‖u − B(u)‖ ≤ ‖u − A(u)‖ ≤ 2‖u − B(u)‖;
(iii) B(P±

ε ) ⊂ P±
ε , ∀ε ∈ (0, ε0);

(iv) if Iμ is even, then B is odd.

The proof of this theorem follows the lines of [18].
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Remark 4.7. Lemmas 4.3–4.6 imply that

〈I ′
μ(u), u − B(u)〉 ≥ 1

8
‖u − B(u)‖2,

and

‖I
′
μ(u)‖ ≤ 2(a + b‖u‖2)‖u − B(u)‖.

4.3. Existence of sign-changing solution

Lemma 4.8. Let m1 < m2, α > 0. Then, there exists β > 0 such that ‖u −
B(u)‖ ≥ β, if u ∈ H, Iμ(u) ∈ [m1,m2] and ‖I

′
μ(u)‖ ≥ α.

Proof. By the definition of A, for all u ∈ H,

(a + b‖u‖2)
∫

Ω

∇A(u)∇u = μ

∫
Ω

g(x, u)u +
∫

Ω

f(x, u)u

so, we have

Iμ(u) − 1
θ
(a + b‖u‖2)(u, u − A(u))

=
a

2
‖u‖2 +

b

4
‖u‖4 − μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

− 1
θ
(a + b‖u‖2)

∫
Ω

∇u∇(u − A(u))

= a

(
1
2

− 1
θ

)
‖u‖2 + b

(
1
4

− 1
θ

)
‖u‖4 +

1
θ
(a + b‖u‖2)

∫
Ω

∇u∇A(u)

− μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

= a

(
1
2

− 1
θ

)
‖u‖2 + b

(
1
4

− 1
θ

)
‖u‖4 +

1
θ

(
μ

∫
Ω

g(x, u)u +
∫

Ω

f(x, u)u
)

− μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

= a

(
1
2

− 1
θ

)
‖u‖2 + b

(
1
4

− 1
θ

)
‖u‖4 + μ

∫
Ω

(
1
θ
g(x, u)u − G(x, u)

)

−
∫

Ω

(
1
θ
f(x, u)u − F (x, u)

)

thus, by (3.7) and (ii) of Lemma 4.6,

b

(
1

4
− 1

θ

)
‖u‖4

= Iμ(u) − 1

θ
(a + b‖u‖2)(u, u − A(u)) − a

(
1

2
− 1

θ

)
‖u‖2

− μ

∫
Ω

(
1

θ
g(x, u)u − G(x, u)

)
−

∫
Ω

(
1

θ
f(x, u)u) − F (x, u)

)

≤ |Iμ(u)| +
1

θ
(a + b‖u‖2)‖u‖‖u − A(u)‖ + μ

∫
Ω

(G(x, u) − 1

θ
g(x, u)u)

≤ |Iμ(u)|+ 2

θ
(a + b‖u‖2)‖u‖‖u − B(u)‖+μ

m∑
i=1

(
1

qi
+

1

θ

)
|hi(x)| 2

2−qi

ηqi
2 ‖un‖qi .

(4.5)
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Arguing toward a contradiction, if there exists {un} ⊂ H with Iμ(un) ∈
[m1,m2] and ‖I

′
μ(un)‖ ≥ α such that ‖un − B(un)‖ → 0 as n → ∞, then

it follows from (4.5) that {un} is bounded, and by Remark 4.7 we see that
‖I

′
μ(un)‖ → 0 as n → ∞, which is a contradiction. �

Lemma 4.9. (Deformation lemma). Let S ⊂ H. Assume there exists a ε > 0
such that Lemmas 4.6 and 4.8 is satisfied. Let c ∈ R and ε0 > 0 such that

∀u ∈ I−1
μ ([c − 2ε0, c + 2ε0]) ∩ S2δ : ‖I

′
μ(u)‖ ≥ ε0.

Then for some ε1 ∈ (0, ε0) there exists η ∈ C([0, 1] × H,H) such that
(i) η(t, u) = u, if t = 0 or if u /∈ I−1

μ ([c − 2ε1, c + 2ε1]),
(ii) η(1, Ic+ε1

μ ∩ S) ⊂ Ic−ε1
μ ,

(iii) Iμ(η(·, u)) is not increasing, ∀u ∈ H,
(iv) η(t, P+

ε ) ⊂ P+
ε , η(t, P−

ε ) ⊂ P−
ε , ∀t ∈ [0, 1],

(v) η(t, ·) is odd, ∀t ∈ [0, 1].

7

Proof. The proof is similar to the proof of [5, Lemma 2.1.] and we include it
here for completeness. Define

A1 := I−1
μ ([c − 2ε1, c + 2ε1]) ∩ S2δ,

A2 := I−1
μ ([c − ε1, c + ε1]) ∩ Sδ,

h(u) :=
dist(u,H\A1)

dist(u,H\A1) + dist(A2)
, u ∈ H.

Then h(u) = 0 on H\A1, h(x) = 1 on A2, 0 ≤ g ≤ 1, and g is Lipschitz
continuous on H. Consider the vector field

W (u) :=
{−g(u)‖V (u)‖−2V (u), u ∈ A1,

0, u ∈ H\A1,

where V is defined as follows:

V : E → H, u �→ V (u) := u − B(u).

Obviously, W is locally Lipschitz continuous and odd in u if Iμ is even.
Moreover, by our choice of ε1 above we have

‖W (u)‖ = ‖g(u)‖ 1
‖u − B(u)‖ ≤ 2(a + b‖u‖2)

‖I ′
μ(u)‖ ≤ 2(a + b‖u‖2)

ε0
. (4.6)

Consider the following initial value problem⎧⎨
⎩

d
dt

σ(t, u) = W (u)

σ(0, u) = u
(4.7)

The basic existence-uniqueness theorem for ordinary differential equations
implies that for each u ∈ H (4.7) has a unique solution σ(·, u) ∈ C(R+,H).

By (4.6), we have

‖σ(t, u) − u‖ ≤
∫ t

0

‖W (σ(s, u))‖ds ≤ 2(a + b‖u‖2)
ε0

t, (4.8)

and by Remark 4.7 we have
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d

dt
I(σ(t, u)) = −〈I ′

μ(σ(t, u)), g(σ(t, u))‖V (σ(t, u))‖−2V (σ(t, u))〉

= −g(σ(t, u))‖V (σ(t, u))‖−2〈I ′
(σ(t, u)), V (σ(t, u))〉

= −g(σ(t, u))‖σ(t, u) − B(σ(t, u))‖−2〈I ′
(σ(t, u)), σ(t, u) − B(σ(t, u))〉

≤ −g(σ(t, u))‖σ(t, u) − B(σ(t, u))‖−2 · 1

8
‖σ(t, u) − B(σ(t, u))‖2

= −1

8
g(σ(t, u)). (4.9)

Define

η : [0, 1] × H → H, u �→ η(t, u) := σ(16ε1t, u).

(i) If t = 0, then η(t, u) = η(0, u) = σ(0, u) = u.
For any u, we have W (u) = 0. Since A1 is a closed subset of H, so

H\A1 is open, then there exists r = r(u) > 0 such that Br(u) ⊂ H\A1.
And so, for any v ∈ Br(u), W (u) = 0, σ(·, u) ∈ C(R+,H) then there exists
ξ > 16ε1 > 0, such that |σ(t, u) − σ(0, u)| < r, ∀t ∈ [0, ξ], which implies that
σ(t, u) ∈ Br(u), W (σ(t, u)) = 0, ∀t ∈ [0, ξ].

Thus, ∫ 16ε1t

0

dσ(s, u)
ds

ds =
∫ 16ε1t

0

−W (σ(t, u))ds = 0.

It follows that

η(t, u) = σ(16ε1) = σ(0, u) = u, ∀t ∈ [0, 1], ∀u /∈ A1.

(ii) For any u ∈ Ic+ε1∩S
μ , we need to prove Iμ(η(1, u)) = Iμ(σ(16ε1, u)) ≤

c − ε1.
Let u ∈ Ic+ε1

μ ∩ S. If there is t ∈ [0, 16ε1] such that Iμ(σ(t, u)) ≤ c − ε1,
then it follows from (4.9) that Iμ(σ(16ε1)) < c − ε1 and (ii) is satisfied. If

σ(t, u) ∈ I−1
μ [c − ε1, c + ε1], ∀t ∈ [0, 16ε1],

we obtain from (4.8) and (4.9)

Iμ(σ(16ε1, u)) = Iμ(σ(0, u)) +
∫ 16ε1

0

d
dt

I(σ(t, u))dt

≤ Iμ(σ(0, u)) −
∫ 16ε1

0

g(σ(t, u))
8

dt

≤ Iμ(σ(0, u)) − 1
8

· 16ε1

≤ c + ε1 − 2ε1 = c − ε1.

and (ii) is also satisfied. Obviously, (iii) is satisfied by (4.9). Finally, (iv) is a
consequence of Lemma 4.6 (see [20] for a detailed proof).

The following theorem is a corollary of [17, Theorem 2.4].

Lemma 4.10. Assume there exists ε > 0 such that Lemmas 4.6 and 4.8 is
satisfied. Assume also that there exists a map ϕ0 : � → H satisfying

1. ϕ0(∂1�) ⊂ P+
ε and ϕ0(∂2�) ⊂ P−

ε ,
2. ϕ0(∂0�) ∩ P+

ε ∩ P−
ε = ∅,
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3. c0 := sup
u∈ϕ0(∂0�)

Iμ(u) < c∗ := inf
u∈∂P+

ε ∩∂P −
ε

Iμ(u).

where � = {(t1, t2 ∈ R2 : t1, t2 ≥ 0, t1 + t2 ≤ 1}, ∂1� = {0} × [0, 1],
∂2� = [0, 1] × {0} and ∂0� = {(t1, t2) ∈ R2 : t1, t2 ≥ 0, t1 + t2 = 1}.
Then there exists a sequence {un} ⊂ (H\(P+

ε ∩ P−
ε ))2δ such that

I
′
μ(un) → 0, and Iμ(un) → c := inf

ϕ∈Γ
sup

u∈ϕ(�)∩(H\(P+
ε ∩P −

ε )

Iμ(u) ≥ c∗,(4.10)

where

Γ := {ϕ ∈ C(Δ,X) : ϕ(∂1�) ⊂ P+
ε , ϕ(∂2�) ⊂ P−

ε and ϕ |∂0Δ= ϕ0}.

If in addition Iμ satisfies the (PS)c condition for any c > 0, then Iμ has a
sign-changing critical point.

Proof. Lemma 2.1 in [17] implies that ϕ(Δ)∩∂P+
ε ∩∂P−

ε �= ∅ for any ϕ ∈ Γ.
This intersection property implies that c ≥ c∗ > c0.

We claim that

∀ε0 ∈ (0,
c − c0

2
),∃u ∈ I−1

μ ([c − 2ε0, c + 2ε0]) ∩ (H\(P+
ε ∪ P−

ε ))2δ

such that ‖I
′
(u)‖ < ε0. (4.11)

Arguing indirectly, if there exists ε0 ∈ (0, c−c0
2 ) such that

‖I
′
(u)‖ ≥ ε0, ∀u ∈ I−1

μ ([c − 2ε0, c + 2ε0]) ∩ (H\(P+
ε ∪ P−

ε ))2δ.

Taking S = H\(P+
ε ∪ P−

ε ) in Lemma 4.9 and we define the map

τ : Δ → X, x �→ τ(x) := η(1, ϕ(x)),

where ε1 and η are given by Lemma 4.9 and ϕ is chosen such that

sup
u∈ϕ(�)∩(H\(P+

ε ∩P −
ε ))

Iμ(u) ≤ c + ε1. (4.12)

Since c0 < c − 2ε1, by assumption (3) we have Iμ(ϕ0(∂0�)) < c − 2ε1, which
implies that ϕ0(∂0�) ⊂ Ic−2ε1

μ . It follows that τ ∈ Γ.
Combining (ii), (iv) of Lemma 4.9 with (4.12), we have

η(1, ϕ(Δ)) ∩ (H\(P+
ε ∪ P−

ε )) ⊂ η(1, Ic+ε1
μ ) ∩ (H\(P+

ε ∪ P−
ε )) ⊂ Ic−ε1

μ ,

which is in contradiction with the definition of c. So, (4.10) is satisfied.
Taking limit ε0 → 0, then there exists a sequence {un} satisfying (4.10).

Since Iμ satisfies the (PS)c condition, which implies that un → u as n → ∞,
up to a subsequence. Moreover, Iμ ∈ C1(H,R), then u ∈ (H\(P+

ε ∪ P−
ε ))2δ,

and u is sign-changing.

Lemma 4.11. For p ∈ [2, 6] there exists k > 0 independent of ε such that
‖u‖p ≤ kε for u ∈ P+

ε ∩ P−
ε .

Proof. ∀u ∈ P+
ε ∩ P−

ε , by Lemma 2.1, we can obtain

|u±|p = inf
v∈P ∓

|u − v|p ≤ ηp inf
v∈P ∓

‖u − v‖ ≤ ηpdist(u, P∓),

thus ‖u‖p ≤ kε for u ∈ P+
ε ∩ P−

ε . �
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Lemma 4.12. If ε > 0 small enough then there exists μ0 > 0 such that μ ∈
(0, μ0) have Iμ(u) ≥ a

8ε2 for u ∈ ∂P+
ε ∩ ∂P−

ε .

Proof. Let u ∈ ∂P+
ε ∩∂P−

ε , we have ‖u+‖ ≥ dist(u, P∓) = ε. By Lemma 4.11
and (3.3), we have

Iμ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

≥ a

2
ε2 +

b

4
ε4 − μC5|u|νν − δ

2
|u|22 − Cδ

p
|u|pp

≥ a

2
ε2 +

b

4
ε4 − μC5ε

ν − δ

2
ε2 − Cδ

p
εp

≥ a

2
ε2 − μkC5ε

ν − δ

2
kε2 − Cδ

p
kεp

≥ a

2
ε2 − μkC5ε

ν − Cδ

p
kεp

≥ a

4
ε2 − μkC5ε

ν .

For μ ≤ aε2−ν

8C5k satisfying a
4ε2 − μkC5ε

ν ≥ a
8ε2, we have

I(u) ≥ a

8
ε2.

�

Proof of Theorem 1.4. It suffices to verify assumptions (1)–(3) in applying
Lemma 4.10.

Choose v1, v2 ∈ C∞
0 (Ω)\{0} satisfying sup(v1)∩sup(v2) = ∅, and v1 ≤ 0,

v2 ≥ 0. Let ϕ0(t, s) := R(tv1 + sv2) for (t, s) ∈ Δ, where R is a positive
constant to be determined later. Obviously, for t, s ∈ [0, 1], ϕ0(0, s) = Rsv2 ∈
P+

ε and ϕ0(t, 0) = Rtv1 ∈ P−
ε . Hence, the assumption (1) is satisfied.

Observe that ρ = min{|tv1+(1−t)v2|2 : 0 ≤ t ≤ 1} > 0. Then, |u|2 ≥ ρR
for u ∈ ϕ0(∂0Δ) and it follows from Lemma 4.11 that ϕ0(∂0Δ)∩P+

ε ∩P−
ε = ∅

for R large enough.
By (3.6) and (g2), we have

Iμ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − μ

∫
Ω

G(x, u) −
∫

Ω

F (x, u)

≤ a

2
‖u‖2 +

b

4
‖u‖4 + |μ|C5|u|νν − C4|u|θθ + C4|u|22

since θ > 4, by Lemma 4.12, for R large enough

c0 := sup
u∈ϕ0(∂0�)

Iμ(u) < c∗ := inf
u∈∂P+

ε ∩∂P −
ε

I(u).

By Lemma 3.3, we can know that Iμ satisfies the (PS)c condition for any
c > 0. According to Lemma 4.10, Iμ has at least one sign-changing critical
point, which is a sign-changing solution of equation (1.1).
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