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Abstract. In this paper, the concept of bv(s)-metric space is introduced
as a generalization of metric space, rectangular metric space, b-metric
space, rectangular b-metric space and v-generalized metric space. We
next give proofs of the Banach and Reich contraction principles in bv(s)-
metric spaces. Using a new result, we provide short proofs which are
different from of the original ones in metric spaces. The results we obtain
generalize many known results in fixed point theory. We also provide a
solution to an open problem.
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1. Introduction and Preliminaries

Bakhtin [1] and Czerwik [3] introduced b-metric spaces (a generalization of
metric spaces) and proved the contraction principle in this framework. In
the last period many authors obtained fixed point results for single-valued or
set-valued functions, in the setting of b-metric spaces.

Definition 1.1 (Bakhtin [1] and Czerwik [3]). Let X be a nonempty set and
let s ≥ 1 be a given real number. A function d : X × X → [0,∞) is said to
be a b-metric if and only if for all x, y, z ∈ X the following conditions are
satisfied:
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ s[d(x, y) + d(y, z)].

A triplet (X, d, s), is called a b-metric space with coefficient s.

In the sequel Branciari [2] introduced the concept of rectangular metric
space (RMS) by replacing the sum on the right hand side of the triangular
inequality in the definition of a metric space by a three-term expression and
proved an analogue of the Banach contraction principle in such space.
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Definition 1.2 [2]. Let X be a nonempty set and the mapping d : X × X →
[0,∞) satisfying:

(RM1) d(x, y) = 0 if and only if x = y;
(RM2) d(x, y) = d(y, x) for all x, y ∈ X;
(RM3) d(x, y) ≤ d(x, u)+d(u, v)+d(v, y) for all x, y ∈ X and all distinct
points u, v ∈ X\{x, y}.

Then d is called a rectangular metric on X and (X, d) is called a rectangular
metric space (in short RMS).

In the paper [6] George et al. introduce the concept of rectangular b-
metric space, which is not necessarily Hausdorff and which generalizes the
concept of metric space, rectangular metric space and b-metric space.

Definition 1.3 [6]. Let X be a nonempty set and the mapping d : X × X →
[0,∞) satisfying:

(RbM1) d(x, y) = 0 if and only if x = y;
(RbM2) d(x, y) = d(y, x) for all x, y ∈ X;
(RbM3) there exists a real number s ≥ 1 such that d(x, y) ≤ s[d(x, u)+
d(u, v) + d(v, y)] for all x, y ∈ X and all distinct points u, v ∈ X\{x, y}.

Then d is called a rectangular b-metric on X and (X, d) is called a rectangular
b-metric space (in short RbMS) with coefficient s.

The main result in paper [6] is the following theorem (analogue of Ba-
nach contraction principle in rectangular b-metric space).

Theorem 1.4. Let (X, d) be a complete rectangular b-metric space with coef-
ficient s > 1 and T : X → X be a mapping satisfying:

d(Tx, Ty) ≤ λd(x, y) (1.1)

for all x, y ∈ X, where λ ∈ [0, 1
s ]. Then T has a unique fixed point.

In [6], the authors raised the following problem (Open Problem 1).

Problem. In Theorem 1.4, can we extent the range of λ to the case 1
s < λ < 1?

In 2000, Branciari [2] introduced the following concept.

Definition 1.5 (Branciari [2]). Let X be a set, let d be a function from X ×X
into [0,∞) and let v ∈ N. Then (X, d) is said to be a v-generalized metric
space if the following hold:

(N1) d(x, y) = 0 if and only if x = y;
(N2) d(x, y) = d(y, x) for all x, y ∈ X,
(N3) d(x, y) ≤ d(x, u1)+d(u1, u2)+ · · ·+d(uv, y) for all x, u1, u2, . . . , uv,
y ∈ X such that x, u1, u2, . . . , uv, y are all different.

Suzuki et al. [11] give a proof of the following fixed point theorem which
is a generalization of the Banach contraction principle in v-generalized metric
spaces.
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Theorem 1.6 (Suzuki et al. [11]). Let (X, d) be a complete v-generalized met-
ric space and let T be a contraction on X, that is, there exists λ ∈ [0, 1) such
that

d(Tx, Ty) ≤ λd(x, y)
for any x, y ∈ X. Then T has a unique fixed point z. Moreover, for any
x ∈ X, {Tnx} converges to z.

In the paper Dominguez et al. [4] introduce a class N -polygonal K-
metric space and proved fixed point result for Kannan type maps in the
framework of a complete N -polygonal K-metric space.

Let (V, || · ||) be a Banach space. A set K ⊂ V is called a cone if and
only if:
(1) K is nonempty and K �= {0V }.
(2) If α, β ∈ K and a, b ∈ [0,∞), then aα + bβ ∈ K.
(3) K ∩ (−K) = {0V }.

For a given cone K ⊂ V , we can define a partial ordering 
 with respect to
K by α 
 β if and only if β − α ∈ K. We shall write α ≺ β to indicate that
α 
 β but α �= β. We will refer (V, || · ||,K) as an ordered Banach space.
The cone K is called normal if there exists a number λ ≥ 1 such that for
all α, β ∈ V, 0V 
 α 
 β implies ||α|| ≤ λ||β||. The least positive number
satisfying above is called the normal constant of K.

Definition 1.7 (Dominguez et al. [4]). Let X be a set and dK : X ×X → K a
mapping. We say that dK is a N -polygonal K-metric, if for all x, y ∈ X and
for all distinct points z1, z2, . . . , zN ∈ X, each of them different from x and
y, one has
(1) dK(x, y) = 0V if and only if x = y;
(2) dK(x, y) = dK(y, x);
(3) dK(x, y) 
 dK(x, z1) + dK(z1, z2) + · · · + dK(zN−1, zN ) + dK(zN , y).

The pair (X, dK) is said to be a N -polygonal K-metric space.

We introduce the concept of bv(s)-metric space as follows.

Definition 1.8. Let X be a set, let d be a function from X × X into [0,∞)
and let v ∈ N. Then (X, d) is said to be a bv(s)-metric space if for all x, y ∈ X
and for all distinct points u1, u2, . . . , uv ∈ X, each of them different from x
and y the following hold:
(B1) d(x, y) = 0 if and only if x = y;
(B2) d(x, y) = d(y, x);
(B3) there exists a real number s ≥ 1 such that

d(x, y) ≤ s[d(x, u1) + d(u1, u2) + · · · + d(uv, y)].

Note that:
• b1(1)-metric space is usual metric space,
• b1(s)-metric space is b-metric space with coefficient s of Bakhtin and

Czerwik,
• b2(1)-metric space is rectangular metric space,
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• b2(s)-metric space is rectangular b-metric space with coefficient s of
George et al.,

• bv(1)-metric space is v-generalized metric space of Branciari.
• Let (X, dK) be a N -polygonal K-metric space over an ordered Banach

space (V, || · ||,K) such that K is a closed normal cone with normal
constant λ and the function D : X × X → [0,∞) defined by D(x, y) =
||dK(x, y)||. Then (X,D) is bN (λ)-metric space.

Definition 1.9. Let (X, d) be a bv(s)-metric space, {xn} be a sequence in X
and x ∈ X. Then
(a) The sequence {xn} is said to be convergent in (X, d) and converges to

x, if for every ε > 0 there exists n0 ∈ N such that d(xn, x) < ε for all
n > n0 and this fact is represented by limn→∞ xn = x or xn → x as
n → ∞.

(b) The sequence {xn} is said to be Cauchy sequence in (X, d) if for every
ε > 0 there exists n0 ∈ N such that d(xn, xn+p) < ε for all n > n0, p > 0
or equivalently, if limn→∞ d(xn, xn+p) = 0 for all p > 0.

(c) (X, d) is said to be a complete bv(s)-metric space if every Cauchy se-
quence in X converges to some x ∈ X.

The following three lemmas are new and useful in this framework.

Lemma 1.10. If (X, d) is a bv(s)-metric space, then (X, d) is a b2v(s2)-metric
space.

Proof. Let (X, d) be a bv(s)-metric space. Let

d(x, y) ≤ s[d(x, u1) + d(u1, u2) + · · · + d(uv, y)],

for all distinct points x, u1, u2, . . . , uv, y. Then for different s1, s2, . . . , sv ∈
X\{x, u1, . . . , uv, y} we have

d(x, y) ≤ s[d(x, u1) + d(u1, u2) + · · · + d(uv, y)]
≤ s[d(x, u1) + d(u1, u2) + · · · + d(uv−1, uv)

+ s[d(uv, s1) + d(s1, s2) + · · · + d(sv−1, sv) + d(sv, y)]]
≤ s2[d(x, u1) + d(u1, u2) + · · · + d(uv−1, uv)

+ d(uv, s1) + d(s1, s2) + · · · + d(sv−1, sv) + d(sv, y)].

So, (X, d) is a b2v(s2)-metric space. �

Lemma 1.11. Let (X, d) be a bv(s)-metric space T : X → X and let {xn} be
a sequence in X defined by x0 ∈ X and xn+1 = Txn such that xn �= xn+1,
(n ≥ 0). Suppose that λ ∈ [0, 1) such that

d(xn+1, xn) ≤ λd(xn, xn−1) for all n ∈ N. (1.2)

Then xn �= xm for all distinct n,m ∈ N.

Proof. We will prove that xn �= xn+k for all n ≥ 0, k ≥ 1. Namely, if xn =
xn+k for some n ≥ 0 and k ≥ 1 we have that Txn = Txn+k and xn+1 =
xn+k+1. Then (1.2) implies that
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d(xn+1, xn) = d(xn+k+1, xn+k) ≤ λkd(xn+1, xn) < d(xn+1, xn)

is a contradiction. Thus, we obtain that xn �= xm for all distinct
n,m ∈ N. �

The next lemma can be compared with recent interesting results from
[8] (Lemma 2.2).

Lemma 1.12. Let (X, d) be a bv(s)-metric space and let {xn} be a sequence
in X such that xn (n ≥ 0) are all different. Suppose that λ ∈ [0, 1) and c1, c2
are real nonnegative numbers such that

d(xm, xn) ≤ λd(xm−1, xn−1) + c1λ
m + c2λ

n, for all m,n ∈ N. (1.3)

Then {xn} is Cauchy.

Proof. If λ = 0 then the proof is trivial. Let λ ∈ (0, 1). Since limn→∞ λn = 0,
there exists a natural number n0 such that

0 < λn0 · s < 1, (1.4)

is true. From condition (1.3) we obtain

d(xn+1, xn) ≤ λnd(x1, x0) + n[c1λn+1 + c2λ
n]. (1.5)

So,
d(xn+1, xn) ≤ λnd(x1, x0) + C1nλn, (1.6)

where C1 = c1λ + c2. Similarly, from (1.3) we have that

d(xm+k, xn+k) ≤ λkd(xm, xn) + kλk[c1λm + c2λ
n] for all k ≥ 1. (1.7)

We consider the following two cases:
• v ≥ 2.
• v = 1.

Let v ≥ 2. Since, (X, d) is bv(s)-metric space, from condition (B3) we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xn+v−3, xn+v−2)
+ d(xn+v−2, xn+n0) + d(xn+n0 , xm+n0) + d(xm+n0 , xm)].

Then,

d(xm, xn) ≤ s[(λn + λn+1 + · · · + λn+v−3)d(x0, x1)
+C1(nλn + (n + 1)λn+1 + · · · + (n + v − 3)λn+v−3)
+λnd(xv−2, xn0) + nλn(c1λv−2 + c2λ

n0) + λn0d(xn, xm)
+n0λ

n0(c1λm + c2λ
n) + λmd(xn0 , x0) + mλm(c1λn0 + c2)].

and

d(xm, xn)(1 − λn0s) ≤ s[(λn + λn+1 + · · · + λn+v−3)d(x0, x1)
+C1(nλn + (n + 1)λn+1 + · · · + (n + v − 3)λn+v−3)
+λnd(xv−2, xn0) + nλn(c1λv−2 + c2λ

n0) + n0λ
n0(c1λm + c2λ

n)
+λmd(xn0 , x0) + mλm(c1λn0 + c2)].

From this, together with (1.4) as m,n → ∞ we conclude that d(xm, xn) → 0
and {xn} is a Cauchy sequence in X.

If v = 1 then proof follows from Lemma 1.10. �
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In this paper, we give a proof of the Banach contraction principle in
bv(s)-metric spaces. The proof is short and different from the proof of the
original Banach contraction principle in metric spaces.

2. Main Result

Theorem 2.1. Let (X, d) be a complete bv(s)-metric space and T : X → X be
a mapping satisfying:

d(Tx, Ty) ≤ λd(x, y) (2.1)

for all x, y ∈ X, where λ ∈ [0, 1). Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary. Define the sequence {xn} by xn+1 = Txn

for all n ≥ 0. If xn = xn+1 then xn is fixed point of T and the proof holds.
So, suppose that xn �= xn+1 for all n ≥ 0. Then from Lemma 1.11 we obtain
xn �= xm for all distinct n,m ∈ N. From condition (2.1) we obtain

d(xm, xn) ≤ λd(xm−1, xn−1).

Now, from Lemma 1.12, (we can put c1 = 0, c2 = 0 for all m,n ∈ N) we
obtain that {xn} is a Cauchy sequence in X. By completeness of (X, d) there
exists x∗ ∈ X such that

lim
n→∞ xn = x∗. (2.2)

Now we obtain that x∗ is the unique fixed point of T . Namely, for any n ∈ N

we have

d(x∗, Tx∗) ≤ s[d(x∗, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·
+ d(xn+v−2, xn+v−1) + d(xn+v−1, xn+v) + d(xn+v, Tx∗)]

≤ s[d(x∗, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·
+ d(xn+v−2, xn+v−1) + d(xn+v−1, xn+v) + d(Txn+v−1, Tx∗)]

≤ s[d(x∗, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + · · ·
+ d(xn+v−2, xn+v−1) + d(xn+v−1, xn+v) + λd(xn+v−1, x

∗)]

Since, limn→∞ d(x∗, xn) = 0 and limn→∞ d(xn, xn+1) = 0, we have d(x∗, Tx∗)
= 0 i. e., Tx∗ = x∗.

For uniqueness, let y∗ be another fixed point of T. Then it follows from
(2.1) that d(x∗, y∗) = d(Tx∗, T y∗) ≤ λd(x∗, y∗) < d(x∗, y∗), is a contradic-
tion. Therefore, we must have d(x∗, y∗) = 0, i.e., x∗ = y∗. �

Remark 2.2. If v = 1 from Theorem 2.1 we obtain a Banach fixed point
theorem in b-metric spaces (see Theorem 2. 1. [5]).

Remark 2.3. If v = 2 from Theorem 2.1 we obtain a Banach fixed point
theorem in rectangular b-metric spaces (see Theorem 2. 1 in [9]) and solution
of Open Problem 1 in [6].

The following theorem is the analogue of the Reich contraction principle
in bv(s)-metric space.
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Theorem 2.4. Let (X, d) be a complete bv(s)-metric space and T : X → X be
a mapping satisfying:

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) (2.3)

for all x, y ∈ X, where α, β, γ are nonnegative constants with α + β + γ < 1
and min{β, γ} < 1

s . Then T has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary. Define the sequence {xn} by xn+1 = Txn

for all n ≥ 0. From condition (2.3) we have that

d(xn+1, xn) ≤ αd(xn, xn−1) + βd(xn, xn+1) + γd(xn−1, xn).

Therefore,

d(xn+1, xn) ≤ α + γ

1 − β
d(xn, xn−1). (2.4)

Put r = α+γ
1−β . We have that r ∈ [0, 1). It follows from (2.4) that

d(xn+1, xn) ≤ rnd(x1, x0) for all n ≥ 1. (2.5)

If xn = xn+1 then xn is fixed point of T . So, suppose that xn �= xn+1 for some
n ≥ 0. Then from Lemma 1.11 we obtain xn �= xm for all distinct n,m ∈ N.
From conditions (2.3) and (2.5) we obtain

d(xm, xn) ≤ αd(xm−1, xn−1) + βd(xm−1, xm) + γd(xn−1, xn)
≤ αd(xm−1, xn−1) + βrm−1d(x0, x1) + γrn−1d(x0, x1)
= αd(xm−1, xn−1) + (βrm−1 + γrn−1)d(x0, x1)

From this, together with Lemma 1.12 (we can put

λ = max{α, r}, c1 = βr−1d(x0, x1), c2 = γr−1d(x0, x1)

for all m,n ∈ N, note that if r = 0 then proof is trivial) we conclude that
{xn} is Cauchy. By completeness of (X, d) there exists x∗ ∈ X such that

lim
n→∞ xn = x∗. (2.6)

Now we obtain that x∗ is the unique fixed point of T . Namely, we have

d(x∗, Tx∗) ≤ s[d(x∗, xn+1) + d(xn+1, xn+2) + · · · + d(xn+v−1, xn+v)
+ d(xn+v, Tx∗)]

≤ s[d(x∗, xn+1) + d(xn+1, xn+2) + · · · + d(xn+v−1, xn+v)
+ d(Txn+v−1, Tx∗)]

≤ s[d(x∗, xn+1) + d(xn+1, xn+2) + · · · + d(xn+v−1, xn+v)
+αd(xn+v−1, x

∗) + βd(xn+v−1, xn+v) + γd(x∗, Tx∗)].

and

d(Tx∗, x∗) ≤ s[d(Tx∗, xn+1) + d(xn+1, xn+2) + · · · + d(xn+v−1, xn+v)
+ d(xn+v, x∗)]

≤ s[αd(x∗, xn) + βd(x∗, Tx∗) + γd(xn, xn+1)
+ d(xn+1, xn+2) + · · · + d(xn+v−1, xn+v) + d(xn+v, x∗)].

Since limn→∞ d(x∗, xn) = 0, limn→∞ d(xn, xn+1) = 0 and min{β, γ} < 1
s , we

have d(x∗, Tx∗) = 0 i. e., Tx∗ = x∗.
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For uniqueness, let y∗ be another fixed point of T. Then it follows from
(2.3) that

d(x∗, y∗) = d(Tx∗, T y∗) ≤ αd(x∗, y∗) + βd(x∗, Tx∗) + γd(y∗, T y∗)
= αd(x∗, y∗) < d(x∗, y∗)

is a contradiction. Therefore, we must have d(x∗, y∗) = 0, i.e., x∗ = y∗. �

From Theorem 2.4 we obtain the following variant of Kannan theorem
[7] in b-rectangular metric spaces.

Theorem 2.5. Let (X, d) be a complete bv(s)-metric space and T : X → X be
a mapping satisfying:

d(Tx, Ty) ≤ βd(x, Tx) + γd(y, Ty) (2.7)

for all x, y ∈ X, where β, γ nonnegative constants with β + γ < 1 and
min{β, γ} < 1

s . Then T has a unique fixed point.

Remark 2.6. If v = 2 from Theorem 2.4 we obtain a Reich [10] fixed point
theorem in rectangular b-metric spaces and partial solutions of Open Problem
2 in [6].
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