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Abstract. In this article, utilizing the concept of w-distance, we prove
the celebrated Banach’s fixed-point theorem in metric spaces equipped
with an arbitrary binary relation. Necessarily, our findings unveil an-
other direction of relation-theoretic metrical fixed-point theory. In addi-
tion, our paper consists of several non-trivial examples which signify the
motivation of such investigations. Finally, our obtained results enable
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1. Introduction

On account of the fact that the metric fixed-point theory imparts a sound ba-
sis for exploring many problems in pure and applied sciences, many authors
went into the possibility of altering the concepts of metric and metric spaces.
One such interesting and important motivation is to establish fixed-point re-
sults in metric space endowing with an arbitrary binary relation. Exploiting
the concepts of different kind of binary relations such as partial order, strict
order, preorder, tolerance, transitive etc. on metric spaces, many mathemati-
cian are doing their research during several years, see [3,4,10,13–15]. Very
recently, Alam and Imdad [2] presented relation-theoretic metrical fixed-point
results due to famous Banach contraction principle using an amorphous re-
lation. No doubt their results extended and improved several comparable
results in existing literature, but still, there are some cases where we cannot
explain the existence of fixed point employing their results. In this direction,
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our main goal is to present some improved and refined version of existing re-
sults using the concept of w-distance. Due to reader’s advantage, we need to
recall some important definitions and useful results relevant to this literature.

Throughout this article, the notations Z, N, R, R+ have their usual
meanings.

Definition 1.1 [7]. Let X be a non-empty set and R be a binary relation
defined on X × X. Then, x is R-related to y if and only if (x, y) ∈ R.

Definition 1.2 [8]. A binary relation R defined on X is said to be com-
plete if for all x, y ∈ X, [x, y] ∈ R, where [x, y] ∈ R stands for either
(x, y)∈R or (y, x) ∈ R.

Definition 1.3 [2]. Suppose R is a binary relation defined on a non-empty set
X. Then a sequence (xn) in X is said to be R-preserving if

(xn, xn+1) ∈ R ∀n ∈ N ∪ {0}.

Definition 1.4 [2]. A metric space (X, d) endowed with a binary relation R
is said to be R-complete if every R-preserving Cauchy sequence converges in
X.

Definition 1.5 [2]. Let X be a non-empty set and f be a self-map defined
on X. Then, a binary relation R on X is said to be f -closed if (x, y) ∈ R
⇒ (fx, fy) ∈ R.

Here, we introduce the notion of weak f -closed binary relation.

Definition 1.6. Let X be a non-empty set and f be a self-map defined on X.
Then, a binary relation R on X is said to be weak f -closed if (x, y) ∈ R
⇒ [fx, fy] ∈ R.

It is easy to show that every f -closed binary relation R is weak f -closed
but the converse is not true in general. To show this we present the following
example.

Example 1.7. Let X �= φ be a finite set and R be a binary relation defined
on P(X), the power set of X, such that (A,B) ∈ R if A ⊆ B for some
A,B ∈ P(X). Now, we define a function f : P(X) → P(X) by f(A) = Ac,
for all A ∈ P(X). Then is easy to check that for all A,B ∈ P(X) with
(A,B) ∈ R, (f(A), f(B)) /∈ R but (f(B), f(A)) ∈ R. Hence, the binary
relation R is not f -closed, but it is weak f -closed.

Definition 1.8 [2]. Let (X, d) be a metric space endowed with a binary relation
R. Then, R is said to be d-self-closed; if every R-preserving sequence with
xn → x, there is a subsequence (xnk

) of (xn), such that [xnk
, x] ∈ R, for all

k ∈ N ∪ {0}.

For the sake of reader’s perception, we recollect some notations from
existing literature:
(A) F (T ) = {x ∈ X : Tx = x};
(B) X(T,R) = {x ∈ X : (x, Tx) ∈ R}.
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Before proceeding further, we record the following results.

Theorem 1.9 (Theorem 3.1, Alam and Imdad [2]). Let (X, d) be a complete
metric space equipped with a binary relation R. Suppose T is a self-mapping
on X, such that
(1) X(T,R) �= φ;
(2) R is T -closed;
(3) either T is continuous or R is d-self-closed;
(4) there exists k ∈ [0, 1), such that

d(Tx, Ty) ≤ kd(x, y) ∀x, y ∈ X with (x, y) ∈ R.

Then, F (T ) �= φ.

Theorem 1.10 (Theorem 2.1, Ahmadullah et al. [1]). Let (X, d) be a metric
space equipped with a binary relation R. Suppose T is a self-mapping on X
with the following conditions:
(1) There exists Y ⊆ X,TX ⊆ Y ⊆ X, such that (Y, d) is R-complete.
(2) X(T,R) �= φ.
(3) R is T -closed.
(4) Either T is R-continuous or R|Y is d-self-closed.
(5) There exists φ ∈ Φ, such that

d(Tx, Ty) ≤ φ(MT (x, y)) ∀x, y ∈ X with (x, y) ∈ R,

where MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2 }.

Then, F (T ) �= φ.

Next, we would like to draw the reader’s attention in another direction
of metric fixed-point theory. In 1996, Kada et al. [5] introduced the idea of
w-distance in metric spaces and established several well-known results using
this concept. They defined the w-distance as follows:

Definition 1.11 [5]. Let (X, d) be a metric space. A function p: X×X → [0,∞)
is said to be a w-distance if
(w1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(w2) for any x ∈ X, p(x, .) : X → [0,∞) is lower semi-continuous;
(w3) for any ε > 0, there exists δ > 0, such that p(z, x) ≤ δ and p(z, y) ≤ δ

imply d(x, y) ≤ ε.

Remark 1.12. Note that a w-distance function p may not be symmetric and
also it is possible that p(x, x) �= 0 for some x, i.e., p(x, y) = 0 does not imply
x = y.

The readers are refereed to [5] for some examples and crucial properties
of w-distance.

To establish fixed-point results owing to w-distance in metric spaces
equipped with arbitrary binary relation R, we need to define the concept of
R-lower semi-continuity (briefly, R-LSC) of a function, and then, we show
that notion of R-LSC is weaker than R-continuity as well as lower semi-
continuity.
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Before defining R-lower semi-continuity, we look back on R-continuity
of a function defined on a metric space equipped with an arbitrary binary
relation R.

Definition 1.13. [2] Let (X, d) be a metric space and R be a binary relation
defined on X. A function f : X → X is said to be R-continuous at x if for
every R-preserving sequence (xn) converging to x, we get

f(xn) → f(x) as n → ∞.

The notion of R-lower semi-continuity of a function is defined as
follows:

Definition 1.14. Let (X, d) be a metric space and R be a binary relation
defined on X. A function f : X → R ∪ {−∞,∞} is said to be R-LSC at x if
for every R-preserving sequence (xn) converging to x, we have

lim inf
n→∞ f(xn) ≥ f(x).

The following example shows that R-LSC is weaker than R-continuity.

Example 1.15. Let (X, d) be a usual metric space where X = R. Define
(x, y) ∈ R if x, y ∈ [n, n + 1

3 ) for some n ∈ Z. For every x ∈ X, we can
always find an integer n ∈ Z, such that x ∈ [n, n+1]. Let us define a function
f : X → X by

f(x) =
{ �x x ∈ [n, n + 1

3 );
x − 1 otherwise.

We claim that this function is not R-continuous, but it is R-lower semi-
continuous. Let (xn) be a non-constant R-preserving sequence converging to
an integer k. Then, there exists some n0 ∈ N, such that xn ∈ (k, k + 1

3 ) for
all n > n0. Therefore, we have limn→∞ f(xn) = k + 1 and f(k) = k. This
implies that f is not R-continuous, but

lim inf
n→∞ f(xn) ≥ f(k)

for every R-preserving sequence (xn) converging to k. This shows that f is
an R-lower semi-continuous function. Indeed, this function is not also lower
semi-continuous function. Let us consider (xn) be a non constant sequence
converging to k from left. Then, we must have some nk ∈ N, such that
xn > (k − 1) + 1

3 for all n ≥ nk. This implies f(xn) = xn − 1 for all n ≥ nk

and limn→∞ f(xn) = k − 1. Hence, we cannot obtain

lim inf
n→∞ f(xn) ≥ f(k)

whenever xn → k. Therefore, f is not lower semi-continuous function.

Example 1.16. Let X = [0,∞) and d be the usual metric on X. We define
(x, y) ∈ R if xy ≥ x or y. Let f : X → X be defined as

f(x) =

⎧⎨
⎩

1
2 x ∈ [0, 1);
3
4 x = 1;
x x > 1.
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We show that this function is neither lower semi-continuous nor R-continuous,
but it is an R-lower semi-continuous function. We consider the point x = 1.
Let (xn) be a non-constant sequence converging to 1. If xn → 1 from left,
we have f(xn) = 1

2 for all n ∈ N. Again, if xn → 1 from right, then we have
f(xn) = xn for all n ∈ N which implies that limn→∞ f(xn) = 1. Hence, we
can check that

lim inf
n→∞ f(xn) ≥ f(1)

does not hold. Hence, it is not a lower semi-continuous function at x = 1.
Next, we show that this is an R-lower semi-continuous function. Let

us consider (xn) be an R-preserving sequence converging to 1. Then, for all
n ∈ N, (xn, xn+1) ∈ R ⇒ xnxn+1 ≥ xn or xn+1 implies the following two
cases:
(1) xn = 1 for all n ∈ N and f(xn) = 1 = f(1).
(2) If (xn) be a non-constant R-preserving sequence, then for all n ∈ N, we

must have xn > 1 and f(xn) = xn which shows that limn→∞ f(xn) = 1.
Therefore,

lim inf
n→∞ f(xn) ≥ 3

4
= f(1).

This implies that f is an R-lower semi-continuous function.
From the above explanation, it is clear that T is not R-continuous at

x = 1, since for any R-preserving sequence converging to 1, one can check
that limn→∞ f(xn) �= f(1).

The above two examples justify that R-LSC is weaker than R-continuity
as well as lower semi-continuity.

Remark 1.17. Every lower semi-continuous function is R-lower semi-
continuous, but the converse is not true. If R is a universal relation, then
the notions of lower semi-continuity and R-lower semi-continuity will coin-
cide.

Now, we modify the definition of w-distance (Definition 1.11) and the
corresponding Lemma 1 presented in [5] in the context of metric spaces en-
dowed with an arbitrary binary relation R.

Definition 1.18. Let (X, d) be a metric space and R be a binary relation on
X. A function p : X × X → [0,∞) is said to be a w-distance on X if
(w1’) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;
(w2’) for any x ∈ X, p(x, .) : X → [0,∞) is R-lower semi-continuous;
(w3’) for any ε > 0, there exists δ > 0, such that p(z, x) ≤ δ and p(z, y) ≤ δ
imply d(x, y) ≤ ε.

To prove our main results, we need the following lemma.

Lemma 1.19. Let (X, d) be a metric space endowed with binary relation R
and p : X × X → [0,∞) be a w-distance. Suppose (xn) and (yn) are two
R-preserving sequences in X and x, y, z ∈ X. Let (un) and (vn) be sequences
of positive real numbers converging to 0. Then, we have the followings:
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(L1) If p(xn, y) ≤ un and p(xn, z) ≤ vn for all n ∈ N, then y = z. Moreover,
if p(x, y) = 0 and p(x, z) = 0, then y = z.

(L2) If p(xn, yn) ≤ un and p(xn, z) ≤ vn for all n ∈ N, then yn → z.
(L3) If p(xn, xm) ≤ un for all m > n, then (xn) is an R-preserving Cauchy

sequence in X.
(L4) If p(xn, y) ≤ un for all n ∈ N, then (xn) is an R-preserving Cauchy

sequence in X.

Proof. Proof is omitted as it can be done in the line of [5, Lemma 1]. �
Remark 1.20. Under the universal binary relation R, Definition 1.18 will co-
incide with Definition 1.11 and the Lemma 1.19 will coincide with [5, Lemma
1].

Now, we are in a position to state our main results. Before starting these,
we highlight our main objectives which rest on the following considerations:

• We refine the main result of Alam and Imdad [2, Theorem 3.1] by con-
sidering more general distance function (w-distance) instead of the usual
distance function on metric spaces endowed with an arbitrary binary re-
lation and correspondingly we use a more general contraction principle.

• We present some non-trivial examples which lead to realize the sharp-
ness of our obtained results.

• Finally, we apply our results to obtain solutions (positive solution) of
nonlinear fractional differential equations (fractional thermostat model).

2. Main results

We start this section by extending the relation-theoretic version of Banach
contraction principle owing to w-distance.

Theorem 2.1. Let (X, d) be a metric space with a w-distance p and R be any
arbitrary binary relation on X. Suppose T is a self-map on X with following
conditions:
(1) There exists Y ⊆ X with T (X) ⊆ Y , such that (Y, d) is R-complete.
(2) X(T,R) �= φ and R is T -closed.
(3) Either T is R-continuous or if for every R-preserving sequence with

xn → x, there exists a subsequence (xnk
) of (xn), such that (xnk

, x) ∈ R
for all k ∈ N ∪ {0}.

(4) There exists λ ∈ [0, 1), such that

p(Tx, Ty) ≤ λp(x, y) ∀x, y ∈ X with (x, y) ∈ R,

then F (T ) �= φ.

Proof. As X(T,R) �= φ, so there exists a point x0 ∈ X(T,R), such that
(x0, Tx0) ∈ R. Now, we define a sequence (xn) by xn = T (xn−1) = Tn(x0).
By the property of T -closedness of R, one can easily check that (xn) is an
R-preserving sequence, that is

(xn, xn+1) ∈ R for all n ∈ N ∪ {0}.
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Applying the contraction principle of above theorem, we derive

p(Txn−1, Txn) ≤ λp(xn−1, xn)
⇒ p(xn, xn+1) ≤ λp(xn−1, xn)

≤ λ2p(xn−2, xn−1)
...
≤ λnp(x0, x1).

Using this for all m > n, we have,

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xn+2) + · · · + p(xm−1, xm)
≤ p(x0, , x1)[λn + λn+1 + · · · + λm−1]

≤ λn

1 − λ
p(x0, x1). (2.1)

Let us define un = λn

1−λp(x0, x1). Clearly un → 0 as n → ∞. Therefore,
by (L3), we must have that (xn) is an R-preserving Cauchy sequence in Y .
Being (Y, d) R-complete, we must have xn → x̃ as n → ∞ for some x̃ ∈ Y .

Next, we show that x̃ is a fixed point of T . To prove this, at first we
consider that T is R-continuous.

Using R-continuity of T , we obtain

d(x̃, T x̃) = lim
n→∞d(xn+1, T x̃) = lim

n→∞d(T (xn), T x̃) = d(T x̃, T x̃) = 0.

This shows that x̃ is a fixed point of T .
Alternatively, let for every R-preserving sequence with xn → x, there

exists a subsequence (xnk
) of (xn), such that (xnk

, x) ∈ R for all k ∈ N∪{0}.
Combining the Eq. 2.1 with R-lower semi-continuity of p, we get

p(xnk+1, x̃) ≤ lim inf
k→∞

p(xnk+1, xnk+m) ≤ lim inf
k→∞

λnk−1

1 − λ
p(x0, x1) = 0.

Since R is T -closed and (xnk
, x̃) ∈ R, we derive

p(Txnk
, T x̃) ≤ λp(xnk

, x̃)
≤ λlim inf

k→∞
p(xnk

, xnk+m)

≤ lim inf
k→∞

λnk+1

1 − λ
p(x0, x1) = 0.

By (L1) of Lemma 1.19, we must have T x̃ = x̃, i.e., x̃ is a fixed
point of T . �

The following theorem ensures the uniqueness of the fixed point of T .
We like to provide an additional condition to the hypotheses of Theorem 2.1
to ensure that the fixed point in Theorem 2.1 is in fact unique if any of the
following conditions holds.

For every x, y ∈ T (X), ∃z ∈ T (X) such that (z, x), (z, y) ∈ R. (2.2)
R|TX is complete. (2.3)
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Theorem 2.2. In addition to the hypotheses of Theorem 2.1, suppose that any
of the condition (2.2) or condition (2.3) holds. Then, we obtain the uniqueness
of the fixed point of T .

Proof. We prove the theorem by considering following two possible cases.

Case I Let in addition to the hypotheses of Theorem 2.1, condition (2.2)
holds. Then, for any two fixed points x̃, ỹ of T , there must be an element
z ∈ T (X), such that

(z, x̃) ∈ R and (z, ỹ) ∈ R.

As R is T -closed, so for all n ∈ N ∪ {0},

(Tn(z), x̃) ∈ R and (Tn(z), ỹ) ∈ R.

Using contractivity condition of T , we get

p(Tn(z), x̃) = p(Tn(z), Tnx̃) ≤ λnp(z, x̃)

and

p(Tn(z), ỹ) = p(Tn(z), Tnỹ) ≤ λnp(x0, ỹ).

Let us consider un = λn+1p(z, x̃) and vn = λn+1p(z, ỹ). Clearly, (un) and
(vn) are two sequences of real numbers converging to 0. Hence, by (L1) of
Lemma 1.19, we obtain x̃ = ỹ, i.e., T has a unique fixed point.

Case II Let in addition to the hypotheses of Theorem 2.1, condition (2.3)
holds. Suppose x̃, ỹ are two fixed points of T . Then, we must have (x̃, ỹ) ∈ R
or (ỹ, x̃) ∈ R. For (x̃, ỹ) ∈ R, we obtain

p(x̃, ỹ) = p(T (x̃), T (ỹ)) ≤ λp(x̃, ỹ) < p(x̃, ỹ)

which leads to a contradiction. Hence, we must have x̃ = ỹ.
In a similar way, if (ỹ, x̃) ∈ R, we have x̃ = ỹ. �

To signify the motivations of our investigation, we present following
examples.

Example 2.3. Let (X, d) be a metric space where X = [1, 3) and d is the usual
metric defined on X. We define a binary relation R = {(x, y) ∈ X2 : x ≥ y}.
Let T be a self-map on X defined by

T (x) =
{

x
2 , x ∈ [1, 2);
2, x ∈ [2, 3).

Now, we check the hypotheses of Theorem 3.1 given in Alam and Imdad [2].
(1) Let Y = [1, 2]. Then, it is clear that T (X) ⊆ Y and (Y, d) is R-complete.
(2) For x = 1, Tx = 1

2 , such that (x, Tx) ∈ R, i.e., X(T,R) �= φ.
(3) Let (xn) be an R-preserving sequence converging to x. Therefore for all

n ∈ N, (xn, xn+1) ∈ R, i.e., xn ≥ xn+1 for all n ∈ N and this implies that
(xn) is a decreasing sequence converging to x. Therefore, we must have
(xn, x) ∈ R for all n ∈ N.

(4) Now, we show that we cannot employ the contraction principle given in
Theorem 3.1 of Alam and Imdad [2].
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For example, we consider x = 2, y = 1. Then, clearly (x, y) ∈ R and
Tx = 2, T y = 1

2 . Then, d(Tx, Ty) = d(2, 1
2 ) = 3

2 and d(x, y) = 1. Therefore,
we cannot find any k ∈ [0, 1), such that

d(Tx, Ty) ≤ kd(x, y)

holds. However, if we choose a w-distance function p as p(x, y) = |x| + |y|,
then for all x, y ∈ X, we have

p(Tx, Ty) ≤ λp(x, y)

with (x, y) ∈ R and for some λ ∈ [0, 1).
Hence, all the hypotheses of our theorem satisfy and note that x = 2 is

a fixed point of T and it is the unique fixed point.
Note: It is worth mentioning that the results of Ahmadullah et al. [1] are
more generalized and improved version than that of Alam and Imdad [2],
but still in that example, we cannot employ the main result (Theorem 2.1)
of Ahmadullah et al. [1]. For x = 2, y = 1, we obtain

MT (2, 1) = max
{

d(2, 1), d
(

1,
1
2

)
, d(2, 2),

d(1, 2) + d(2, 1
2 )

2

}
=

5
4
.

In Theorem 2.1 given in [1], as φ is a function with φ(t) < t, t > 0, we cannot
find any function φ with that property, so that

d(Tx, Ty) ≤ φ(MT (x, y))

holds. Hence, we cannot employ the results of Ahmadullah et al. [1] in that
example.

Next, we furnish another important example.

Example 2.4. Let us consider the metric space (X, d), where X = [0, 2], d is
the usual metric on X and (x, y) ∈ R if xy ≤ x or y. We define a w-distance
p : X × X → X by p(x, y) = y. Let us define a function T : X → X by

T (x) =

⎧⎪⎪⎨
⎪⎪⎩

x
3 , 0 ≤ x ≤ 2

3 ;
1 − x, 2

3 < x < 1;
3
4 , x = 1;
x − 1

2 , x > 1.

Now, if (x, y) ∈ R, then xy ≤ x or y. Let us consider xy ≤ x. Therefore, we
have the following cases:

Case 1 Let x = 0. Then, for any y ∈ [0, 2], (x, y) ∈ R. Therefore, we get:
(i) for 0 ≤ y ≤ 2

3 , Tx = 0 and Ty = y
3 . Therefore, p(Tx, Ty) = Ty = y

3 and
p(Tx, Ty) = y

3 ≤ 1
3p(x, y);

(ii) if 2
3 < y < 1, then Ty ∈ (0, 1

3 ) and p(Tx, Ty) = 1 − y < y = p(x, y). In
particular, p(Tx, Ty) ≤ kp(x, y), where k ∈ [12 , 1);

(iii) let y = 1. Then, p(T0, T1) = 3
4 ≤ 3

4p(0, 1);
(iv) for y > 1, we have p(Tx, Ty) = y − 1

2 ≤ ky = kp(x, y), where k ∈ [34 , 1).

Case 2 For all y ∈ [0, 2] and x = 0, we have p(Ty, Tx) = 0 = kp(y, x) for all
k ∈ [0, 1).
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Case 3 Let x �= 0. Then, y ≤ 1. Therefore, we have,

(i) for 0 ≤ y ≤ 2
3 , p(Tx, Ty) ≤ 1

3p(x, y);
(ii) for 2

3 < y < 1, p(Tx, Ty) ≤ kp(x, y), where k ∈ [12 , 1);
(iii) for y = 1, p(Tx, T1) = 3

4 ≤ 3
4p(x, 1) for all x ∈ X;

(iv) for y ≤ 1 and x > 1, we have p(Ty, Tx) ≤ kp(y, x), where k ∈ [34 , 1).

The above three cases show that T satisfies the condition (5) of Theorem 2.1.
Next, we check the remaining hypotheses of our theorem.

(1) Let us consider Y = [0, 3
2 ]. Then we must have TX ⊆ Y and R|Y is

R-complete.
(2) Clearly, X(T,R) �= φ.
(3) R is T -closed.
(4) Note that T is not R-continuous at x = 1 and x = 2

3 . However, for
every R-preserving sequence (xn) with xn → x, we can always find a
subsequence (xnk

) of (xn), such that (xnk
, x) ∈ R for all k ∈ N ∪ {0}.

(5) For any x, y ∈ Y , one can always find z ∈ Y , such that (z, x), (z, y) ∈ R.

We have already checked that T satisfies the contractivity condition. There-
fore, all the hypotheses of our theorem hold. Note that x = 0 is a fixed point
of T and it is the unique fixed point of T .

Remark 2.5. (1) It is notable that the binary relation R considered in our
example is not reflexive, irreflexive and transitive. Here, R satisfies only
symmetrical condition.

(2) It is interesting to note that the mapping T in above example neither
satisfies the contractive condition of Theorem 3.1 in Alam and Imdad
[2] nor the contractive condition of Theorem 2.1 in Ahmadullah et al.
[1].
For example, we choose x = 1 and y = 3

4 . Clearly, (x, y), (y, x) ∈ R.
Therefore

MT (x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

= max
{

d(1,
3
4
), d(1,

3
4
), d(

3
4
,
1
4
),

d(1, 1
4 ) + d( 3

4 , 3
4 )

2

}

= max
{

1
4
,
1
2
,
3
8

}

=
1
2
, (2.4)

and d(Tx, Ty) = d(3
4 , 1

4 ) = 1
2 .

In Theorem 2.1 of Ahmadullah et al. [1], φ being an increasing function
with φ(t) < t, for t > 0, the mapping T does not satisfy the contractive
condition of this theorem, and hence, we cannot exploit this theorem to obtain
any fixed point. Again, since the Theorem 2.1 of Ahmadullah et al. [1] is
improved version over Theorem 3.1 of Alam and Imdad [2] and also Theorem
2.1 of Samet and Turinici [11] (for symmetric binary relation), we cannot
employ these results also in that example.
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Analysing above two examples, it is transparent that our findings unveil
another direction of relation-theoretic metrical fixed-point results where the
main result given in Alam and Imdad [2] (Theorem 3.1) does not work (even
the main result of Ahmadullah et al.[1] (Theorem 2.1) does not work here).

Remark 2.6. If we set p(x, y) = d(x, y), in Theorem 2.1, then we obtain the
Theorem 3.1 of Alam and Imdad [2]. Hence our Theorem 2.1 is an improved
and generalized version of relation-theoretic metrical fixed-point theorem due
to Banach contraction given in Alam and Imdad [2].

3. Applications

In this section, we employ our main result to obtain a solution of a nonlinear
fractional differential equation. Moreover, we apply our main result to find a
positive solution of a fractional thermostat model.

3.1. Application to fractional boundary value problem

We consider the following nonlinear fractional differential equation given by
CDβx(t) = f(t, x(t)) (0 < t < 1, 1 < β ≤ 2), (3.1)

with boundary conditions

x(0) = 0, Ix(1) = x′(0), (3.2)

where CDβ stands for the Caputo fractional derivative of order β defined by

CDβf(t) =
1

Γ(n − β)

∫ t

0

(t − s)n−β−1fn(s)ds (n − 1 < β < n;n = [β] + 1),

and Iβf(t) denotes the Riemann–Liouville fractional integral of a continuous
function f(t) of order β (for detail, see [12]) given by

Iβf(t) =
1

Γ(β)

∫ t

0

(t − s)β−1f(s)ds, β > 0.

We consider X = C[0, 1], the set of all real valued continuous functions
defined on [0, 1] with supremum norm ||x||∞ = supt∈[0,1]|x(t)|. Therefore,
(X, ||.||∞) is a Banach space.

At first, we find out the solution of Eq. 3.1 using the boundary conditions
3.2. For this purpose, we need to recall the following important lemma.

Lemma 3.1. [6] For β > 0,

IβCDβx(t) = x(t) + c0 + c1t + · · · + cn−1t
n−1,

where ci ∈ R, i = 0, 1, 2, . . . , n − 1 and n is the smallest integer greater than
or equal to β.

Lemma 3.2. Suppose f ∈ C[0, 1]. Then, for any function x ∈ C[0, 1]
CDβx(t) = f(t) (0 < t < 1, 1 < β ≤ 2),

with

x(0) = 0, Ix(1) = x′(0),
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has unique solution

x(t) =
1

Γ(β)

∫ t

0

(t − s)β−1f(s)ds +
2t

Γ(β)

∫ 1

0

∫ s

0

(s − r)β−1f(r)drds.

Proof. Using Lemma 3.1, there exist some c0, c1 ∈ R, such that

x(t) =
1

Γ(β)

∫ t

0

(t − s)β−1f(s)ds − c0 − c1t. (3.3)

Using x(0) = 0, it implies that c0 = 0. Now, the Riemann–Liouville integral
of order one is given by

Ix(t) =
∫ t

0

[
1

Γ(β)

∫ s

0

(s − r)β−1f(r)dr − c1s

]
ds

=
1

Γ(β)

∫ t

0

∫ s

0

(s − r)β−1f(r)drds − c1
t2

2
.

Utilizing second condition Ix(1) = x′(0), we have

−c1 =
1

Γ(β)

∫ 1

0

∫ s

0

(s − r)β−1f(r)drds − c1

2

⇒ c1 = − 2
Γ(β)

∫ 1

0

∫ s

0

(s − r)β−1f(r)drds

Substituting the values of c0 and c1 in 3.3, we obtain the solution:

x(t) =
1

Γ(β)

∫ t

0

(t − s)β−1f(s)ds +
2t

Γ(β)

∫ 1

0

∫ s

0

(s − r)β−1f(r)drds.

�

Our next aim is to investigate the existence of a solution of a nonlin-
ear fractional differential equation via relation-theoretic metrical fixed-point
result. To show this, we consider the following fractional differential equation:

CDβx(t) = f(t, x(t)) (0 < t < 1, 1 < β ≤ 2), (3.4)

with the boundary conditions

x(0) = 0, Ix(1) = x′(0),

where

(1) f : [0, 1] × R → R
+ is a continuous function,

(2) x(t) : [0, 1] → R is continuous

satisfying the following conditions:

|f(t, x) − f(t, y) ≤ L|x − y|
for all t ∈ [0, 1] and ∀x, y ∈ X, such that x(t)y(t) ≥ 0 and L is a constant,
such that Lλ < 1 where λ = 1

Γ(β+1) + 2
Γ(β+2) . Then, the differential Eq. (3.4)

has a unique solution.
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Proof. We consider the following binary relation on X(= C[0, 1]):

(x, y) ∈ R if x(t)y(t) ≥ 0,∀t ∈ [0, 1].

We consider d(x, y) = supt∈[0,1]||x(t)−y(t)|| for all x, y ∈ X. Therefore, (X, d)
is an R-complete metric space.

We define a mapping T : X → X by

Tx(t) =
1

Γ(β)

∫ t

0

(t − s)β−1f(s, x(s))ds

+
2t

Γ(β)

∫ 1

0

∫ s

0

(s − r)β−1f(r, x(r))drds

for all t ∈ [0, 1].
From Lemma 3.2, it is clear that the fixed points of T are precisely the

solutions of Eq. 3.4. To prove the existence of fixed point of T , we show that
R is T -closed and T satisfies the contraction condition.

At first, we show that R is T -closed. Let, for all t ∈ [0, 1], (x(t), y(t)) ∈
R. Then, we have

Tx(t) =
1

Γ(β)

∫ t

0

(t − s)β−1f(s, x(s))ds

+
2t

Γ(β)

∫ 1

0

∫ s

0

(s − r)β−1f(r, x(r))drds > 0

which implies that (Tx, Ty) ∈ R, i.e., R is T -closed. Also, it is clear that for
any x(t) ≥ 0, t ∈ [0, 1], we have Tx(t) ≥ 0 for all t∈ [0, 1], i.e., (x(t), Tx(t))∈R
for all t ∈ [0, 1] which implies that X(T,R) �= φ.

For all t ∈ [0, 1] and (x(t), y(t)) ∈ R, we obtain

|Tx − Ty| =

∣∣∣∣∣
1

Γ(β)

∫ t

0

(t − s)β−1f(s, x(s))ds

+
2t

Γ(β)

∫ 1

0

(∫ s

0

(s − r)β−1f(r, x(r))dr

)
ds

− 1
Γ(β)

∫ t

0

(t − s)β−1f(s, y(s))ds

− 2t

Γ(β)

∫ 1

0

(∫ s

0

(s − r)β−1f(r, y(r))dr

)
ds

∣∣∣∣∣
≤ 1

Γ(β)

∫ t

0

(t − s)β−1
∣∣f(s, x(s)) − f(s, y(s))

∣∣ds

+
2

Γ(β)

∫ 1

0

∫ s

0

(s − r)β−1
∣∣f(r, x(r)) − f(r, y(r))

∣∣drds

≤ L||x − y||
Γ(β)

∫ t

0

(t − s)β−1ds

+
2L||x − y||

Γ(β)

∫ 1

0

∫ s

0

(s − r)β−1drds
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≤ L||x − y||
Γ(β + 1)

+
2L||x − y||B(β + 1, 1)

Γ(β + 1)
, where B is

the beta function,

≤ L||x − y||
(

1
Γ(β + 1)

+
2

Γ(β + 2)

)

⇒ ||Tx − Ty|| ≤ Lλ||x − y||.
Now, if we set p(x, y) = d(x, y), then we have

p(Tx, Ty) ≤ Lλp(x, y)

which shows that T satisfies the contraction condition as Lλ < 1.
Next, we consider that (xn) is an R-preserving Cauchy sequence con-

verging to x. So, we must have xn(t)xn+1(t) ≥ 0 for all t ∈ [0, 1] and n ∈ N.
This gives us two possibilities: either xn(t) ≥ 0 or xn(t) ≤ 0 for all n ∈ N

and each t ∈ [0, 1]. Let us consider the case xn(t) ≥ 0 for each t ∈ [0, 1] and
n ∈ N. Then, for every t ∈ [0, 1], xn(t) produces a sequence of non-negetive
real numbers which converges to x(t). Hence, we must get x(t) ≥ 0 for each
t ∈ [0, 1], i.e., (xn(t), x(t)) ∈ R for all n ∈ N and t ∈ [0, 1]. So, by Theorem
2.1, x(t) is a fixed point of T which is the required solution of Eq. 3.4.

Finally, we show that x(t) is the unique solution of Eq. 3.4. If possible,
let y(t) be another solution of Eq. 3.4 which implies that Ty(t) = y(t) for
all t ∈ [0, 1]. Now, we consider a constant function z(t) = 0 for all t ∈ [0, 1].
Then, it is trivial to show that (z(t), x(t)) ∈ R and (z(t), y(t)) ∈ R for all
t ∈ [0, 1]. Hence, by Theorem 2.2, we claim that x(t) is the unique solution
of Eq. 3.4. �

3.2. Application to fractional thermostat model

Now we are interested to find a positive solution of a fractional thermostat
model employing our relation-theoretic metrical fixed-point results under a
certain condition.

At first, we recall the fractional thermostat model [9] given by
CDαx(t) = −f(t, x(t)) (0 ≤ t ≤ 1, 1 < α ≤ 2), (3.5)

with boundary conditions

x′(0) = 0, βCDαx(t) + x(η) = x′(0), (3.6)

where β > 0, 0 ≤ η ≤ 1 are given constants. The authors of [9] have already
shown that any function x(t) ∈ C[0, 1] is a solution of Eq. 3.5 if and only if

x(t) =
∫ 1

0

G(t, s)f(s)ds,

where G(t, s) is the Green’s function (depending on α) given by

G(t, s) = β + Hη(s) − Ht(s) (3.7)

and for r ∈ [0, 1],Hr[0, 1] → R is defined by Hr(s) = (r−s)α−1

Γ(α) for s ≤ r and
Hr(s) = 0 for s > r.
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To find a positive solution of Eq. 3.5 with boundary condition 3.6 uti-
lizing our relation-theoretic metrical fixed-point result (Theorem 2.1), we
present the following theorem.

Theorem 3.3. Let x(t) ∈ C[0, 1] and f : [0, 1] × R → R
+ be a continuous

function satisfying Eqs. 3.5 with 3.6, such that

βΓ(α) ≥ (1 − η)α−1,

and

|f(t, x) − f(t, y) ≤ L|x − y|
for all t ∈ [0, 1]; ∀x, y ∈ C[0, 1], such that x(t)y(t) ≥ 0 and L is a constant
with Lλ < 1, where λ = β + 2

Γ(α+1) . Then, the Eq. 3.5 has a positive solution.

Proof. Let X = C[0, 1]. Then, (X, d) is a complete metric space endowed with
the metric d(x, y) = lim supt∈[0,1] ||x(t) − y(t)||. We define a binary relation
R on X by (x, y) ∈ R if x(t)y(t) ≥ 0 for all t ∈ [0, 1]. Then it is clear that
(X, d) is an R-complete metric space. Next, we define a self mapping T on
C[0, 1] by

Tx(t) =
∫ 1

0

G(t, s)f(s, x(s))ds,

where G(t, s) is the Green’s function given by 3.7. Since βΓ(α) ≥ (1 − η)α−1

implies G(t, s) ≥ 0 (see, [9]), one can easily observe that Tx(t) ≥ 0.
To find the fixed points of T , we only show that T satisfies the contrac-

tion condition of our Theorem 2.1, as one can check the other conditions in
the line of our previous application.

Let for all t ∈ [0, 1], (x(t), y(t)) ∈ R, then we have

|Tx − Ty|

=

∣∣∣∣∣
∫ 1

0

G(t, s)f(s, x(s))ds −
∫ 1

0

G(t, s)f(s, y(s))ds

∣∣∣∣∣
=

∣∣∣∣∣β
∫ 1

0

f(s, x(s))ds +
∫ η

0

(η − s)α−1

Γ(α)
f(s, x(s))ds

−
∫ t

0

(t − s)α−1

Γ(α)
f(s, x(s))ds − β

∫ 1

0

f(s, y(s))ds

−
∫ η

0

(η − s)α−1

Γ(α)
f(s, y(s))ds+

∫ t

0

(t−s)α−1

Γ(α)
f(s, y(s))ds

∣∣∣∣∣
≤ β

∣∣∣∣∣
∫ 1

0

f(s, x(s))ds −
∫ 1

0

f(s, y(s))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ η

0

(η−s)α−1

Γ(α)
f(s, x(s))ds−

∫ η

0

(η−s)α−1

Γ(α)
f(s, y(s))ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

(t−s)α−1

Γ(α)
f(s, x(s))ds−

∫ t

0

(t − s)α−1

Γ(α)
f(s, y(s))ds

∣∣∣∣∣
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≤ β

∫ 1

0

|f(s, x(s))ds−f(s, y(s))|ds+
∫ η

0

(η−s)α−1

Γ(α)
|f(s, x(s))

− f(s, y(s))|ds +
∫ t

0

(t − s)α−1

Γ(α)
|f(s, x(s)) − f(s, y(s))|ds

≤ βL||x − y|| + L||x − y||
∫ η

0

(η − s)α−1

Γ(α)
ds

+ L||x − y||
∫ t

0

(t − s)α−1

Γ(α)
ds

≤ βL||x − y|| +
2L||x − y||
Γ(α + 1)

≤ L||x − y||
(

β +
2

Γ(α + 1)

)

⇒ ||Tx − Ty|| ≤ Lλ||x − y||,
where λ = β + 2

Γ(α+1) . As we consider that Lλ < 1, so T satisfies the con-
traction condition of Theorem 2.1.

Therefore, (X, d) being an R-complete metric space and T satisfying all
the conditions of our Theorem 2.1, there exists x ∈ X with x(t) ≥ 0, for all
t ∈ [0, 1], such that x(t) = Tx(t) which implies that there exists a positive
solution of Eq. 3.5. �

Remark 3.4. We have shown that using relation-theoretic metrical fixed-
point result (Theorem 2.1), one can obtain a positive solution of fractional
thermostat model whenever βΓ(α) ≥ (1 − η)α−1. However, if
βΓ(α) < (1 − η)α−1, we cannot employ our result to find a positive solution
of the model, since G(t, s) fails to be non-negative throughout the domain,
as a result R may not be T -closed.
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