

An answer to an open problem of Jachymski

Maher Berzig, Cristina Olimpia Rus and Mircea Dan Rus

> **Abstract.** We show that a discrete fixed point result of Jachymski (Fixed Point Theory Appl 1:31–36, [2004\)](#page-5-0) is equivalent to the classical Banach contraction mapping principle.

Mathematics Subject Classification. Primary 47H10; Secondary 54E35. **Keywords.** Fixed point, Binary relation, Inframetric space, Metrizability, Contraction principle.

1. Introduction

Let $\mathbb Z$ denote a set of integers, $\mathbb N$ a set of positive integers and $\mathbb N_0$ a set of nonnegative integers. Given a nonempty set X, let Δ_X be the diagonal in $X \times X$, i.e., $\Delta_X = \{(x, x) : x \in X\}.$

In [\[7\]](#page-5-0), Jachymski proved the following result, as an extension of a discrete fixed point theorem due to Eilenberg (see $[5,$ $[5,$ Chapter I, p. 19], $[7,$ Theorem 1.1]). Note that in what follows the powers of a binary relation over a nonempty set are considered with respect to the usual composition of binary relations.

Theorem 1.1. *Let* X *be a nonempty set,* $(R_n)_{n \in \mathbb{Z}}$ *a sequence of reflexive and symmetric binary relations over* X *and* F *a self-map of* X *such that the following conditions are satisfied:*

 (r_1) R_n^2 ⊆ R_{n-1} *for all* $n \in \mathbb{Z}$ *;* $(r2)$ $\bigcup_{n \in \mathbb{Z}} R_n = X \times X;$ $(n3)$ $\bigcap_{n\in\mathbb{Z}} R_n = \Delta_X;$ $(r4)$ given a sequence $(x_n)_{n>1}$ *such that* $(x_n, x_{n+1}) \in R_n$ *for all* $n \in \mathbb{N}$ *, there exists* $x \in X$ *such that* $(x_n, x) \in R_{n-1}$ *for all* $n \in \mathbb{N}$; $(r5)$ given $n \in \mathbb{Z}$, if $(x, y) \in R_n$ then $(Fx, Fy) \in R_{n+1}$.

Then F has a unique fixed point $x_* \in X$ and for every $x \in X$ *, there exists* $k \in \mathbb{N}$ *such that* $(F^{n+k}x, x_*) \in R_n$ *for all* $n \in \mathbb{N}$ *.*

Note that the original formulation of Theorem [1.1](#page-0-0) also contained the superfluous assumption:

 $(r0)$ $R_n \subseteq R_{n-1}$ for all $n \in \mathbb{Z}$.

Indeed, since R_n are reflexive (i.e., $\Delta_X \subseteq R_n$) for all $n \in \mathbb{Z}$, it follows that $R_n \subseteq R_n^2$, which by (r1) leads to (r0).

Jachymski [\[7,](#page-5-0) Proposition 4.2] showed that Theorem [1.1](#page-0-0) implies the well-known Banach contraction mapping principle, which we state next:

Theorem 1.2. (The contraction mapping principle) Let (X, d) be a complete *metric space and* F *a self-map of* X *. If there exists* $q < 1$ *such that*

$$
d(Fx, Fy) \le q \cdot d(x, y) \quad \text{for all } x, y \in X,\tag{1.1}
$$

then F *has a unique fixed point* $x_* \in X$ *and, for every* $x \in X$ *, the sequence* $(F^n x)$ *is convergent to* x_* (here, F^n denotes the *n*-th iterate of F).

In [\[7\]](#page-5-0), Jachymski then raised the problem of finding a result similar to Theorem [1.1](#page-0-0) that is *equivalent* to the contraction mapping principle.

In what follows, we give a definite answer to this problem, by showing that Theorem [1.1](#page-0-0) is, actually, equivalent to the contraction mapping principle. We base our approach on a constructive metrization result that is motivated by the fact that under the conditions in Theorem [1.1,](#page-0-0) the family ${R_n : n \in \mathbb{Z}}$ is a base for some separable uniformity over X. By the metrization theorem in uniform spaces, the uniformity induced by $\{R_n : n \in \mathbb{Z}\}\$ is metrizable. We refer to [\[8](#page-6-0), Chapter 6] for more details on uniform spaces.

2. Preliminaries

Definition 2.1 [\[3\]](#page-5-2). Let X be a nonempty set and $C \geq 1$. A map $\delta: X \times X \to \mathbb{R}$ is called *a* C *-inframetric* (*or, simply, an inframetric*) over X if it satisfies the following conditions:

(d1) $\delta(x, y) \geq 0$ for all $x, y \in X$, and $\delta(x, y) = 0$ *if and only if* $x = y$;

(d2) $\delta(x, y) = \delta(y, x)$ for all $x, y \in X$;

(d3) $\delta(x, y) \leq C \cdot \max\{\delta(x, z), \delta(z, y)\}\$ for all $x, y, z \in X$.

The pair (X, δ) is called *a C-inframetric space* (*or, simply, inframetric space*).

Note that some authors use the term C-*quasi-metric* [\[9](#page-6-1)], *quasi-ultrametric* [\[6](#page-5-3)], *weak ultrametric* [\[2\]](#page-5-4), C*-pseudo-distance* [\[2\]](#page-5-4) or b*^C -metric* [\[10\]](#page-6-2) in place of C-inframetric. A 1-inframetric (which is a metric) is usually referred to as *an ultrametric* [\[6](#page-5-3)] or *non-Archimedean metric* [\[1\]](#page-5-5). Note also that any metric is a 2-inframetric.

Following a previous result due to Frink [\[4\]](#page-5-6), Schroeder [\[9\]](#page-6-1) proved that every C-inframetric, with $C \leq 2$, induces an equivalent metric.

Theorem 2.2. (Schroeder [\[9\]](#page-6-1)) *Let* X *be a nonempty set and* δ *a* C*-inframetric over* X, with $C \leq 2$. Define the map $d : X \times X \to \mathbb{R}$ by

$$
d(x,y) = \inf \left\{ \sum_{k=0}^{n} \delta(z_k, z_{k+1}) : n \in \mathbb{N}_0, z_1, z_2, \dots, z_n \in X, z_0 = x, z_{n+1} = y \right\}
$$

($x, y \in X$). (2.1)

Then, d *is a metric over* X *and*

$$
\frac{1}{2C}\delta(x,y) \le d(x,y) \le \delta(x,y) \quad \text{for all } x, y \in X.
$$

The proof of Theorem [2.2](#page-1-0) can be found in [\[9](#page-6-1), Theorem 1.2]. In what follows, we will refer to d as *the chain metric induced by the inframetric* δ.

The following result establishes that every Lipschitz mapping with respect to δ is also Lipschitz with respect to d, while the Lipschitz constants are equal.

Proposition 2.3. *Let* X *be a nonempty set,* δ *a* C*-inframetric over* X*, with* $C \leq 2$, and d the chain metric induced by δ . Let F be a self-map of X for *which there exists* q > 0 *such that*

$$
\delta(Fx, Fy) \le q \cdot \delta(x, y) \quad \text{for all } x, y \in X. \tag{2.2}
$$

Then,

$$
d(Fx, Fy) \le q \cdot d(x, y) \quad \text{for all } x, y \in X. \tag{2.3}
$$

Proof. Fix $x, y \in X$ and let $n \in \mathbb{N}_0$, $z_1, z_2, \ldots, z_n \in X$, $z_0 = x$, $z_{n+1} = y$. By the definition of d and using (2.2) , it follows that

$$
d(Fx, Fy) \le \sum_{k=0}^{n} \delta(Fz_k, Fz_{k+1}) \le q \cdot \sum_{k=0}^{n} \delta(z_k, z_{k+1}),
$$

and by taking the infimum over all possible finite sequences (z_k) in X, we obtain (2.3) .

3. Main results

We start this section with the announced metrization result.

Proposition 3.1. *Let* X *be a nonempty set and* $(R_n)_{n \in \mathbb{Z}}$ *a sequence of reflexive and symmetric binary relations over* X *such that conditions (*r1*), (*r2*) and (r3)* are satisfied. Define the mappings $M : X \times X \to 2^{\mathbb{Z}}$, $\mu : X \times X \to 2^{\mathbb{Z}}$ $\mathbb{Z} \cup {\infty}$ *, and* $\delta: X \times X \to [0, \infty)$ *as:*

$$
M(x, y) = \{ n \in \mathbb{Z} : (x, y) \in R_n \}, \quad \mu(x, y) = \sup M(x, y), \quad \delta(x, y) = 2^{-\mu(x, y)}
$$
(3.1)

for each $(x, y) \in X \times X$ (here, by convention, $2^{-\infty} = 0$).

Then, δ *is a* 2*-inframetric over* X *such that*

$$
R_n = \left\{ (x, y) \in X \times X : \delta(x, y) \le \frac{1}{2^n} \right\} \quad \text{for every } n \in \mathbb{Z}, \tag{3.2}
$$

and the chain metric d *induced by* δ *verifies*

1

$$
\frac{1}{4}\delta(x,y) \le d(x,y) \le \delta(x,y) \quad \text{for all } x, y \in X. \tag{3.3}
$$

*Moreover, if (*r4*) is satisfied, then* d *is complete.*

Proof. By (r2), it follows that $M(x, y) \neq \emptyset$ for all $x, y \in X$; hence, μ and δ are correctly defined.

Since R_n are symmetric for all $n \in \mathbb{Z}$, it follows that M , μ and δ are also symmetric.

Using $(r0)$ (which follows from $(r1)$), we can conclude that either $M(x, y) = \mathbb{Z}$, or $M(x, y)$ consists of all integers up to $\mu(x, y)$ (when $M(x, y) \neq$

 \mathbb{Z}). From here, it follows that for every $x, y \in X$ and $n \in \mathbb{Z}$, we have the set of equivalences:

$$
(x, y) \in R_n \Leftrightarrow n \in M(x, y) \Leftrightarrow n \le \mu(x, y) \Leftrightarrow \delta(x, y) \le \frac{1}{2^n},
$$
\n(3.4)

which leads to (3.2) . Next, by $(r3)$,

$$
x = y \Leftrightarrow (x, y) \in \bigcap_{n \in \mathbb{Z}} R_n \Leftrightarrow \delta(x, y) \le \frac{1}{2^n} \text{ for all } n \in \mathbb{Z} \Leftrightarrow \delta(x, y) = 0.
$$

We show next that δ satisfies the 2-inframetric inequality:

$$
\delta(x, y) \le 2 \max \{ \delta(x, z), \delta(z, y) \} \quad \text{ for all } x, y, z \in X.
$$

This is achieved by proving the corresponding (equivalent) inequality for μ :

$$
\mu(x, y) \ge \min\{\mu(x, z), \mu(z, y)\} - 1 \quad \text{for all } x, y, z \in X. \tag{3.5}
$$

Indeed, the inequality (3.5) is obvious when any two of x, y, z are equal; hence, we can assume that $x \neq y \neq z \neq x$ (i.e., $\mu(x, y)$, $\mu(x, z)$ and $\mu(z, y)$ are all finite). Letting $k := \min{\{\mu(x, z), \mu(z, y)\}}$, it follows that $k \in M(x, z) \cap$ $M(z, y)$; hence, $\{(x, z), (z, y)\}\subseteq R_k$, which leads to $(x, y) \in R_k^2$. Applying $(r1)$, it follows that $(x, y) \in R_{k-1}$; hence, $k - 1 \in M(x, y)$, which finally proves (3.5) .

Concluding, δ is a 2-inframetric over X and the rest of the conclusion follows by Theorem [2.2.](#page-1-0)

Finally, to prove the completeness of d , it is enough to show that

(*Q*) every sequence $(x_n)_{n>1}$ in X that satisfies

$$
d(x_n, x_{n+1}) \le \frac{1}{2^{n+2}} \quad \text{for all } n \in \mathbb{N} \tag{3.6}
$$

has a convergent subsequence.

So, let $(x_n)_{n\geq 1}$ be a sequence in X like in (3.6) . By (3.3) , it follows that $\delta(x_n, x_{n+1}) \leq \frac{1}{2^n}$; hence, $(x_n, x_{n+1}) \in R_n$ for all $n \in \mathbb{N}$ by [\(3.2\)](#page-2-2). Using (r4), there exists $x \in X$ such that $(x_n, x) \in R_{n-1}$ for all $n \in \mathbb{N}$, which leads to

$$
d(x_n, x) \le \delta(x_n, x) \le \frac{1}{2^{n-1}} \quad \text{for all } n \in \mathbb{N}.
$$

Concluding, $(x_n)_{n>1}$ is convergent to x (with respect to d).

Remark 3.2. To prove the completeness of d in Proposition [3.1,](#page-2-4) it is enough to consider the following weaker version of $(r4)$:

(r4') given a sequence $(x_n)_{n\geq 1}$ such that $(x_n, x_{n+1}) \in R_n$ for all $n \in \mathbb{N}$, there exists $x \in X$ and a subsequence $(x'_n)_{n \geq 1}$ of $(x_n)_{n \geq 1}$ such that $(x'_n, x) \in R_n$ for all $n \in \mathbb{N}$.

By a previous observation, it will suffice proving that (Q) holds. So, let $(x_n)_{n\geq 1}$ be a sequence in X that satisfies [\(3.6\)](#page-3-1). Clearly, $(x_n, x_{n+1}) \in R_n$ for all $n \in \mathbb{N}$. Next, by $(r4')$, there exists $x \in X$ and a subsequence $(x'_n)_{n \geq 1}$ of $(x_n)_{n\geq 1}$ such that $(x'_n, x) \in R_n$ for all $n \in \mathbb{N}$, which leads to $d(x'_n, x) \leq$ $\delta(x'_n, x) \leq \frac{1}{2^n}$ for all $n \in \mathbb{N}$ and concludes the proof.

Remark 3.3. It is well known that, under the assumptions in the contraction mapping principle, one can add to its conclusions that

$$
d(F^n x, x_*) \le \frac{q^n}{1-q} d(Fx, x) \quad \text{for all } n \in \mathbb{N} \text{ and } x \in X. \tag{3.7}
$$

Replaying the argument of Jachymski in the proof of [\[7,](#page-5-0) Proposition 4.2], one can see that this additional conclusion of the contraction mapping principle cannot be obtained via Theorem [1.1.](#page-0-0) However, one can still obtain a weaker version of [\(3.7\)](#page-4-0), as we explain next.

Explicitly, assume the conditions in Theorem [1.2,](#page-1-1) and let

$$
R_n = \left\{ (x, y) \in X \times X : d(x, y) \le \frac{1}{2^n} \right\}
$$

for every $n \in \mathbb{Z}$. Also, since F satisfies [\(1.1\)](#page-1-2), it follows that

$$
d(F^n x, F^n y) \le q^n \cdot d(x, y)
$$
 for all $n \in \mathbb{N}$ and $x, y \in X$.

Letting $m \in \mathbb{N}$ to be (the smallest) such that $q^m \leq \frac{1}{2}$ and denoting $G := F^m$, it follows that

$$
d(Gx, Gy) \le \frac{1}{2}d(x, y) \text{ for all } x, y \in X.
$$

Next, the proof of [\[7](#page-5-0), Proposition 4.2] shows that conditions $(r1)-(r5)$ are satisfied, with G in place of F , and that the conclusions of the contraction mapping principle follow via Theorem [1.1.](#page-0-0) In addition, we also obtain via Theorem [1.1](#page-0-0) that for every $x \in X$, there exists $k \in \mathbb{N}$ such that $(G^{n+k}x, x_*) \in$ R_n for all $n \in \mathbb{N}$, which finally leads to the following weaker version of [\(3.7\)](#page-4-0):

(P) for every $x \in X$, there exists $k \in \mathbb{N}$ such that $d(F^{m(n+k)}x, x_*) \leq \frac{1}{2^n}$ 2*n* for all $n \in \mathbb{N}$, with $m = \left| \log_q \frac{1}{2} \right|$ 2 $+1$ (here, $\lfloor a \rfloor$ denotes the integer part of the real number a).

Consequently, in what follows, when referring to the contraction map-ping principle (or, Theorem [1.2\)](#page-1-1), we also include property (P) among the conclusions.

In view of Remark [3.2,](#page-3-2) our next result is a slight modification of Theorem [1.1,](#page-0-0) which we prove via the contraction mapping principle.

Theorem 3.4. *Let* X *be a nonempty set,* $(R_n)_{n \in \mathbb{Z}}$ *a sequence of reflexive and symmetric binary relations over* X *and* F *a self-map of* X *such that conditions (*r1*), (*r2*), (*r3*), (*r4 *) and (*r5*) are satisfied.*

Then, F has a unique fixed point $x_* \in X$ and for every $x \in X$ *, there exists* $k \in \mathbb{N}$ *such that* $(F^{n+k}x, x_*) \in R_n$ *for all* $n \in \mathbb{N}$ *.*

Proof. Let M , μ , δ and d be defined as in Proposition [3.1.](#page-2-4) Using Proposition [3.1](#page-2-4) and Remark [3.2,](#page-3-2) it follows that d is a complete metric over X.

We show that F is a contraction with respect to the metric d . Let $x, y \in X$ with $x \neq y$. Then $\mu(x, y)$ is finite and $(x, y) \in R_{\mu(x, y)}$ (from the proof of Proposition [3.1\)](#page-2-4), which by (r5) leads to $(Fx, Fy) \in R_{\mu(x,y)+1}$; hence,

 $\delta(Fx, Fy) \leq \frac{1}{2^{\mu(x,y)+1}} = \frac{1}{2}\delta(x,y)$ by [\(3.2\)](#page-2-2). Clearly, the previous relation is true also when $x = y$, so we can conclude that

$$
\delta(Fx, Fy) \le \frac{1}{2}\delta(x, y) \quad \text{for all } x, y \in X
$$

which, by Proposition [3.3,](#page-2-3) finally leads to

$$
d(Fx, Fy) \le \frac{1}{2}d(x, y) \quad \text{for all } x, y \in X.
$$

Applying the contraction mapping principle for the complete metric space (X, d) and the contraction F, it follows that F has a unique fixed point $x_* \in X$. Also, using property (P) (Remark [3.3,](#page-3-3) with $m = 1$), it follows that for every x, there exists $k_0 \in \mathbb{N}$ such that $d(F^{n+k_0}x, x_*) \leq \frac{1}{2^n}$ for all $n \in \mathbb{N}$. Next, using (3.3) , we obtain that

$$
\delta(F^{n+2+k_0}x, x_*) \le 4d(F^{n+2+k_0}x, x_*) \le \frac{1}{2^n} \quad \text{for all } n \in \mathbb{N} \text{ and } x \in X
$$

which, by (3.2) , means that

$$
(F^{n+k}x, x_*) \in R_n
$$
 for all $n \in \mathbb{N}$ and $x \in X$

with $k = k_0 + 2$, concluding the proof. \Box

We conclude with the announced equivalence result.

Theorem 3.5. *Theorems* [1.1](#page-0-0)*,* [1.2](#page-1-1) *and* [3.4](#page-4-1) *are equivalent.*

Proof. The fact that Theorem [1.1](#page-0-0) implies Theorem [1.2](#page-1-1) was previously discussed in Remark [3.3.](#page-3-3) Also, we proved Theorem [3.4](#page-4-1) via Theorem [1.2](#page-1-1) (see also Remark [3.3\)](#page-3-3), which means that Theorem [1.2](#page-1-1) implies Theorem [3.4.](#page-4-1) Finally, it is easy to see that Theorem [3.4](#page-4-1) implies Theorem [1.1.](#page-0-0) \Box

References

- [1] de Groot, J.: Non-archimedean metrics in topology. Proc. Am. Math. Soc. **7**, 948–953 (1956)
- [2] Deza, M.M., Deza, E.: Encyclopedia of Distances, 3rd edn. Springer, Heidelberg (2014)
- [3] Fraigniaud, P., Lebhar, E., Viennot, L.: The inframetric model for the internet. In: 27th IEEE International Conference on Computer Communications (INFOCOM '08) (2008), IEEE, pp. 1085–1093
- [4] Frink, A.H.: Distance functions and the metrization problem. Bull. Am. Math. Soc. **43**(2), 133–142 (1937)
- [5] Granas, A., Dugundji, J.: Fixed Point Theory. Springer Monographs in Mathematics. Springer, New York (2003)
- [6] Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)
- [7] Jachymski, J.: A discrete fixed point theorem of Eilenberg as a particular case of the contraction principle. Fixed Point Theory Appl. **1**, 31–36 (2004)

- [8] Kelley, J.L.: General Topology. Springer, New York (1975). (Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No. 27)
- [9] Schroeder, V.: Quasi-metric and metric spaces. Conform. Geom. Dyn. **10**, 355– 360 (2006). (Electronic)
- [10] Światkowski, T.: b-Metric spaces. Zeszyty Nauk. Politech. Lódz. Mat. 26, 69–80 (1994)

Maher Berzig Université de Tunis École Nationale Supérieure d'Ingénieurs de Tunis 5 Avenue Taha Hussein, Bab Manara BP 56 Tunis Tunisia e-mail: maher.berzig@gmail.com

Cristina Olimpia Rus University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Calea Mănăstur 3-5 400372 Cluj-Napoca Romania e-mail: cristinaolimpia.rus@gmail.com

Mircea Dan Rus Technical University of Cluj-Napoca Str. Memorandumului 28 400114 Cluj-Napoca Romania e-mail: rus.mircea@math.utcluj.ro