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Abstract. In this paper, we present a new generalized modular version
of the Meir–Keeler fixed point theorem endowed with an orthogonal
relation. Our results improve the results of (Eshaghi Gordji et al., On
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1. Introduction and preliminaries

A problem that mathematicians have dealt with for almost 50 years is how to
generalize the classical function space Lp. A first attempt was made by Birn-
haum and Orlicz in 1931 [1]. This generalization found many applications in
differential and integral equations with kernels of nonpower types. The more
abstract generalization was given by Nakano [2] in 1950 based on replacing
the particular integral form of the functional by an abstract one that satisfies
some good properties. This functional was called modular. This idea, which
was the basis of the theory of modular spaces and initiated by Nakano in
connection with the theory of the order space, was refined and generalized by
Musielak and Orlicz [3] in 1959. Modular spaces have been studied for almost
forty years and there is a large set of known applications of them in various
parts of analysis. For more details about modular spaces, we refer the reader
to the books edited by Musielak [4] and by Kozlowski [5].

It is well known that fixed point theory is one of the powerful tools in
solving integral and differential equations. The Banach contraction mapping
principle is one of the pivotal results in fixed point theory and it has a board
set of applications. Khamsi et al. [6] investigated the fixed point results in
modular function spaces. Even though a metric is not defined, many problems
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in metric fixed point theory can be reformulated and solved in modular spaces
(see for instance [7–10]).

In 1969, Meir and Keeler [11] presented a generalization of the Banach
contraction mapping principle as the following.

Theorem 1.1. [11] Let (X, d) be a complete metric space and T : X → X be
an operator. Suppose that for every ε > 0 there exists δ(ε) > 0 such that for
x, y ∈ X,

ε ≤ d(x, y) < ε + δ(ε) ⇒ d(Tx, Ty) < ε.

Then, T admits a unique fixed point z ∈ X and for any x ∈ X, the sequence
{Tn(x)} converges to z.

Recently, Eshaghi et al. [12] introduced the notion of orthogonal set
and then gave an extension of Banach’s fixed point theorem. They proved,
by means of an example, that their main theorem is a real generalization
of Banach’s fixed point theorem. The main result of [12] is the following
theorem.

Theorem 1.2. [12] Let (X,⊥, d) be an O-complete metric space (not necessar-
ily complete metric space) and 0 < λ < 1. Let f : X → X be ⊥-continuous, ⊥-
contraction with Lipschitz constant λ and ⊥-preserving. Then, f has a unique
fixed point x∗ ∈ X. Also, f is a Picard operator, that is, limn→∞ fn(x) = x∗

for all x ∈ X.

For more details about orthogonal space, we refer the reader to [12–14].
The paper is organized as follows. In Sect. 2, we begin by recalling some basic
concepts of modular spaces and definition of orthogonal sets in [12,13] that
are reviewed. Strongly orthogonal sequences and their relation to orthogonal
sequences by means of some examples are explained. In Sect. 3, we present
our main theorem and construct an example which shows that the main
theorem of this paper is a real extension of modular version of the Meir–Keeler
fixed point theorem. In Sect. 4, as an application, we find the existence and
uniqueness of solution for a perturbed integral equations in Musielak–Orlicz
space.

2. Preliminaries

We recall some definitions of modular spaces. Let X be an arbitrary vector
space over K(= R or C),
(a) A function ρ : X → [0,+∞] is called a modular if

(i) ρ(x) = 0 if and only if x = 0;

(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1;

(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) ifα + β = 1 and α ≥ 0, β ≥ 0

for all x, y ∈ X. If (iii) is replaced by

(iii) ρ(αx + βy) ≤ αρ(x) + βρ(y) if α + β = 1 and α ≥ 0, β ≥ 0,

we say that ρ is convex modular.
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Note that for all x ∈ X, the function ρ(αx) is an increasing function
of α ≥ 0, that is, if α < β and α, β ≥ 0 then ρ(αx) ≤ ρ(βx).

(b) A modular ρ defines a corresponding modular space, i.e. the vector space
Xρ given by Xρ = {x ∈ X : ρ(λx) → 0 as λ → 0}.

(c) The modular space Xρ can be equipped with the F -norm defined by
|x|ρ = inf{α > 0; ρ( x

α ) ≤ α}. If ρ be convex, then the functional ‖x‖ρ =
inf{α > 0; ρ( x

α ) ≤ 1} is a norm called the Luxemburg norm in Xρ which
is equivalent to the F -norm |.|ρ.

Definition 2.1. Let Xρ be a modular space.
(a) A sequence {xn} in Xρ is said to be:

(i) ρ-convergent to x, denoted by xn
ρ→ x, if ρ(xn−x) → 0 as n → ∞.

(ii) ρ-Cauchy if ρ(xn − xm) → 0 as n,m → ∞.
(b) Xρ is ρ-complete if every ρ-Cauchy sequence is ρ-convergent.
(c) A subset B ⊆ Xρ is said to be ρ-closed if for any sequence {xn} ⊂ B

with xn
ρ→ x, then x ∈ B.

(d) A subset B ⊆ Xρ is called ρ-bounded if δρ(B) = sup{ρ(x − y) : x, y ∈
B} < ∞, where δρ(B) is called the ρ-diameter of B.

(e) ρ is said to satisfy the �2-condition if 2xn
ρ→ 0 whenever xn

ρ→ 0 .

Now, we recall the main definition of [12,13].

Definition 2.2. [12,13] Let X 
= ∅ and ⊥ ⊆ X × X be a binary relation. If ⊥
satisfies the following condition:

∃x0 ∈ X : (∀y, y⊥x0) or (∀y, x0⊥y),

then ⊥ is called an orthogonality relation and the pair (X,⊥) an orthogonal
set (briefly O-set).

Note that in above definition, we say that x0 is an orthogonal element.
Also, we say that elements x, y ∈ X are ⊥-comparable either x⊥y or y⊥x.

Definition 2.3. [12,13] Let (X,⊥) be an O-set. A sequence {xn} is called an
orthogonal sequence (briefly, O-sequence) if

(∀n, xn⊥xn+1) or (∀n, xn+1⊥xn).

Next, we introduce the new type of sequences in O-sets.

Definition 2.4. Let (X,⊥) be an O-set. A sequence {xn} is called a strongly
orthogonal sequence (briefly, SO-sequence) if

(∀n, k, xn⊥xn+k) or (∀n, k, xn+k⊥xn).

It is obvious that every SO-sequence is an O-sequence that defined in
[12,13]. The following example shows that the converse is not true.

Example 2.5. Let X = Z. Suppose x⊥y iff xy ∈ {x, y}. Define the sequence
{xn} in X as follows:

xn =

{
2 n = 2k, for some k ∈ Z,

1 n = 2k + 1, for some k ∈ Z.
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We obtain that for all n ∈ N, xn⊥xn+1, but x2n is not orthogonal to x4n.
Therefore, {xn} is an O-sequence that is not SO-sequence.

Definition 2.6. Let (X,⊥) be an O-set and d be a metric on X. The triplet
(X,⊥, d) is called an orthogonal metric space.

Definition 2.7. Let (X,⊥, d) be an orthogonal metric space. X is said to
be strongly orthogonal complete (briefly, SO-complete) if every Cauchy SO-
sequence is convergent.

Clearly, every complete metric space is SO-complete. In the next exam-
ple, X is SO-complete but it is not complete.

Example 2.8. Consider X = {u ∈ C([a, b],R); ∀t ∈ [a, b], u(t) 
= 0}. X
is an incomplete metric space with supremum norm ‖u‖ = supt∈[a,b] |u(t)|.
Define the orthogonal relation ⊥ on X by

u⊥v ⇔ ∀t ∈ [a, b]; u(t)v(t) ≥ max{u(t), v(t)}.

X is SO-complete, in fact if {un} is an arbitrary Cauchy SO-sequence in X,
then for all n ∈ N and t ∈ [a, b], un(t) ≥ 1. Since C([a, b],R) with supremum
norm is a Banach space, we can find the element u ∈ C([a, b],R) for which
‖un − u‖ → 0 as n → ∞. The uniformly convergent implies the point-wise
convergent. Thus, u(t) ≥ 1 for all t ∈ [a, b] and hence u ∈ X.

Notice every O-complete metric space that defined in [12,13] is SO-
complete, next by means an example we show that the converse is not true.

Example 2.9. Suppose X = (0,∞) with the Euclidean metric and the or-
thogonal relation in Example 2.5. Let {xn} be a Cauchy SO-sequence in X,
the definition ⊥ follows that xn = 1 for all n ∈ N. Therefore, {xn} converges
to constant 1 ∈ X. Now, consider the sequence

xn =

{
1 n = 2k, for some k ∈ Z,

k n = 2k + 1, for some k ∈ Z.

Clearly, {xn} is an O-sequence that is not convergent to any element of X.

Definition 2.10. Let (X,⊥, d) be an orthogonal metric space. A mapping f :
X → X is strongly orthogonal continuous (briefly, SO-continuous) in a ∈ X
if for each SO-sequence {an} in X if an → a, then f(an) → f(a). Also, f is
SO-continuous on X if f is SO-continuous in each a ∈ X.

It is easy to see that every continuous mapping is O-continuous that
defined in [12,13] and every O-continuous mapping is SO-continuous. The
following example shows that the converse is not true.

Example 2.11. Let X = R with the Euclidean metric. Assume ⊥ is orthogo-
nal relation in Example 2.5. Define f : X → X by

f(x) =

⎧⎨
⎩

1 x ∈ Q,
1
x

x ∈ Q
c.
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Notice that f is not continuous but we can see that f is SO-continuous. If {xn}
is an SO-sequence in X which converges to x ∈ X. Applying definition ⊥, we
obtain that for enough large n, xn ∈ Q. This implies that f(xn) = 1 → x = 1.
To see that f is not O-continuous, consider the sequence

xn =

{
0 n = 2k + 1, for some k ∈ Z,√

2
k n = 2k, for some k ∈ Z.

It is clear that xn → 0 while the sequence {f(xn)} is not convergent to f(0).

3. Main results

Let X be an arbitrary vector space over K(=R or C). We start our work with
the following definitions.

Definition 3.1. Let ρ be a modular function on X and ⊥ be an orthogonal
relation on Xρ. The triplet (X,⊥, ρ) is called an orthogonal modular space.

Definition 3.2. Let (X,⊥, ρ) be an orthogonal modular space.

(a) A subset B of Xρ is called SO-ρ-closed, if for any SO-sequence {xn} ⊂ B

with xn
ρ→ x, then x ∈ B.

(b) (X,⊥, ρ) is said to be strongly orthogonal ρ-complete (briefly, SO-ρ-
complete) if every ρ-Cauchy SO-sequence in Xρ is ρ-convergent.

(c) Let B be a subset of Xρ. A mapping f : B → B is called:
(i) ⊥-preserving if f(x)⊥f(y) whenever x⊥y and x, y ∈ B.
(ii) Strongly orthogonal ρ-continuous (briefly, SO-ρ-continuous) in a ∈

B if for each SO-sequence {an} in B then an
ρ→ a implies f(an)

ρ→
f(a). Also, f is SO-ρ-continuous on B if f is SO-ρ-continuous in
each a ∈ B.

In below, we show that SO-ρ-closedness does not imply ρ-closedness.

Example 3.3. Let (X, ‖.‖) be a Banach space and ρ = ‖.‖. Let T be a Picard
operator on X, it means that there exists x∗ in X for which for every y ∈ X,
limn→∞ Tn(y) = x∗. Consider the non-closed subspace B of X such that
x∗ ∈ B. Define x⊥y iff limn→∞ Tn(x) = y. It is clear that for every y ∈ X,
y⊥ x∗. B is a SO-ρ-closed subset of X. In fact, if {xn} is a ρ-Cauchy SO-
sequence in B that converges to z ∈ X. Then, the definition of orthogonality
implies that for n ≥ 2, xn = x∗. Therefore, z = x∗ ∈ B.

Definition 3.4. Let (X,⊥, ρ) be an orthogonal modular space. Let B be an
SO-ρ-closed subset of Xρ and c, l ∈ (0,∞) with c > l. We say that a mapping
T : B → B satisfies the Meir–Keeler condition whenever For every ε > 0,
there exists δ(ε) > 0 such that:

x 
= y, x⊥y and ε ≤ ρ(l(x−y)) < ε+δ(ε) ⇒ ρ(c(Tx−Ty)) < ε.
(3.1)
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Theorem 3.5. Let (X,⊥, ρ) be an SO-ρ-complete orthogonal modular space
(not necessarily ρ-complete) with an orthogonal element x0 and ρ satisfies
the Δ2-condition. Suppose that B is an SO-ρ-closed subset of Xρ such that
x0 ∈ B and there exist c, l ∈ (0,∞) with c > l. Assume that T : B → B is ⊥-
preserving, SO-ρ-continuous such that satisfying the Meir–Keeler condition.
Then, T has a unique fixed point z ∈ B. Also, T is a Picard operator, that
is, for all x ∈ B, the sequence {Tn(x)} is ρ-convergent to z.

Proof. Let α ∈ (1,∞) be the conjugate of c/l ; i. e., l
c + 1

α = 1. By definition
of orthogonality, we have

(∀y ∈ Xρ, x0⊥y) or (∀y ∈ Xρ, y⊥x0).

It follows that x0⊥Tx0 or Tx0⊥x0. Put

x1 = Tx0, x2 = T (x1) = T 2(x0), . . . , xn+1 = T (xn) = Tn+1(x0)

for all n ∈ N. It is clear that

(∀n ∈ N, x0⊥xn) or (∀n ∈ N, xn⊥x0).

Since T is ⊥-preserving, we see that

(∀n, k ∈ N, xk = T k(x0)⊥T k(xn) = xn+k) or

(∀n, k ∈ N, xn+k = T k(xn)⊥T k(x0) = xk).

This implies that {xn} is an SO-sequence. For better readability, we divide
the proof into several steps.

Step 1: limn→∞ ρ(l(xn+1 − xn)) = 0.
If there exists n0 ∈ N, xn0 = xn0+1 and easily the result follows. Now,

let xn 
= xn+1 for all n ∈ N, then using the Meir–Keeler condition, for any
n ∈ N we have

ρ(l(xn+1 − xn)) < ρ(l(xn − xn−1)).

This means that the sequence {ρ(l(xn+1 − xn))} is strictly decreasing and
hence it converges. Put limn→∞ ρ(l(xn+1 − xn)) = r. Now we prove r = 0.
Suppose that r > 0. Applying the Meir–Keeler condition to r > 0, we can
find δ(r) > 0 such that

x 
= y, x⊥y and r ≤ ρ(l(x − y)) < r + δ(r) ⇒ ρ(c(Tx − Ty)) < r.

Since limn→∞ ρ(l(xn+1 − xn)) = r, then there exists n0 ∈ N such that

r ≤ ρ(l(xn0 − xn0−1)) < r + δ(r) ⇒ ρ(c(Txn0 − Txn0−1)) < r.

Since ρ(αx) is an increasing function of α ≥ 0, then ρ(l(xn0+1−xn0)) < r and
this is a contradiction because r = inf{ρ(l(xn −xn−1)) ; n ∈ N}. Therefore,
r = 0.

Step 2: {xn} is a ρ-Cauchy SO-sequence .
Suppose {xn} is not a ρ-Cauchy sequence, then there exist ε > 0 and

two sequences {mk} and {nk} such that mk > nk ≥ K,

ρ(c(xmk
− xnk

)) ≥ ε and ρ(c(xmk−1 − xnk
)) < ε. (3.2)
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To prove (3.2), suppose∑
k

= {m ∈ N; ∃nk ≥ k, ρ(c(xm − xnk
)) ≥ ε , m > nk ≥ k}.

Obviously,
∑

k 
= ∅ and
∑

k ⊆ N, then by the well ordering principle, the
minimum element of

∑
k is denoted mk, and clearly (3.2) holds. There exists

δ(ε) > 0 (which can be chosen δ(ε) ≤ ε) satisfying (3.1). The Δ2-condition
and Step 1 show that there exists n0 ∈ N for which ρ(M(xn0 −xn0−1)) < δ(ε),
where M ≥ max{αl, c}. Fix k ≥ n0, we have

ρ(l(xmk−1 − xnk−1)) = ρ
(
l(xmk−1 − xnk

) + l(xnk
− xnk−1)

)
≤ ρ(c(xmk−1 − xnk

)) + ρ(αl(xnk−1 − xnk
))

≤ ρ(c(xmk−1 − xnk
)) + ρ(M(xnk−1 − xnk

))

< ε + δ(ε).

Now, we consider two cases:

Case 1 ρ(l(xmk−1 − xnk−1)) ≥ ε.
Since xnk−1 and xmk−1 are ⊥-comparable, applying the condition (3.1)

we get

ε ≤ ρ(l(xmk−1 − xnk−1)) < ε + δ(ε) ⇒ ρ(c(xmk
− xnk

)) < ε.

Case 2 ρ(l(xmk−1 − xnk−1)) < ε.
Since xmk−1 and xnk−1 are ⊥-comparable, then using (3.1) we get

ρ(c(xmk
− xnk

)) < ρ(l(xmk−1 − xnk−1)) < ε.

Hence in each cases ρ(c(xmk
−xnk

)) < ε and this is a contradiction with (3.2).
Therefore, {xn} is a ρ-Cauchy SO-sequence. Since Xρ is an SO-ρ-complete
orthogonal modular space and B is an SO-ρ-closed subset of Xρ, then there
exists z ∈ B such that xn

ρ→ z. The Δ2-condition of ρ implies that ρ(c(xn −
z)) → 0 as n → ∞. On the other hand, T is an SO-ρ-continuous function,
then for given ε > 0, there exists n0 ∈ N such that

ρ(c(xn0+1 − z)) <
ε

2
and ρ(c(Txn0 − Tz)) <

ε

2
.

Now,

ρ(
c

2
(Tz − z)) = ρ

(
c

2
(Tz − Txn0) +

c

2
(Txn0 − z)

)

≤ ρ(c(Tz − Txn0) + ρ(c(xn0+1 − z))

<
ε

2
+

ε

2
= ε.

It follows that ρ( c
2 (Tz − z)) = 0 and so Tz = z.

Now, we show that T is a Picard operator. Let x ∈ B be arbitrary. By
our choice of x0, we have

[x0 ⊥ z and x0⊥ x] or [z ⊥ x0 and x ⊥ x0].
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⊥-preserving of T implies that

[xn ⊥ z and xn⊥ Tn(x)] or [z ⊥ xn and Tn(x) ⊥ xn]

for all n ∈ N. Now, we show that the sequence {ρ(c(Tn(x) − xn))} converges
to zero. If for some m0, Tm0(x) = xm0 , then ρ(c(Tn(x) − xn)) = 0 for all
n ≥ m0. Now, let Tn(x) 
= xn for all n ∈ N. The Meir–Keeler condition
implies that the sequence {ρ(l(Tn(x)−xn))} is strictly decreasing. Using the
same argument of Step 1, we can get that limn→∞ ρ(c(Tn(x) − xn)) = 0.
Now, for all n ∈ N we obtain that

ρ

(
c

2
(Tn(x) − z)

)
≤ ρ(c(Tn(x) − xn)) + ρ(c(xn − z)).

As n → ∞, since ρ(αx) is an increasing function of α and also ρ satisfies the
Δ2-condition then Tn(x)

ρ→ z.
Finally, to prove the uniqueness of fixed point, let x∗ ∈ B be a fixed

point of T . Then, Tn(x∗) = x∗ for all n ∈ N. It follows from T is a Picard
operator that x∗ = z. �

Corollary 3.6. Let (X, ρ) be a ρ-complete modular space and ρ-satisfies Δ2-
condition. Suppose that B is a ρ-closed subset of Xρ and there exist c, l ∈
(0,∞) with c > l. Assume that T : B → B be an operator such that:

For every ε > 0, there exists δ > 0 such that for x, y ∈ B,

ε ≤ ρ(l(x − y)) < ε + δ(ε) ⇒ ρ(c(Tx − Ty)) < ε. (3.3)

Then, T admits a unique fixed point z ∈ B and for any x ∈ B, the sequence
{Tn(x)} is ρ-convergent to z.

Proof. For all x, y ∈ B define x⊥y iff ρ(l(Tx−Ty)) ≤ ρ(l(x− y)). It is clear
that for all x, y ∈ B, x⊥y. So (B,⊥) is an O-set. Since Xρ is ρ-complete and
B is ρ-closed, then B is an SO-ρ-closed subset of Xρ. Also, the definition ⊥
and condition (3.3) imply that T is ⊥-preserving, SO-ρ-continuous, and the
Meir–Keeler condition holds. Therefore by applying Theorem 3.5, we can see
the results.

Now, we show that our main theorem is a real generalization of Corollary
3.6.

Example 3.7. Let

X = {{xn} ⊂ R; ∃n1, n2, . . . , nk; ∀n 
= n1, n2, . . . , nk, xn = 0}
and ρ is the norm ρ(x) =

∑∞
n=1 |xn|, where x = {xn} ∈ X. Note that (X, ρ) is

not ρ-complete because, An = {1, 1
2 , . . . , 1

2n , 0, 0, 0, . . .}, n ∈ N, is a sequence
in X where limit of {An} is not belong to X. For x, y ∈ X, define

x⊥y ⇔ ∃α ∈ {0, 1} such that x = αy or y = αx.

We claim that X is SO-ρ-complete. Take a ρ-Cauchy SO-sequence {An} in
X. If for all n ∈ N, An = 0, then {An} ρ-converges to A = 0 ∈ X. Assume
there exists n0 ∈ N which An0 
= 0. Without loss of generality, A1 
= 0. For
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every n ∈ N, the definition of ⊥ follows that An = αnA1, where αn = 0 or 1.
Since {An} is ρ-Cauchy sequence. Hence,

|αn − αm|ρ(A1) = ρ(αnA1 − αmA1) = ρ(An − Am) → 0 as n → ∞.

This shows that {αn} is Cauchy in R. Let limn→∞ αn = α. Obviously, α =
0 or 1. Let A = αA1. It is clear that A ∈ X. Also

ρ(An − A) = ρ(αnA1 − αA1) = (αn − α)ρ(A1) → 0 as n → ∞.

Thus, {An} is ρ-convergent to A ∈ X and, hence, X is SO-ρ-complete.
Define a mapping T : X → X by the formulate:

Tx =

{
{xi

4 }, if 0 ≤ ρ(x) ≤ 1
4 ,

{ 1
12 , 0, 0, . . .}, if ρ(x) > 1

4 .

First, observe that if x⊥y, then x = 0 or y = 0 or x = y, and so Tx = 0
or Ty = 0 or Tx = Ty. In each case, Tx⊥Ty. Thus, T is ⊥-preserving. By
the first of the example, we can prove that T is SO-ρ-continuous. Below we
show that T satisfies the Meir–Keeler condition for c = 2 and l = 1. Define
φ : [0,∞) → [0,∞) as:

φ(t) =

⎧⎪⎨
⎪⎩

2
3 t, if 0 ≤ t ≤ 3

4 ,

2t − 1, if 3
4 < t ≤ 1,

1, if 1 ≤ t < ∞.

Indeed, φ is a L-function, that is, φ(0) = 0, φ(s) > 0 for s > 0 and for
every s > 0 there exists u > s such that φ(t) < s for t ∈ [s, u]. Claim for all
x, y ∈ X with x 
= y and x⊥y,

ρ
(
2(Tx − Ty)

)
< φ(ρ(x − y)). (3.4)

For any x, y ∈ X with x 
= y and x⊥y, the following cases are hold:

Case 1 0 ≤ ρ(x − y) ≤ 3
4 , x = 0, ρ(y) ≤ 1

4 , (or y = 0, ρ(x) ≤ 1
4 ). Then

ρ
(
2(Tx − Ty)

)
= 2ρ(Ty) =

ρ(y)
2

=
ρ(x − y)

2
<

2
3
ρ(x − y) = φ(ρ(x − y)).

Case 2 0 ≤ ρ(x − y) ≤ 3
4 , ρ(x) ≤ 1

4 , ρ(y) > 1
4 . The definition of ⊥ implies

that x = 0. Hence

ρ
(
2(Tx − Ty)

)
=

1
6

<
2
3
ρ(y) =

2
3
ρ(x − y) = φ(ρ(x − y)).

Case 3 0 ≤ ρ(x − y) ≤ 3
4 , ρ(x), ρ(y) > 1

4 . In this case

ρ
(
2(Tx − Ty)

)
= 0 <

2
3
ρ(x − y) = φ(ρ(x − y)).

Case 4 3
4 < ρ(x − y) ≤ 1, ρ(x) ≤ 1

4 , ρ(y) > 1
4 . Then, x = 0 and

ρ
(
2(Tx − Ty)

)
=

1
6

< 2ρ(x − y) − 1 = φ(ρ(x − y)).

Case 5 3
4 < ρ(x − y) ≤ 1, ρ(x), ρ(y) > 1

4 . Obviously,

ρ
(
2(Tx − Ty)

)
= 0 < 2ρ(x − y) − 1 = φ(ρ(x − y)).
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Case 6 ρ(x − y) ≥ 1, ρ(x) ≤ 1
4 , ρ(y) > 1

4 . Then

ρ
(
2(Tx − Ty)

)
=

1
6

< 1 = φ(ρ(x − y)).

Case 7 ρ(x − y) > 1 and ρ(x), ρ(y) > 1
4 . Obviously,

ρ
(
2(Tx − Ty)

)
= 0 < φ(ρ(x − y)).

In each above case, ρ
(
2(Tx−Ty)

)
< φ(ρ(x−y)). Therefore, (3.4) holds.

Let ε > 0 be given. Since φ is L-function, there exists δ(ε) > 0 such that for
all t ∈ [ε, ε + δ(ε)], φ(t) ≤ ε. So if x⊥y, x 
= y and ε ≤ ρ(x − y) < ε + δ(ε),
then ρ

(
2(Tx − Ty)

)
< φ(ρ(x − y)) ≤ ε. This implies Meir–Keeler condition.

The existence of unique fixed point of T implies Theorem 3.5.
Notice that the Meir–Keeler condition is not hold for all x, y ∈ X. For

example, let x = { 1
4 , 0, 0, . . .} and y = { 1

4 + 1
100 , 0, 0, . . .}. We have ρ(x−y) =

1
100 ≤ 2

3 and ρ
(
2(Tx − Ty)

)
= 1

12 > 1
150 = 2

3ρ(x − y) = φ(ρ(x − y)).

4. Application

In this section, the existence and uniqueness of a solution to the integral equa-
tions in Musielak–Orlicz spaces are studied. Consider the following integral
equation:

u(t) =
∫ t

o

es−t

(∫ b

0

e−ξg(s, ξ, u(ξ)) dξ

)
ds, (4.1)

where ρ is a convex modular on Lϕ, satisfying the Δ2-condition and B is
a convex, ρ-closed, ρ-bounded subset of Lϕ and 0 ∈ B. Let b > 0, g be a
function from [0, b] × [0, b] × B into B, γ : [0, b] × [0, b] × [0, b] → R

+ be
measurable functions for which:

(H1) (i): g(t, ., x) : s → g(t, s, x) is a measurable function for every
x ∈ B and for almost all t ∈ [0, b]. (ii): g(t, s, .) : x → g(t, s, x) is ρ-continuous
on B for almost t, s ∈ [0, b].

(H2) (i): g(t, s, x) ≥ 0 for all x ≥ 0 and for almost t, s ∈ [0, b]. (ii)
g(t, s, x)g(t′, r, y) ≥ g(t, t′, xy) for each x, y ∈ B with xy ≥ 0 and for almost
t, t′, s, r ∈ [0, b].

(H3) There exists λ > 0 such that ρ(g(t, s, x) − g(t, s, y)) ≤ λρ(x − y)
for all (t, s, x), (t, s, y) ∈ [0, b] × [0, b] × B with xy ≥ 0.

(H4) ρ(g(t, s, x)−g(τ, s, x)) ≤ γ(t, τ, s) for all (t, s, x), (τ, s, x) ∈ [0, b]×
[0, b] × B and
limt→∞

∫ b

0
γ(t, τ, s) ds = 0 uniformly for τ ∈ [0, b].

We denote by D = C([0, b], B) the space of all ρ-continuous func-
tion from [0, b] into B, endowed with the modular ρa defined by ρa(u) =
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supt∈[0,b] e
−atρ(u(t)), where a ≥ 0. By ([7], Prop. 2.1), D is a convex, ρa-

bounded, ρa-closed subset of ρa-complete space C([0, b], Lϕ). Define the op-
erators T and S on D by

Tu(t) =
∫ b

0

e−sg(t, s, u(s)) ds

Su(t) =
∫ t

0

es−tTu(s) ds.

Note that the fixed points of S are the solutions of (4.1). By ([15], Prop. 3.3),
D is invariant under the operators T and S.

Theorem 4.1. Under mention conditions, for all b > 0 the integral equation
(4.1) has a unique solution in D.

Proof. We consider the following orthogonal relation in D:

u⊥v ⇔ ∀t, s ∈ [0, b], u(t) v(s) ≥ 0.

Since D is a ρa-closed subset of ρa-complete modular space C([0, b], Lϕ),
then D is an SO-ρ-closed subset of SO-ρ-complete orthogonal modular space
C([0, b], Lϕ). To complete the proof, we need the following steps:

Step 1: S is ⊥-preserving. In fact, for each u, v ∈ D with u⊥v, by hypothesis
(H2)(i) and (H2)(ii), we obtain

Tu(t) Tv(t′) =
∫ b

0

e−sg(t, s, u(s)) ds

∫ b

0

e−rg(t′, r, v(r)) dr

=
∫ b

0

∫ b

0

e−(s+r)g(t, s, u(s))g(t′, r, v(r)) dr ds

≥
∫ b

0

∫ b

0

e−(s+r)g(t, t′, u(s)v(r)) dr ds u(s)v(r) ≥ 0

≥ 0

for each t, t′ ∈ [0, b]. So Tu⊥Tv. Definition of S implies that Su⊥Sv.

Step 2: We show that S is ρa-Lipschitz on ⊥-comparable elements. Let K =
{s0, s1, . . . , sm} be a subdivision of [0, b]. Then,

∑m−1
i=0 (si+1 − si)e−six(si) is

‖.‖-convergent and, consequently, ρ-convergent to
∫ b

0
e−sx(s)ds in Lϕ when

|K| = sup{|si+1 − si|; i = 0, 1, . . . ,m − 1} → 0 as m → ∞. Let u⊥v, then

∫ b

0

e−sg
(
t, s, u(s)) − g(t, s, v(s)

)
ds = lim

m→∞

m−1∑
i=0

(si+1 − si)e−si

(
g(t, si, u(si) − g(t, si, v(si))

)
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and
∑m−1

i=0 (si+1 − si)e−si ≤ ∫ b

0
e−sds = 1 − e−b < 1, by Fatou property and

condition (H3)

ρ(Tu(t) − Tv(t)) ≤ lim inf
m−1∑
i=0

(si+1 − si)e−siρ
(
g(t, si, u(si)) − g(t, si, v(si))

)

≤ λ lim inf
m−1∑
i=0

(si+1 − si)e−siρ(u(si) − v(si))

≤ λ lim inf
m−1∑
i=0

(si+1 − si)easiρa(u − v).

Therefore,

e−atρ(Tu(t) − Tv(t)) ≤ λe−at

(∫ b

0

easds

)
ρa(u − v)

≤ λ
eab − 1

a
ρa(u − v).

Hence,

ρa(Tu − Tv) ≤ λ
eab − 1

a
ρa(u − v).

Definition of S implies that
ρa(Su − Sv) ≤ R ρa(u − v).

where R = λ
a(a+1) (1 − e−(a+1)b)(eab − 1).

Step 3: S is SO-ρ-continuous. To see this, let {un} ⊂ D be an SO-sequence in
D converging to u ∈ D. By the definition of orthogonality, uk(t)un+k(t′) ≥ 0
for all n, k ∈ N and t, t′ ∈ [0, b]. By Δ2-condition of ρ we have uk(t)u(t′) ≥ 0
for all k ∈ N and t, t′ ∈ [0, b]. This implies that uk⊥u for all k ∈ N. By
applying Step 2, we have

ρa(Sun − Su) ≤ R ρa(un − u).

This implies the SO-ρ-continuity of S.

Step 4: S satisfies the Meir–Keeler condition for c = 2 and l = 1. Indeed,
define

δ(ε) = inf{ρa(u − v); ρa(2(Su − Sv)) ≥ ε and u⊥v}.

Let 0 < R < 1 and ε > 0 be given. If u⊥v and ρa(2(Su − Sv)) ≥ ε, by Step
2, we get ρa(u − v) ≥ R−1ε. So δ(ε) ≥ R−1ε > ε. Using the same argument
of ([16], Theorem 1), we get that S satisfies Meir–Keeler condition.

In the end, by Theorem 3.5, S has a unique fixed point which is a
solution of the integral equation (4.1). �
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