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1. Introduction and preliminaries

Set-valued functions in Banach spaces have been developed in the past deca-
des. The pioneering papers by Aumann [5] and Debreu [12] were inspired by
problems arising in Control Theory and Mathematical Economics. We can
refer to the papers by Arrow and Debreu [3], McKenzie [28], the monographs
by Hindenbrand [19], Aubin and Frankowska [4], Castaing and Valadier [8],
Klein and Thompson [25] and the survey by Hess [18].

The stability problem of functional equations originated from a ques-
tion of Ulam [48] concerning the stability of group homomorphisms. Hyers
[20] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings
and by Rassias [44] for linear mappings by considering an unbounded Cauchy
difference. A generalization of the Rassias theorem was obtained by Găvruta
[17] by replacing the unbounded Cauchy difference by a general control func-
tion in the spirit of Rassias’ approach

In [24], Jun and Kim considered the following cubic functional equation:

f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 12f(x). (1.1)

It is easy to show that the function f(x) = x3 satisfies the functional
equation (1.1), which is called a cubic functional equation, and every solution
of the cubic functional equation is said to be a cubic mapping.
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In [27], Lee et al. considered the following quartic functional equation:

f(2x + y) + f(2x − y) = 4f(x + y) + 4f(x − y) + 24f(x) − 6f(y). (1.2)

It is easy to show that the function f(x) = x4 satisfies the functional
equation (1.2), which is called a quartic functional equation and every so-
lution of the quartic functional equation is said to be a quartic mapping.
The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results
concerning this problem (see [1,16,17,21,22,41–43,45–47]).

Let X be a set. A function d : X × X → [0,∞] is called a generalized
metric on X if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Let (X, d) be a generalized metric space. An operator T : X → X satisfies a
Lipschitz condition with Lipschitz constant L if there exists a constant L ≥ 0
such that d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X. If the Lipschitz constant L is
less than 1, then the operator T is called a strictly contractive operator. Note
that the distinction between the generalized metric and the usual metric is
that the range of the former is permitted to include the infinity. We recall
the following theorem by Margolis and Diaz:

Theorem 1.1. [9,13] Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with Lipschitz constant L < 1.
Then for each given element x ∈ X, either

d(Jnx, Jn+1x) = ∞
for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set S = {y ∈ X | d(Jn0x, y) <

∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ S.

In 1996, Isac and Rassias [23] were the first to provide applications of
stability theory of functional equations for the proof of new fixed point theo-
rems with applications. By using fixed point methods, the stability problems
of several functional equations have been extensively investigated by a num-
ber of authors (see [10,11,14,15,30,31,36,37,40]).

Let Y be a Banach space. We define the following:

2Y : the set of all subsets of Y ;
Cb(Y ) : the set of all closed bounded subsets of Y ;
Cc(Y ) : the set of all closed convex subsets of Y ;
Ccb(Y ) : the set of all closed convex bounded subsets of Y .
On 2Y we consider the addition and the scalar multiplication as follows:
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C + C ′ = {x + x′ : x ∈ C, x′ ∈ C ′}, λC = {λx : x ∈ C},

where C,C ′ ∈ 2Y and λ ∈ R. Further, if C,C ′ ∈ Cc(Y ), then we denote by
C ⊕ C ′ = C + C ′.

It is easy to check that

λC + λC ′ = λ(C + C ′), (λ + μ)C ⊆ λC + μC.

Furthermore, when C is convex, we obtain (λ + μ)C = λC + μC for all
λ, μ ∈ R

+.
For a given set C ∈ 2Y , the distance function d(·, C) and the support

function s(·, C) are, respectively, defined by

d(x,C) = inf{‖x − y‖ : y ∈ C}, x ∈ Y,

s(x∗, C) = sup{〈x∗, x〉 : x ∈ C}, x∗ ∈ Y ∗.

For every pair C,C ′ ∈ Cb(Y ), we define the Hausdorff distance between C
and C ′ by

h(C,C ′) = inf{λ > 0 : C ⊆ C ′ + λBY , C ′ ⊆ C + λBY },

where BY is the closed unit ball in Y .
The following proposition reveals some properties of the Hausdorff dis-

tance:

Proposition 1.2. For every C,C ′,K,K ′ ∈ Ccb(Y ) and λ > 0, the following
properties hold:
(a) h(C ⊕ C ′,K ⊕ K ′) ≤ h(C,K) + h(C ′,K ′);
(b) h(λC, λK) = λh(C,K).

Let (Ccb(Y ),⊕, h) be endowed with the Hausdorff distance h. Since Y
is a Banach space, (Ccb(Y ),⊕, h) is a complete metric semigroup (see [8]).
Debreu [12] proved that (Ccb(Y ),⊕, h) is isometrically embedded in a Banach
space as follows;

Lemma 1.3. [12] Let C(BY ∗) be the Banach space of continuous real-valued
functions on BY ∗ endowed with the uniform norm ‖ · ‖u. Then the mapping
j : (Ccb(Y ),⊕, h) → C(BY ∗), given by j(A) = s(·, A), satisfies the following
properties:
(a) j(A ⊕ B) = j(A) + j(B);
(b) j(λA) = λj(A);
(c) h(A,B) = ‖j(A) − j(B)‖u;
(d) j(Ccb(Y )) is closed in C(BY ∗)
for all A,B ∈ Ccb(Y ) and all λ ≥ 0.

Let f : Ω → (Ccb(Y ), h) be a set-valued function from a complete finite
measure space (Ω,Σ, ν) into Ccb(Y ). Then f is Debreu integrable if the com-
position j ◦f is Bochner integrable (see [7]). In this case, the Debreu integral
of f in Ω is the unique element (D)

∫
Ω

fdν ∈ Ccb(Y ) such that j((D)
∫
Ω

fdν)
is the Bochner integral of j ◦f . The set of Debreu integrable functions from Ω
to Ccb(Y ) will be denoted by D(Ω, Ccb(Y )). Furthermore, on D(Ω, Ccb(Y )),
we define (f + g)(ω) = f(ω) ⊕ g(ω) for all f, g ∈ D(Ω, Ccb(Y )). Then we
obtain that ((Ω, Ccb(Y )),+) is an abelian semigroup.
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Set-valued functional equations have been extensively investigated by
a number of authors and there are many interesting results concerning this
problem (see [6,32–35,38,39]).

Using the fixed point method, we prove the Hyers–Ulam stability of the
following additive set-valued functional equations:

F (2x + y) ⊕ F (2x − y) = 2F (x + y) ⊕ 2F (x − y) ⊕ 12F (x)

and

F (2x + y) ⊕ F (2x − y) ⊕ 6F (y) = 4F (x + y) ⊕ 4F (x − y) ⊕ 24F (x).

Throughout this paper, let X be a real normed space and Y a real Banach
space.

2. Stability of the set-valued cubic functional equation

Using the fixed point method, we prove the Hyers–Ulam stability of the set-
valued cubic functional equation:

Definition 2.1. [26] Let F : X → Ccb(Y ). The set-valued cubic functional
equation is defined by

F (2x + y) ⊕ F (2x − y) = 2F (x + y) ⊕ 2F (x − y) ⊕ 12F (x)

for all x, y ∈ X. Every solution of the set-valued cubic functional equation is
called a set-valued cubic mapping.

Theorem 2.2. Let ϕ : X2 → [0,∞) be a function such that there exists an
L < 1 with

ϕ(x, y) ≤ L

8
ϕ (2x, 2y) (2.1)

for all x, y ∈ X. If F : X → (Ccb(Y ), h) is a mapping satisfying

h(F (2x + y) ⊕ F (2x − y), 2F (x + y) ⊕ 2F (x − y) ⊕ 12F (x)) ≤ ϕ(x, y) (2.2)

for all x, y ∈ X, then there exists a unique set-valued cubic mapping C : X →
(Ccb(Y ), h) such that

h(F (x), C(x)) ≤ L

16 − 16L
ϕ(x, 0) (2.3)

for all x ∈ X.
Moreover, if r and M are positive real numbers with r > 3 and

diam F (x) ≤ M‖x‖r for all x ∈ X, then C is single-valued.

Proof. Letting x = y = 0 in (2.1), we get ϕ(0, 0) ≤ L
8 ϕ(0, 0) and so ϕ(0, 0) =

0.
Letting x = y = 0 in (2.2),

h(F (0) ⊕ F (0), 2F (0) ⊕ 2F (0) ⊕ 12F (0)) ≤ ϕ(0, 0) = 0

and so F (0) = {0}.
Let y = 0 in (2.2). Since F (x) is convex, we get

h(2F (2x), 16F (x)) ≤ ϕ(x, 0) (2.4)
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and so

h
(
F (x), 8F

(x

2

))
≤ 1

2
ϕ

(x

2
, 0

)
≤ L

16
ϕ (x, 0) (2.5)

for all x ∈ X.
Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}
and introduce the generalized metric on S,

d(g, f) = inf{μ ∈ (0,∞) : h(g(x), f(x)) ≤ μϕ(x, 0), x ∈ X},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see
[15, Theorem 2.4] and [29, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x

2

)

for all x ∈ X.
Let g, f ∈ S be given such that d(g, f) = ε. Then

h(g(x), f(x)) ≤ εϕ(x, 0)

for all x ∈ X. Hence

h(Jg(x), Jf(x)) = h
(
8g

(x

2

)
, 8f

(x

2

))
= 8h

(
g

(x

2

)
, f

(x

2

))

≤ εLϕ(x, 0)

for all x ∈ X. So d(g, f) = ε implies that d(Jg, Jf) ≤ Lε. This means that

d(Jg, Jf) ≤ Ld(g, f)

for all g, f ∈ S.
It follows from (2.5) that d(F, JF ) ≤ L

16 .
By Theorem 1.1, there exists a mapping C : X → Y satisfying the

following:
(1) C is a fixed point of J , i.e.,

C
(x

2

)
=

1
8
C(x) (2.6)

for all x ∈ X. The mapping C is a unique fixed point of J in the set

K = {g ∈ S : d(F, g) < ∞}.

This implies that C is a unique mapping satisfying (2.6) such that there
exists a μ ∈ (0,∞) satisfying

h(F (x), C(x)) ≤ μϕ(x, 0)

for all x ∈ X;
(2) d(JnF,C) → 0 as n → ∞. This implies the equality

lim
n→∞ 8nF

( x

2n
)

= C(x)

for all x ∈ X;
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(3) d(F,C) ≤ 1
1−Ld(F, JF ), which implies the inequality

d(F,C) ≤ L

16 − 16L
.

This implies that the inequality (2.3) holds.

It follows from (2.2) that

h(C(2x + y) ⊕ C(2x − y), 2C(x + y) ⊕ 2C(x − y) ⊕ 12C(x))

= lim
n→∞

[

8nh

(

F

(
2x + y

2n

)

⊕ F

(
2x − y

2n

)

,

× F

(
x + y

2n

)

⊕ F

(
x − y

2n

)

⊕ 12F
( x

2n
))]

≤ lim
n→∞

[
8nϕ

( x

2n
,

y

2n
)]

= 0

for all x, y ∈ X. Thus

C(2x + y) ⊕ C(2x − y) = 2C(x + y) ⊕ 2C(x − y) ⊕ 12C(x)

for all x, y ∈ X.
If r and M are positive real numbers with r > 3 and diam F (x) ≤

M‖x‖r for all x ∈ X, then diam
(
8nF

(
x
2n

)) ≤ 8n

2rn M‖x‖r for all x ∈ X and
so C(x) = limn→∞

[
8nF

(
x
2n

)]
is a singleton set. �

Corollary 2.3. Let p > 3 and θ ≥ 0 be real numbers, and let X be a real
normed space. If F : X → (Ccb(Y ), h) is a mapping satisfying

h(F (2x + y) ⊕ F (2x − y), 2F (x + y) ⊕ 2F (x − y) ⊕ 12F (x))
≤ θ(||x||p + ||y||p) (2.7)

for all x, y ∈ X, then there exists a unique set-valued cubic mapping C : X →
Y satisfying

h(F (x), C(x)) ≤ θ

2(2p − 8)
||x||p

for all x ∈ X.
Moreover, if r and M are positive real numbers with r > 3 and

diam F (x) ≤ M‖x‖r for all x ∈ X, then C is single-valued.

Proof. The proof follows from Theorem 2.2 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)
for all x, y ∈ X. Then we can choose L = 23−p and we get the desired results.

�

Theorem 2.4. Let ϕ : X2 → [0,∞) be a function such that there exists an
L < 1 with

ϕ(x, y) ≤ 8Lϕ
(x

2
,
y

2

)
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for all x, y ∈ X. If F : X → (Ccb(Y ), h) is a mapping satisfying F (0) = {0}
and (2.2), then there exists a unique set-valued cubic mapping C : X →
(Ccb(Y ), h) such that

h(F (x), C(x)) ≤ 1
16 − 16L

ϕ(x, 0)

for all x ∈ X.
Moreover, if r and M are positive real numbers with r < 3 and

diam F (x) ≤ M‖x‖r for all x ∈ X, then C is single-valued.

Proof. It follows from (2.4) that

h

(

F (x),
1
8
F (2x)

)

≤ 1
16

ϕ (x, 0)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let 3 > p > 0 and θ ≥ 0 be real numbers, and let X be a real
normed space. If F : X → (Ccb(Y ), h) is a mapping satisfying F (0) = {0}
and (2.7), then there exists a unique set-valued cubic mapping C : X → Y
satisfying

h(F (x), C(x)) ≤ θ

2(8 − 2p)
||x||p

for all x ∈ X.
Moreover, if r and M are positive real numbers with r < 3 and

diam F (x) ≤ M‖x‖r for all x ∈ X, then C is single-valued.

Proof. The proof follows from Theorem 2.4 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)
for all x, y ∈ X. Then we can choose L = 2p−3 and we get the desired result.

�

3. Stability of the set-valued quartic functional equation

Using the fixed point method, we prove the Hyers-Ulam stability of the set-
valued quartic functional equation.

Definition 3.1. [26] Let F : X → Ccb(Y ). The set-valued quartic functional
equation is defined by

F (2x + y) ⊕ F (2x − y) ⊕ 6F (y) = 4F (x + y) ⊕ 4F (x − y) ⊕ 24F (x)

for all x, y ∈ X. Every solution of the set-valued quartic functional equation
is called a set-valued quartic mapping.

Theorem 3.2. Let ϕ : X2 → [0,∞) be a function such that there exists an
L < 1 with

ϕ(x, y) ≤ L

16
ϕ (2x, 2y) (3.1)
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for all x, y ∈ X. If F : X → (Ccb(Y ), h) is a mapping satisfying

h (F (2x + y) ⊕ F (2x − y) ⊕ 6F (y), 4F (x + y) ⊕ 4F (x − y) ⊕ 24F (x))
≤ ϕ(x, y) (3.2)

for all x, y ∈ X, then there exists a unique set-valued quartic mapping Q :
X → (Ccb(Y ), h) such that

h(F (x), Q(x)) ≤ L

32 − 32L
ϕ(x, 0)

for all x ∈ X. Moreover, if r and M are positive real numbers with r > 4 and
diam F (x) ≤ M‖x‖r for all x ∈ X, then Q is single-valued.

Proof. Letting x=y=0 in (3.1), we get ϕ(0, 0) ≤ L
16ϕ(0, 0) and so ϕ(0, 0)=0.

Letting x = y = 0 in (3.2),

h(F (0) ⊕ F (0) ⊕ 6F (0), 4F (0 ⊕ 4F (0) ⊕ 24F (0)) ≤ ϕ(0, 0) = 0

and so F (0) = {0}.
Let y = 0 in (3.2). Since F (x) is convex, we get

h(2F (2x), 32F (x)) ≤ ϕ(x, 0) (3.3)

and so

h
(
F (x), 16F

(x

2

))
≤ 1

2
ϕ

(x

2
, 0

)
≤ L

32
ϕ (x, 0) (3.4)

for all x ∈ X.
Consider

S := {g : g : X → Ccb(Y ), g(0) = {0}}
and introduce the generalized metric on S,

d(g, f) = inf{μ ∈ (0,∞) : h(g(x), f(x)) ≤ μϕ(x, 0), x ∈ X},

where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete (see
[15, Theorem 2.4] and [29, Lemma 2.1]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 16g
(x

2

)

for all x ∈ X.
It follows from (3.4) that d(F, JF ) ≤ L

32 .
The rest of the proof is similar to the Proof of Theorem 2.2. �

Corollary 3.3. Let p > 4 and θ ≥ 0 be real numbers, and let X be a real
normed space. If F : X → (Ccb(Y ), h) is a mapping satisfying

h (F (2x + y) ⊕ F (2x − y) ⊕ 6F (y), 4F (x + y) ⊕ 4F (x − y) ⊕ 24F (x))
≤ θ(||x||p + ||y||p) (3.5)

for all x, y ∈ X, then there exists a unique set-valued quartic mapping Q :
X → Y satisfying

h(F (x), Q(x)) ≤ θ

2(2p − 16)
||x||p

for all x ∈ X.
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Moreover, if r and M are positive real numbers with r > 4 and
diam F (x) ≤ M‖x‖r for all x ∈ X, then Q is single-valued.

Proof. The proof follows from Theorem 3.2 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)
for all x, y ∈ X.

Then we can choose L = 24−p and we get the desired result. �

Theorem 3.4. Let ϕ : X2 → [0,∞) be a function such that there exists an
L < 1 with

ϕ(x, y) ≤ 16Lϕ
(x

2
,
y

2

)

for all x, y ∈ X. If F : X → (Ccb(Y ), h) is a mapping satisfying F (0) = {0}
and (3.2), then there exists a unique set-valued quartic mapping Q : X →
(Ccb(Y ), h) such that

h(F (x), Q(x)) ≤ 1
32 − 32L

ϕ(x, 0)

for all x ∈ X.
Moreover, if r and M are positive real numbers with r < 4 and

diam F (x) ≤ M‖x‖r for all x ∈ X, then Q is single-valued.

Proof. It follows from (3.3) that

h

(

F (x),
1
16

F (2x)
)

≤ 1
32

ϕ (x, 0)

for all x ∈ X.
The rest of the proof is similar to the proofs of Theorems 2.2 and 3.2.

�

Corollary 3.5. Let 0 < p < 4 and θ ≥ 0 be real numbers, and let X be a real
normed space. If F : X → (Ccb(Y ), h) is a mapping satisfying F (0) = {0}
and (3.5), then there exists a unique set-valued quartic mapping Q : X → Y
satisfying

h(F (x), Q(x)) ≤ θ

2(16 − 2p)
||x||p

for all x ∈ X.
Moreover, if r and M are positive real numbers with r < 4 and

diam F (x) ≤ M‖x‖r for all x ∈ X, then Q is single-valued.

Proof. The proof follows from Theorem 3.4 by taking

ϕ(x, y) := θ(‖x‖p + ‖y‖p)
for all x, y ∈ X. Then we can choose L = 2p−4 and we get the desired result.

�
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