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1. Introduction

Let (X, ‖ · ‖) be a Banach space. Consider the following problem:

Dα
0 u(t) ∈ Au(t) + F (t, u(t), ut), t > 0, t �= tk, k ∈ Λ, (1.1)

Δu(tk) = Ik(u(tk)), (1.2)

u(s) = ϕ(s), s ∈ [−h, 0], (1.3)

where Dα
0 , α ∈ (0, 1), is the fractional derivative in the Caputo sense, A is a

closed linear operator in X which generates a strongly continuous semigroup
W (·), F : R+ × X × C([−h, 0];X) → P(X) is a multi-valued map, Δu(tk) =
u(t+k ) − u(t−k ), k ∈ Λ ⊂ N, Ik and g are the functions which will be specified
in Sect. 3. Here, ut stands for the history of the state function up to the time
t, i.e., ut(s) = u(t + s), s ∈ [−h, 0].

The system (1.1)–(1.3) is a generalized Cauchy problem which involves
impulsive effect expressed by (1.2). It should be mentioned that the multi-
valued nonlinearity in (1.1) appears frequently in control theory, where con-
trol factor is taken in the form of multi-valued feedback (see, e.g., [9]) and the
delay term is concerned as an inherence in control problems. On the other
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hand, the impulsive condition (1.3) is employed to describe processes subject
to abrupt changes happening in biology, mechanics, electrical engineering,
etc. A systematic study on impulsive differential equations can be found in
[18,20].

In the last decade, there have been extensive studies devoted to partic-
ular cases of our problem in the literature. We refer to some typical results
on existence and properties of solution set presented in [4,21–23], in which
the solvability on compact intervals and the structure of solution set like Rδ-
set were proved. Regarding related control problems, it should be mentioned
the results on controllability given in [13–17,24,25,29], where the fixed point
approach was employed as a fruitful method. More results on solvability and
controllability can be found in the reference quoted in these works.

One of the most important questions associated with problem (1.1)–
(1.3) is to analyze the stability of its solutions. Unfortunately, the results
on this direction are less known. In [11], we proved a stability result for
(1.1)–(1.3) in the case when F is single valued and Lipschitzian. However,
the technique used in [11] does not work when F is a multi-valued map.
Moreover, the classical concept of stability due to Lyapunov is inappropriate
for applying to multi-valued cases. Therefore, we adopt the following concept
of weakly asymptotic stability of zero solution to inclusion (1.1): Let Σ(ϕ)
be the solution set of (1.1)–(1.3) with respect to the initial datum ϕ such
that 0 ∈ Σ(0). The zero solution of (1.1) is said to be weakly asymptotically
stable if it is

(1) stable: for every ε > 0, there exists δ > 0 such that if ‖ϕ‖h < δ then
‖ut‖h < ε for any u ∈ Σ(ϕ), here ‖·‖h denotes the norm in C([−h, 0];X);

(2) weakly attractive: for any ϕ ∈ B, there exists u ∈ Σ(ϕ) satisfying
‖ut‖h → 0 as t → +∞.

It should be noted that this concept will coincide with the classical
one in the Lyapunov sense if the solution to the Cauchy problem is unique,
since the only difference is the weak attractivity. It requires that at least one
trajectory (rather than all trajectories) at each starting point approaches the
equilibrium point. So this concept is useful in the control theory and has a
relation to the viability theory (see, e.g., [1]).

Our main aim in this work is to prove, for the first time, the weakly
asymptotic stability of the zero solution to (1.1). To this end, we make use
of fixed point approach. More precisely, by constructing a new measure of
noncompactness (MNC), denoted by χ∗, on weighted spaces of piecewise con-
tinuous functions on the half-line, denoted by PC�, we are able to show that
the solution operator is χ∗-condensing, which implies the existence of expo-
nentially bounded solutions. Consequently, when the semigroup {etA}t≥0 is
exponentially stable, we obtain the weakly asymptotic stability as aforemen-
tioned. The features of our work include

• Constructing a new MNC on the space PC� in order to present a com-
pactness condition on this space.

• Analyzing the fixed point set of the solution operator associated with
(1.1)–(1.3) on PC� to derive an asymptotic estimate of solutions to
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(1.1)–(1.3). Based on this estimate, the weakly asymptotic stability will
be proved.

The rest of our work is as follows. In the next section, we introduce the
MNC χ∗ on PC� which can be used to characterize the compactness on this
space. We also give some estimates via MNCs which will be used in Sect. 3.
Section 3 is devoted to proving the solvability of (1.1)–(1.3) on PC�. In Sect.
4, the result on weakly asymptotic stability of the zero solution is derived
when the semigroup {etA}t≥0 is exponentially stable. The last section shows
an application of the obtained results to a lattice differential system.

2. Preliminaries

2.1. Measure of noncompactness and condensing operators

Let E be a Banach space. Denote

P(E) = {Y ⊂ E : Y �= ∅},
Pb(E) = {Y ∈ P(E) : Y is bounded},

Kv(E) = {Y ∈ P(E) : Y is compact and convex}.

We will use the following definition of measure of noncompactness (see [9]).

Definition 2.1. A function β : Pb(E) → R
+ is called a measure of noncom-

pactness (MNC) in E if

β(co Ω) = β(Ω) for every Ω ∈ Pb(E),

where co Ω is the closure of the convex hull of Ω. An MNC β is called
(i) monotone if Ω0,Ω1 ∈ Pb(E), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1);
(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for any a ∈ E ,Ω ∈ Pb(E);
(iii) invariant with respect to union with compact set if β(K ∪ Ω) = β(Ω)

for every relatively compact set K ⊂ E and Ω ∈ Pb(E);
(iv) algebraically semi-additive if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for any

Ω0,Ω1 ∈ Pb(E);
(v) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

An important example of MNC is the Hausdorff MNC χ(·), which is
defined as follows, for Ω ∈ Pb(E),

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}.

The Hausdorff MNC satisfies all properties stated in Definition 2.1. If T ∈
L(E), the space of bounded linear operators on X, we define the χ-norm of
T as follows:

‖T ‖χ = inf{η > 0 : χ(T (B)) ≤ η·χ(B), for all bounded set B ⊂ E}. (2.1)

It is clear that

χ (T (B)) ≤ ‖T ‖χ · χ(B), ∀B ⊂ E .

In addition, ‖T ‖χ ≤ ‖T ‖ and T is a compact operator iff ‖T ‖χ = 0.
Let E = PC(J ;X), the space of X-valued functions defined on J ⊂ R,

satisfying that, for every u ∈ PC(J ;X)
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• u is continuous on J \ {tk : k ∈ Λ};
• there exist u(t+k ) = limt→t+k

u(t) and u(t−k ) = limt→t−
k

u(t) such that
u(t−k ) = u(tk).

If J is a compact interval, PC(J ;X) with the norm

‖u‖PC = sup
t∈J

‖u(t)‖,

becomes a Banach space. Let χPC be the Hausdorff MNC in PC(J ;X), then
one knows that (see [8]), for any bounded set D ⊂ PC(J ;X),

• supt∈J χ(D(t)) ≤ χPC(D), where D(t) = {u(t) : d ∈ D};
• If D is equicontinuous on each interval (tk−1, tk] ⊂ J then χPC(D) =

supt∈J χ(D(t)).

In the case J is the half-line, i.e., J = [0,+∞), we consider the following
space:

PC� := PC�([0,+∞);X) = {u ∈ PC([0,+∞);X) : lim
t→+∞

u(t)

(t)

= 0},

where 
 : R+ → [1,+∞) is a continuous and nondecreasing function. We see
that PC�([0,+∞);X) with the norm

‖u‖� = sup
t≥0

‖u(t)‖

(t)

,

is a Banach space. In fact, we have no formulation of the Hausdorff MNC in
PC�. We will define a new MNC in this space, which is monotone, nonsingular
and regular. For u ∈ PC�, we denote by πT (u) the restriction of u to [0, T ],
i.e., πT (u) ∈ PC([0, T ];X). For D ⊂ PC�, put

χ∞(D) = sup
T>0

χPC(πT (D)), (2.2)

d∞(D) = lim
T→+∞

sup
u∈D

sup
t≥T

‖u(t)‖

(t)

, (2.3)

χ∗(D) = χ∞(D) + d∞(D). (2.4)

It is easily seen that χ∞(·) and d∞(·) are monotone and nonsingular MNCs,
so is χ∗(·). We will prove an important property of χ∗(·) in the next lemma.

Lemma 2.1. Let Ω ⊂ PC�([0,+∞);X) be a bounded set such that χ∗(Ω) = 0.
Then, Ω is relatively compact.

Proof. Let ε > 0. Since d∞(Ω) = 0, one can choose T > 0 such that
∥
∥
∥
∥

u(t)

(t)

∥
∥
∥
∥

<
ε

3
, ∀t ≥ T, ∀u ∈ Ω. (2.5)

Let {un} be a sequence in Ω. Then, χ∞({un})=0. This implies χPC(πT ({un}))
= 0, and hence {un|[0,T ]} has a convergent subsequence in PC([0, T ];X) (still
indexed by n). So there exists N(ε) ∈ N such that

sup
t∈[0,T ]

‖un(t) − um(t)‖ <
ε

3
, ∀n,m ≥ N(ε).
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Accordingly,

sup
t∈[0,T ]

∥
∥
∥
∥

un(t)

(t)

− um(t)

(t)

∥
∥
∥
∥

<
ε

3
, ∀n, m ≥ N(ε). (2.6)

Combining (2.5) and (2.6), one gets

‖un − um‖� = sup
t≥0

∥
∥
∥
∥

un(t)

(t)

− um(t)

(t)

∥
∥
∥
∥

≤ sup
t∈[0,T ]

∥
∥
∥
∥

un(t)

(t)

− um(t)

(t)

∥
∥
∥
∥

+ sup
t≥T

∥
∥
∥
∥

un(t)

(t)

− um(t)

(t)

∥
∥
∥
∥

≤ sup
t∈[0,T ]

∥
∥
∥
∥

un(t)

(t)

− um(t)

(t)

∥
∥
∥
∥

+ sup
t≥T

∥
∥
∥
∥

un(t)

(t)

∥
∥
∥
∥

+ sup
t≥T

∥
∥
∥
∥

um(t)

(t)

∥
∥
∥
∥

≤ ε

3
+

ε

3
+

ε

3
= ε,

for all n,m ≥ N(ε). Therefore, {un} is a Cauchy sequence in PC�([0,+∞);X).
The proof is complete. �

We now recall some notions of set-valued analysis and fixed point theory
for condensing multi-valued maps. Let Y be a metric space.

Definition 2.2. [9] A multi-valued map (multimap) F : Y → P(E) is said to
be:

(i) upper semicontinuous (u.s.c) if F−1(V ) := {y ∈ Y : F(y) ∩ V �= ∅} is a
closed subset of Y for every closed set V ⊂ E ;

(ii) closed if its graph ΓF := {(y, z) : z ∈ F(y)} is a closed subset of Y × E .

Definition 2.3. A multimap F : Z ⊆ E → P(E) is said to be condensing
with respect to an MNC β (β-condensing) if for any bounded set Ω ⊂ Z, the
inequality

β(Ω) ≤ β(F(Ω))

implies the relative compactness of Ω.

Let β be a monotone nonsingular MNC in E . We recall a fixed point
principle for condensing multi-valued maps (see, e.g., [9]), which is the main
tool for our purpose.

Theorem 2.2. [9, Corollary 3.3.1] Let M be a bounded convex closed subset of
E and let F : M → Kv(M) be a closed and β-condensing multimap. Then,
Fix(F) := {x ∈ M : x ∈ F(x)} is nonempty.

2.2. Fractional calculus

Let Lp(0, T ;X), p ∈ (1,+∞) be the space of X-valued functions u defined on
[0, T ] such that the function t �→ ‖u(t)‖p is integrable. The integrals appeared
in this work will be understood in the Bochner sense. The notation Lp(0, T )
stands for Lp(0, T ;R). We now recall some notions in fractional calculus (see,
e.g., [10,27]).
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Definition 2.4. The fractional integral of order β > 0 of a function f ∈
L1(0, T ;X) is defined by

Iβ
0 f(t) =

1
Γ(α)

∫ t

0

(t − s)β−1f(s)ds,

where Γ is the Gamma function, provided the integral converges.

Definition 2.5. For a function f ∈ C1([0, T ];X), the Caputo fractional deriv-
ative of order α ∈ (0, 1) is defined by

Dα
0 f(t) =

1
Γ(1 − α)

∫ t

0

(t − s)−αf ′(s)ds.

Consider the following problem:

Dα
0 u(t) = Au(t) + f(t), t > 0, t �= tk ∈ (0,+∞), k ∈ Λ, (2.7)

Δu(tk) = Ik(u(tk)), (2.8)

u(s) = ϕ(s), s ∈ [−h, 0], (2.9)

where α ∈ (0, 1) and f ∈ Lp(0, T ;X). In this note, we assume that the
C0-semigroup W (·) generated by A is globally bounded, i.e.

‖W (t)x‖ ≤ MA‖x‖, ∀t ≥ 0, x ∈ X. (2.10)

for some MA ≥ 1. By the arguments in [11] and [28], we have the following
presentation:

u(t) = Sα(t)ϕ(0) +
∑

0<tk<t

Sα(t − tk)Ik(u(tk))

+
∫ t

0

(t − s)α−1Pα(t − s)f(s)ds, t > 0, (2.11)

where

Sα(t)x =
∫ ∞

0

φα(θ)W (tαθ)xdθ, (2.12)

Pα(t)x = α

∫ ∞

0

θφα(θ)W (tαθ)xdθ, x ∈ X, (2.13)

φα(θ) =
1
π

∞∑

n=1

(−θ)n−1

(n − 1)!
Γ(nα) sin(nπα).

Following [28], we have the following estimates:

‖Sα(t)x‖ ≤ MA‖x‖, (2.14)

‖Pα(t)x‖ ≤ MA

Γ(α)
‖x‖, ∀x ∈ X. (2.15)

Let Φ(t, s) be a family of bounded linear operators on X for t, s ∈ [0, T ], s ≤ t.
The following result was proved in [19, Lemma 1].

Proposition 2.3. Assume that Φ satisfies the following conditions:
(Φ1) there exists a function ρ ∈ Lq(0, T ), q > 1 such that ‖Φ(t, s)‖ ≤
ρ(t − s) for all t, s ∈ [0, T ], s ≤ t;
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(Φ2) ‖Φ(t, s) − Φ(r, s)‖ ≤ ε for 0 ≤ s ≤ r − ε, r < t = r + h ≤ T with
ε = ε(h) → 0 as h → 0.

Then, the operator S : Lq′
(0, T ;X) → C([0, T ];X) defined by

(Sg)(t) :=
∫ t

0

Φ(t, s)g(s)ds

sends any bounded set to an equicontinuous one, where q′ is the conjugate of
q, i.e., 1

q + 1
q′ = 1.

Let p > 1
α , we define a linear operator

Qα : Lp(0, T ;X) → C([0, T ];X),

Qα(f)(t) =
∫ t

0

(t − s)α−1Pα(t − s)f(s)ds. (2.16)

Before proving some properties of the operator Qα, we need the following
result.

Proposition 2.4. [12] Let D ⊂ L1(0, T ;X) be such that
(1) ‖f(t)‖ ≤ ν(t) for a.e. t ∈ [0, T ] and for all f ∈ D;
(2) χ(D(t)) ≤ μ(t) for a.e. t ∈ [0, T ],

where ν, μ ∈ L1(0, T ) are nonnegative functions. Then, we have

χ

(∫ t

0

D(s)ds

)

≤ 4
∫ t

0

χ(D(s))ds, t ∈ [0, T ],

here
∫ t

0

D(s)ds =
{∫ t

0

f(s)ds : f ∈ D

}

.

In what follows, with a sequence {zn} in a specific space, we use the
notation zn ⇀ z to indicate the weak convergence, and write zn → z if {zn}
converges strongly to z.

Definition 2.6. Let p ≥ 1. A sequence {fn} ⊂ Lp(0, T ;X) is said to be semi-
compact if there exist a function ν ∈ Lp(0, T ) and a family of compact set
K(t), t ∈ [0, T ], such that {fn(t)} ⊂ K(t) and ‖fn(t)‖ ≤ ν(t) for a.e. t ∈ [0, T ].

Proposition 2.5. Assume that the semigroup W (·) generated by A is norm-
continuous, i.e., the map (0,∞) � t �→ W (t) ∈ L(X) is continuous. Then
(1) For each bounded set Ω ⊂ Lp(0, T ;X), Qα(Ω) is an equicontinuous set

in C([0, T ];X). Moreover, we have the following estimate:

χPC(Qα(Ω)) ≤ 4 sup
t∈[0,T ]

∫ t

0

(t − s)α−1‖Pα(t − s)‖χ · χ(Ω(s))ds,

where ‖ · ‖χ is the χ-norm given by (2.1).
(2) If {fn} ⊂ Lp(0, T ;X), p > 1, is a semicompact sequence, then {Qα(fn)}

is relatively compact in C([0, T ];X). Moreover, if fn ⇀ f in Lp(0, T ;X),
then Qα(fn) → Qα(f) in C([0, T ];X).
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Proof. (1) Since W (·) is norm-continuous, so is Pα(·) (see, e.g., [26]). Then,
we deduce that Φ(t, s) = (t − s)α−1Pα(t − s) satisfies (Φ1) − (Φ2) in
Proposition 2.3, which ensures the equicontinuity of Qα(Ω). Hence

χPC(Qα(Ω)) = sup
t∈[0,T ]

χ(Qα(Ω)(t)).

In view of Proposition 2.4, we have

χPC(Qα(Ω)) = sup
t∈[0,T ]

χ

(∫ t

0

(t − s)α−1Pα(t − s)Ω(s)ds

)

≤ 4 sup
t∈[0,T ]

∫ t

0

χ
(

(t − s)α−1Pα(t − s)Ω(s)
)

ds

≤ 4 sup
t∈[0,T ]

∫ t

0

(t − s)α−1‖Pα(t − s)‖χ · χ (Ω(s)) ds.

(2) By the first part of this proposition, the sequence {Qα(fn)} is equicon-
tinuous. In addition, one has

χ ({Qα(fn)(t)}) = χ

({∫ t

0

(t − s)α−1Pα(t − s)fn(s)ds

})

≤ 4
∫ t

0

(t − s)α−1‖Pα(t − s)‖χ · χ ({fn(s)}) ds

= 0,

thanks to Proposition 2.4. So {Qα(fn)(t)}, for each t ∈ [0, T ], is a rela-
tively compact set. By the Arzelà–Ascoli theorem, {Qα(fn)} is relatively
compact in C([0, T ];X). Then, the last assertion is justified as follows.
At first, by the Hölder inequality, one sees that Qα : Lp(0, T ;X)→C([0,
T ];X) is bounded and hence continuous. So it is continuous with respect
to weak topology (see, e.g., [3, Theorem 3.10]). This implies Qα(fn) ⇀
Qα(f) in C([0, T ];X). By the relative compactness of {Qα(fn)}, the
last convergence is in the norm of C([0, T ];X). The proof is complete.

�

3. Existence of solutions on the half-line

In this section, we take 
(t) = eδt for a fixed δ > 0. Concerning problem
(1.1)–(1.3), we give the following assumptions:

(A) The C0-semigroup {W (t)}t≥0 generated by A is norm-continuous
and globally bounded, i.e.,

‖W (t)x‖ ≤ MA‖x‖, ∀t ≥ 0, x ∈ X.

(F) The nonlinearity F : R+ × X × C([−h, 0];X) → Kv(X) satisfies:
(1) The multi-valued map (v, w) �→ F (t, v, w) is u.s.c for each t ∈ R

+;
(2) The multi-valued map t �→ F (t, u(t), ut) admits a strongly mea-

surable selection for each u ∈ PC�;
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(3) There exists a function m ∈ Lp
loc(R

+) such that

‖F (t, v, w)‖ = sup{‖ξ‖ : ξ ∈ F (t, v, w)} ≤ m(t)(‖v‖ + ‖w‖h),

for all (t, v, w) ∈ R
+ ×X ×C([−h, 0];X), here ‖w‖h := sups∈[−h,0]

‖w(s)‖ is the norm in C([−h, 0];X);
(4) If W (·) is noncompact, there is a function k ∈ Lp

loc(R
+) such that

χ(F (t, V,Ω)) ≤ k(t)

[

χ(V ) + sup
t∈[−h,0]

χ(Ω(t))

]

,

for a.e. t ∈ R
+, and for all bounded sets V ⊂ X,Ω ⊂ C([−h, 0];X).

(I) The function Ik : X → X, k ∈ Λ, is continuous and satisfies:
(1) There exists a nonnegative sequence {lk}k∈Λ such that

∑

k∈Λ lk <
∞ and

‖Ik(x)‖ ≤ lk ‖x‖, for all x ∈ X, k ∈ Λ.

(2) There exists a nonnegative sequence {μk}k∈Λ such that

χ(Ik(B)) ≤ μkχ(B),

for all bounded subsets B ⊂ X;
(3) The sequence {tk}k∈Λ satisfies infk∈Λ(tk+1 − tk) > 0.

For given ϕ ∈ C([−h, 0];X), we define the space

PCϕ
� = {v ∈ PC� : v(0) = ϕ(0)}.

For v ∈ PCϕ
� , let v[ϕ] be a function given by

v[ϕ](t) =

{

ϕ(t) if t ∈ [−h, 0],
v(t) if t > 0.

Now for v ∈ PCϕ
� , we denote

Pp
F (v) = {f ∈ Lp

loc(R
+;X) : f(t) ∈ F (t, v(t), v[ϕ]t) for a.e. t ∈ R

+}.

Definition 3.1. A function u : [−h,+∞) → X is said to be an integral solu-
tion of problem (1.1)–(1.3) if and only if u(t) = ϕ(t) for t ∈ [−h, 0], and there
exists f ∈ Pp

F (u) such that

u(t)=Sα(t)ϕ(0) +
∑

0<tk<t

Sα(t − tk)Ik(u(tk))+
∫ t

0

(t − s)α−1Pα(t − s)f(s)ds,

for any t > 0.

Let F : PCϕ
� → P(PCϕ

� ) be the multi-valued map defined by

F(v)(t) = Sα(t)v(0) +
∑

0<tk<t

Sα(t − tk)Ik(v(tk))

+
{∫ t

0

(t − s)α−1Pα(t − s)f(s)ds : f ∈ Pp
F (v)

}

, t > 0.

Then, v is a fixed point of the solution operator F iff u = v[ϕ] is an integral
solution of (1.1)–(1.3). To check the closedness of F , we prove the following
lemma.



2194 T. D. Ke and D. Lan JFPTA

Lemma 3.1. Let (F) hold. If {vn} ⊂ PCϕ
� with vn → v∗ and fn ∈ Pp

F (vn)
then fn ⇀ f∗ in Lp

loc(R
+;X) with f∗ ∈ Pp

F (v∗).

Proof. Let {vn} ⊂ PCϕ
� be such that vn → v∗, fn ∈ Pp

F (vn). We see that
{fn(t)} ⊂ C(t) := F (t, {vn(t), vn[ϕ]t}), which is a compact set for a.e. t ∈ R

+,
thanks to (F)(1). Let T > 0 be given. By (F)(3), we see that {fn|[0,T ]} is
bounded by an Lp-integrable function. Thus, {fn} is a semicompact sequence
and by [6, Corollary 3.3], it is weakly compact in Lp(0, T ;X). So one can
assume that fn ⇀ f1∗ ∈ Lp(0, T ;X). By Mazur’s lemma (see, e.g., [3]), there
exists a sequence f̃n ∈ co{fi : i ≥ n} such that f̃n → f1∗ in Lp(0, T ;X) and
then f̃n(t) → f1∗(t) for a.e. t ∈ [0, T ]. Since F has compact values, the upper
semicontinuity of F (t, ·, ·) means that for ε > 0

F (t, vn(t), vn[ϕ]t) ⊂ F (t, v∗(t), v∗[ϕ]t) + Bε

for all large n, here Bε denotes the ball in X centered at origin with radius
ε. So

fn(t) ∈ F (t, v∗(t), v∗[ϕ]t) + Bε, for a.e. t ∈ [0, T ].
By the convexity of F (t, v∗(t), v∗[ϕ]t) + Bε, the last inclusion still holds
for f̃n(t) instead of fn(t). Consequently, f1∗(t) ∈ F (t, v∗(t), v∗[ϕ]t) + Bε

for a.e. t ∈ [0, T ]. Since ε is arbitrary, we obtain the inclusion f1∗(t) ∈
F (t, v∗(t), v∗[ϕ]t) for a.e. t ∈ [0, T ].

Repeating the above arguments for t ∈ [(j −1)T, jT ], j = 1, 2, ..., we get
that fn ⇀ f j∗ in Lp((j − 1)T, jT ;X) with f j∗(t) ∈ F (t, v∗(t), v∗[ϕ]t) for a.e.
t ∈ [(j − 1)T, jT ]. Defining the function f∗ ∈ Lp

loc(R
+;X) as follows:

f∗(t) = f j∗(t) if t ∈ [(j − 1)T, jT ],

we obtain the conclusion of the lemma. �

We are now able to show the closedness of the solution operator.

Lemma 3.2. Assume that (A), (F) and (I) are satisfied. Then, the solution
operator F is closed.

Proof. Let {vn} ⊂ PCϕ
� be a sequence converging to v∗ and zn ∈ F(vn) be

such that zn → z∗. We prove that z∗ ∈ F(v∗). By the definition of F , one
can take fn ∈ Pp

F (vn) such that

zn(t) = Sα(t)ϕ(0) +
∑

0<tk<t

Sα(t − tk)Ik(vn(tk)) + Qα(fn)(t), t > 0, (3.1)

where Qα is defined in (2.16). By Lemma 3.1, fn ⇀ f∗ in Lp
loc(R

+;X) with
f∗ ∈ Pp

F (v∗). We will show that

z∗(t) = Sα(t)ϕ(0) +
∑

0<tk<t

Sα(t − tk)Ik(v∗(tk)) + Qα(f∗)(t), t > 0. (3.2)

Let t > 0, take T > 0 such that t ≤ T and consider the sequence {fn|[0,T ]}.
As argued in the proof of Lemma 3.1, this sequence is semicompact. Then
by Proposition 2.5, Qα(fn) → Qα(f∗) in C([0, T ];X) and, in particular,
Qα(fn)(t) → Qα(f∗)(t) in X. Thanks to the continuity of g and Ik, one can
pass to the limit in (3.1) to get (3.2). The proof is complete. �
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In the sequel, we show the condensivity of the solution operator.

Lemma 3.3. Let the hypotheses of Lemma 3.2 hold. If

� := MA

∑

k∈Λ

μk + 8 sup
t>0

∫ t

0

(t − s)α−1‖Pα(t − s)‖χk(s)ds < ∞, (3.3)

then

χ∞(F(D)) ≤ � · χ∞(D),

for all bounded sets D ⊂ PCϕ
� .

Proof. Let D ⊂ PCϕ
� be a bounded set. For v ∈ D, one can write F(v) =

F1(v) + F2(v), where

F1(v)(t) = Sα(t)ϕ(0) +
∑

0<tk<t

Sα(t − tk)Ik(v(tk)),

F2(v)(t) = Qα ◦ Pp
F (v)(t).

Using the same arguments as those in [11, Lemma 3.1], we get

χ∞(F1(D)) ≤
(

MA

∑

k∈Λ

μk

)

χ∞(D), (3.4)

where χ∞ is the MNC defined in (2.2). Regarding F2(D), we observe that
Ω = Pp

F (D)|[0,T ] is bounded in Lp(0, T ;X), then πT (F2(D)) = Qα(Ω) obeys
the following estimate:

χPC(πT (F2(D))) ≤ 4 sup
t∈[0,T ]

∫ t

0

(t − s)α−1‖Pα(t − s)‖χ · χ(Ω(s))ds, (3.5)

due to Proposition 2.5. Now deploying (F)(4), one has

χ(Ω(s)) ≤ χ(F (s,D(s),D[ϕ]s))

≤ k(s)[χ(D(s)) + sup
r∈[−h,0]

χ(D(s + r))]

≤ 2k(s)χPC(πT (D)).

Putting the last estimate in (3.5) yields

χPC(πT (F2(D)))≤
(

8 sup
t∈[0,T ]

∫ t

0

(t − s)α−1‖Pα(t − s)‖χk(s)ds

)

χPC(πT (D)).

Therefore

χ∞(F2(D)) ≤
(

8 sup
t≥0

∫ t

0

(t − s)α−1‖Pα(t − s)‖χk(s)ds

)

χ∞(D). (3.6)

Combining (3.4) and (3.6), we arrive at

χ∞(F(D)) ≤ � · χ∞(D), (3.7)

where � is defined by (3.3). The proof is complete. �
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Lemma 3.4. Let the hypotheses of Lemma 3.2 hold. If

ϑ := sup
t>0

∫ σt

0

‖Pα(t − s)‖

(t − s)

m(s)ds < ∞, (3.8)

κ := sup
t>0

∫ t

σt

(t − s)α−1‖Pα(t − s)‖

(t − s)

m(s)ds < ∞, (3.9)

for some σ ∈ (0, 1), then

d∞(F(D)) ≤ 2κ · d∞(D), (3.10)

for all bounded sets D ⊂ PCϕ
� .

Proof. Let D ⊂ PCϕ
� be a bounded set. Using the decomposition F = F1+F2

as in the proof of Lemma 3.3, we first demonstrate that

d∞(F1(D)) = 0.

To this end, for given ε > 0, we have to prove the existence of T > 0 such
that

‖F1(v)(t)‖

(t)

< ε, ∀t ≥ T, v ∈ D.

Take R > 0 such that sup{‖v‖� : v ∈ D} ≤ R and T1 > 0 such that

1

(t)

‖Sα(t)‖‖ϕ‖h <
ε

3
, ∀t ≥ T1.

For F1, we choose N0 ∈ Λ such that

RMA

∑

k>N0

lk <
ε

3
, (3.11)

and, in addition, take T2 > 0 such that

‖Sα(t)‖

(t)

R
∑

k≤N0

lk <
ε

3
,∀t ≥ T2. (3.12)

Then for any v ∈ D, using (I)(2) we get

‖F1(v)(t)‖

(t)

≤ 1

(t)

‖Sα(t)‖‖ϕ‖h +
1


(t)

∑

k∈Λ

‖Sα(t − tk)‖‖Ik(v(tk))‖

≤ ε

3
+

1

(t)

∑

k∈Λ

‖Sα(t − tk)‖lk‖v(tk)‖

≤ ε

3
+

R


(t)

∑

k≤N0

‖Sα(t − tk)‖lk +
RMA


(t)

∑

k>N0

lk

≤ ε

3
+ R

∑

k≤N0

‖Sα(t − tk)‖

(t − tk)

lk + RMA

∑

k>N0

lk

<
ε

3
+

ε

3
+

ε

3
= ε, ∀t ≥ max{T1, T2 + tN0},

thanks to (3.11) and (3.12) and the fact that 
(·) is nondecreasing and 
(t) ≥
1,∀t ≥ 0.
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We are in a position to evaluate d∞(F2(D)). Let z ∈ F2(v), v ∈ D.
Taking f ∈ Pp

F (v) such that

z(t) =
∫ t

0

(t − s)α−1Pα(t − s)f(s)ds, t > 0,

we have

‖z(t)‖

(t)

≤
∫ t

0

(t − s)α−1‖Pα(t − s)‖

(t − s)

‖f(s)‖

(s)

ds

≤
(∫ σt

0

+
∫ t

σt

)

Θ(t, s)ds, (3.13)

where

Θ(t, s) =
(t − s)α−1‖Pα(t − s)‖m(s)


(t − s)
‖v(s)‖ + ‖v[ϕ]s‖h


(s)
,

thanks to (F)(3). Let t > 0 such that σt−h > 0. Then, we get, for s ∈ [0, σt],

‖v(s)‖ + ‖v[ϕ]s‖h


(s)
=

1

(s)

(‖v(s)‖ + sup
τ∈[−h,0]

‖v[ϕ](s + τ)‖)

≤ 1

(s)

(‖v(s)‖ + sup
τ∈[−h,0]

‖ϕ(τ)‖ + sup
τ∈[0,s]

‖v(τ)‖)

≤ ‖ϕ‖h +
1


(s)
(‖v(s)‖ + sup

τ∈[0,s]

‖v(τ)‖)

≤ ‖ϕ‖h +
‖v(s)‖

(s)

+ sup
τ∈[0,s]

‖v(τ)‖

(τ)

≤ ‖ϕ‖h + 2R.

Hence
∫ σt

0

Θ(t, s)ds ≤ 2R

∫ σt

0

(t − s)α−1‖Pα(t − s)‖

(t − s)

m(s)ds

≤ ‖ϕ‖h + 2R

[(1 − σ)t]1−α

∫ σt

0

‖Pα(t − s)‖

(t − s)

m(s)ds

≤ (‖ϕ‖h + 2R)ϑ
[(1 − σ)t]1−α

, (3.14)

where ϑ is given in (3.8). On the other hand, for s ≥ σt we see that

‖v(s)‖ + ‖v[ϕ]s‖h


(s)
=

1

(s)

(‖v(s)‖ + sup
τ∈[−h,0]

‖v[ϕ](s + τ)‖)

≤ ‖v(s)‖

(s)

+ sup
τ∈[−h,0]

‖v[ϕ](s + τ)‖

(s + τ)

≤ sup
r≥σt

‖v(r)‖

(r)

+ sup
r≥σt−h

‖v(r)‖

(r)

≤ 2 sup
r≥σt−h

‖v(r)‖

(r)

.
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Then
∫ t

σt

Θ(t, s)ds ≤
(∫ t

σt

(t − s)α−1‖Pα(t − s)‖

(t − s)

m(s)ds

)

2 sup
r≥σt−h

‖v(r)‖

(r)

≤ 2κ sup
r≥σt−h

‖v(r)‖

(r)

, (3.15)

where κ is defined by (3.9). Now using (3.14) and (3.15) in (3.13), we have

‖z(t)‖

(t)

≤ (‖ϕ‖h + 2R)ϑ
[(1 − σ)t]1−α

+ 2κ sup
r≥σt−h

‖v(r)‖

(r)

,

for all t > h
σ , v ∈ D, z ∈ F2(v). The last inequality implies

d∞(F2(D)) ≤ 2κ · d∞(D).

The proof is complete. �

Combining Lemmas 3.3 and 3.4, we arrive at the following assertion.

Lemma 3.5. Let the assumptions (A), (F) and (I) hold. Then, the solution
operator F is χ∗-condensing provided that

� = MA

∑

k∈Λ

μk + 8 sup
t>0

∫ t

0

(t − s)α−1‖Pα(t − s)‖χk(s)ds < 1, (3.16)

ϑ = sup
t>0

∫ σt

0

‖Pα(t − s)‖

(t − s)

m(s)ds < ∞, (3.17)

κ = sup
t>0

∫ t

σt

(t − s)α−1‖Pα(t − s)‖

(t − s)

m(s)ds <
1
2
, (3.18)

for some σ ∈ (0, 1).

Proof. Using Lemmas 3.3 and 3.4, one gets, for all bounded sets D ⊂ PCϕ
� ,

χ∞(F(D)) + d∞(F(D)) ≤ max{�, 2κ} · (χ∞(D) + d∞(D)),

that is,

χ∗(F(D)) ≤ max{�, 2κ} · χ∗(D).

If χ∗(F(D)) ≥ χ∗(D) then χ∗(D) ≤ max{�, 2κ} · χ∗(D), which ensures
that χ∗(D) = 0. Therefore, D is relatively compact due to Lemma 2.1. We
get the conclusion as desired. �

Theorem 3.6. Let the hypotheses of Lemma 3.5 hold. Assume that

MA

∑

k∈Λ

lk + 2 sup
t>0

∫ t

0

(t − s)α−1‖Pα(t − s)‖m(s)

(t − s)

ds < 1. (3.19)

Then, problem (1.1)–(1.3) has at least one integral solution in PC�.

Proof. By Lemma 3.2, F is closed. In addition, F is χ∗-condensing due to
Lemma 3.5. Moreover, F has compact values. Indeed, for v ∈ PCϕ

� , we have

χ∗(F(v)) ≤ max{�, 2κ} · χ∗({v}) = 0.
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It follows that χ∗(F(v)) = 0 and then F(v) is a relatively compact set due
to Lemma 2.1. Thanks to the closedness of F , F(v) is compact.

To apply Theorem 2.2, it suffices to show that there exists R > 0 such
that

F(BR) ⊂ BR,

where BR is the closed ball in PCϕ
� , centered at origin with radius R.

We first check that F(PCϕ
� ) ⊂ PCϕ

� . Let v ∈ PCϕ
� , then d∞({v}) = 0.

Using (3.10), we have d∞(F(v)) = 0. Then it follows that F(v) ⊂ PCϕ
� .

Now, we prove that F(BR) ⊂ BR for some R > 0. Assume to the
contrary that for each n ∈ N, there exists vn ∈ Bn and zn ∈ F(vn) such that
‖zn‖� > n. Taking fn ∈ Pp

F (vn) such that

zn(t) = Sα(t)ϕ(0) +
∑

0<tk<t

Sα(t − tk)Ik(vn(tk))

+
∫ t

0

(t − s)α−1Pα(t − s)fn(s)ds,

we observe that, for all t ≥ 0,

‖zn(t)‖

(t)

≤ ‖Sα(t)‖

(t)

‖ϕ‖h +
∑

0<tk<t

‖Sα(t − tk)‖

(t − tk)

‖vn(tk)‖

(tk)

lk

+
∫ t

0

(t−s)α−1‖Pα(t−s)‖

(t−s)

‖vn(s)‖+‖vn[ϕ]s‖h


(s)
m(s)ds,

thanks to (I)(2) and (F)(3). Noting that
‖Sα(t)‖


(t)
≤ ‖Sα(t)‖ ≤ MA, ∀t ≥ 0,

and

‖vn(s)‖

(s)

≤ n, ∀s ≥ 0,

‖vn[ϕ]s‖h


(s)
≤ 1


(s)
sup

r∈[s−h,s]

‖vn[ϕ](r)‖

≤ 1

(s)

(

sup
r∈[−h,0]

‖ϕ(r)‖ + sup
r∈[0,s]

‖vn(r)‖
)

≤ ‖ϕ‖h + sup
r∈[0,s]

1

(r)

‖vn(r)‖

≤ ‖ϕ‖h + ‖vn‖� ≤ ‖ϕ‖h + n,

we get

‖zn(t)‖

(t)

≤ MA‖ϕ‖h + nMA

∑

k∈Λ

lk

+ (2n + ‖ϕ‖h)
∫ t

0

(t − s)α−1‖Pα(t − s)‖

(t − s)

m(s)ds.
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This implies

1 <
‖zn‖�

n
=

1
n

sup
t>0

‖zn(t)‖

(t)

≤ ‖ϕ‖h

n

(

MA + sup
t>0

∫ t

0

(t − s)α−1‖Pα(t − s)‖

(t − s)

m(s)ds

)

+ MA

∑

k∈Λ

lk + 2 sup
t>0

∫ t

0

(t − s)α−1‖Pα(t − s)‖

(t − s)

m(s)ds.

Passing to the limit in the last inequality, we get a contradiction with
(3.19). The proof is complete. �

4. Weak stability result

In this section, we replace the assumptions (A) and (F) by stronger ones:
(A*) The semigroup W (·) generated by A is norm-continuous and ex-
ponentially stable, i.e., there exists β > 0 such that

‖W (t)x‖ ≤ MAe−βt‖x‖, ∀t ≥ 0, x ∈ X.

(F*) The multi-valued nonlinearity function F satisfies (F) with m ∈
L1(R+) ∩ Lp

loc(R
+).

It is proved in [11] that, by (A*) the fractional resolvent operators Sα(·), Pα(·)
are asymptotically stable, i.e.

‖Sα(t)‖, ‖Pα(t)‖ → 0 as t → +∞.

By choosing 
(t) ≡ 1, we now consider the solution operator F on the space

PC0 =
{

u ∈ PC(R+;X) : lim
t→+∞ u(t) = 0

}

,

endowed with the norm ‖u‖∞ = supt≥0 ‖u(t)‖.
Following the same arguments as in Sect. 3, we get the existence of

global attracting solutions as follows.

Theorem 4.1. Let (A*), (F*) and (I) hold. Then, the problem (1.1)–(1.3)
admits an integral solution such that ‖u(t)‖ = o(1) as t → +∞, provided that

� = MA

∑

k∈Λ

μk + 8 sup
t≥0

∫ t

0

(t − s)α−1‖Pα(t − s)‖χk(s)ds < 1, (4.1)

� = MA

∑

k∈Λ

lk + 2 sup
t>0

∫ t

0

(t − s)α−1‖Pα(t − s)‖m(s)ds < 1. (4.2)

Proof. We verify the assumptions of Lemma 3.5 and Theorem 3.6. Since m ∈
L1(R+), one sees that the condition (3.17) is fulfilled. In addition, condition
(3.18) follows from (4.2), while condition (4.2) is exactly (3.19). �

Now, we state the main result of this section.

Theorem 4.2. Let the assumptions of Theorem 4.1 hold. Then, the zero solu-
tion of (1.1) is weakly asymptotically stable.
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Proof. Let Σ(ϕ) be the set of integral solutions of (1.1)–(1.3) with respect
to the initial datum ϕ. Obviously, we have 0 ∈ Σ(0) thanks to the fact that
F (t, 0, 0) = 0 and Ik(0) = 0, k ∈ Λ. By Theorem 4.1 we observe that, for each
ϕ ∈ C([−h, 0];X) there exists u ∈ Σ(ϕ) such that ‖u(t)‖ → 0 as t → +∞.
Then, we get ‖ut‖h → 0 as t → +∞, that is, the zero solution is weakly
attractive. It remains to show that this solution is stable.

Let ϕ ∈ C([−h, 0];X) and u ∈ Σ(ϕ). Then, there exists f ∈ Pp
F (u) such

that

u(t) = Sα(t)ϕ(0) +
∑

0<tk<t

Sα(t − tk)I(u(tk))

+
∫ t

0

(t − s)α−1Pα(t − s)f(s)ds, t > 0.

Now, using the assumptions (F*) and (I), we get

‖u(t)‖ ≤ MA‖ϕ‖h + MA‖u‖∞
∑

k∈Λ

lk

+ (2‖u‖∞ + ‖ϕ‖h) sup
t>0

∫ t

0

(t − s)α−1‖Pα(t − s)‖m(s)ds, t > 0.

The last estimate implies

‖u‖∞ ≤
[

MA

∑

k∈Λ

lk + 2 sup
t>0

∫ t

0

(t − s)α−1‖Pα(t − s)‖m(s)ds

]

‖u‖∞

+ (MA + 1)‖ϕ‖h.

Hence

‖ut‖h ≤ ‖ϕ‖h + ‖u‖∞ ≤
(

1 +
1 + MA

1 − �

)

‖ϕ‖h, ∀t > 0,

where � is given by (4.2). The last inequality ensures the stability of the zero
solution. The proof is complete. �

5. Application

In this section, the obtained abstract results will be demonstrated in the
following lattice differential system

dα

dtα
ui(t) = (Au(t))i + fi(t), t > 0, t �= tk, k ∈ N, (5.1)

fi(t) ∈ [f1i(t, ui(t), ui(t − ρ(t))), f2i(t, ui(t), ui(t − ρ(t)))], (5.2)

Δui(tk) = Iik(ui(tk)), (5.3)

ui(s) = ϕi(s), s ∈ [−h, 0], (5.4)

where u = (ui) : [−h,+∞) → �2 is the unknown function,
dα

dtα
is the Caputo

derivative of order α ∈ (0, 1), A : �2 → �2 is the linear operator given by

(Av)i = vi+1 − (2 + λ)vi + vi−1, v ∈ �2,
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ρ : R+ → [0, h] is a continuous function, and λ is a positive number. Here,
�2 is the space of sequences (vi)i∈Z satisfying

∑

i∈Z
v2

i < ∞, which becomes
a Hilbert space with the inner product (u, v)�2 =

∑

i∈Z
uivi, and [f1, f2] =

{τf1 + (1 − τ)f2 : τ ∈ [0, 1]}.
Lattice differential systems like (5.1)–(5.4) come from various problems

such as image processing, pattern recognition, electrical engineering, ... In
particular, (5.1)–(5.4) can be seen as a model of semi-discretization for the
fractional partial differential inclusion

∂α

∂tα
u(x, t) =

∂2

∂x2
u(x, t) − λu(x, t) + f(x, t), x ∈ R, t > 0,

f(x, t) ∈ [f1(x, t, u(x, t), u(x, t − ρ(t))), f2(x, t, u(x, t), u(x, t − ρ(t)))],

Δu(x, tk) = Ik(x, u(x, tk)),

u(x, s) = ϕ(x, s), s ∈ [−h, 0],

where the discretizing is made in spatial variable x.
Let B : �2 → �2 be the linear operator defined by (Bv)i = vi+1 − vi,

then its adjoint operator B∗ is given by (B∗v)i = vi−1 − vi. In addition, if
Ã : �2 → �2 is the operator defined by (Ãv)i = vi+1 − 2vi + vi−1 then

−Ã = BB∗ = B∗B.

It should be noted that A = Ã − λI is a bounded operator on �2. Then, the
semigroup {etA : t ≥ 0} is uniformly continuous (see, e.g., [7]) and hence
norm-continuous. However, this semigroup is non-compact, since it can be
extended to a group {etA : t ∈ R} and the identity operator I = etAe−tA is
non-compact.

To obtain the exponential stability of {etA : t ≥ 0}, we consider the
system

dv(t)
dt

= Ãv(t) − λv(t), v(t) ∈ �2.

Multiplying by v, we get

1
2

d
dt

‖v(t)‖2 = (Ãv(t), v(t)) − λ‖v(t)‖2

= −(B∗Bv(t), v(t)) − λ‖v(t)‖2 = −‖Bv(t)‖2 − λ‖v(t)‖2

≤ −λ‖v(t)‖2.

Then by the Gronwall lemma, we get

‖v(t)‖ ≤ e−λt‖v(0)‖,

and, therefore, one has the estimate ‖etA‖ ≤ e−λt, t ≥ 0, i.e., the semigroup
{etA : t ≥ 0} is exponentially stable. The assumption (A*) is verified.

Before going to the further settings for (5.1)–(5.4), we recall a result on
the Hausdorff MNC in �2 (see, e.g., [2, Theorem 4.2]). Let Rn : �2 → �2 be
the linear operator defined by

Rn(v) =
∑

|i|>n

viei,
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where ei = (δij)j∈Z. Then, the map χ : 2�2 → R
+ defined by

χ(B) = lim sup
n→+∞

[sup
v∈B

‖Rn(v)‖] = lim sup
n→+∞

[

sup
v∈B

(
∑

|i|>n

|vi|2
) 1

2
]

is the Hausdorff MNC in �2.
Now, we give the following assumptions:

(N1) The functions f1i, f2i : R+ × R
2 → R, i ∈ Z, are continuous and satisfy

max{|f1i(t, y, z)|2, |f2i(t, y, z)|2} ≤ m2(t)(|y|2 + |z|2), ∀(t, η, z) ∈ R
+ × R

2,

where m ∈ C(R+;R+) satisfies

m(t) ≤ Cm

1 + tα+1
for some Cm > 0.

(N2) Iik : R → R, i ∈ Z, k ∈ N, are continuous functions such that

|Iik(y)| ≤ lk|y|,
where {lk : k ∈ N} is a sequence of non-negative numbers such that
∑

k∈N
lk < ∞.

Let f1, f2 : R+ × �2 × C([−h, 0]; �2) → �2 be functions defined by

f1(t, v, w) = (f1i(t, vi, wi(−ρ(0))))i∈Z,

f2(t, v, w) = (f2i(t, vi, wi(−ρ(0))))i∈Z.

Then, one can check that f1, f2 are continuous. Furthermore, it follows from
(N1) that

‖f1(t, v, w)‖2 =
∑

i∈Z

|f1i(t, vi, wi(−ρ(0)))|2

≤ m2(t)
∑

i∈Z

(|vi|2 + |wi(−ρ(0))|2)

= m2(t)(‖v‖2 + ‖w(−ρ(0))‖2)

≤ m2(t)(‖v‖2 + sup
s∈[−h,0]

‖w(s)‖2).

Similarly, we have

‖f2(t, v, w)‖2 ≤ m2(t)(‖v‖2 + sup
s∈[−h,0]

‖w(s)‖2).

Now putting

F (t, v, w) = [f1(t, v, w), f2(t, v, w)], v ∈ �2, w ∈ C([−h, 0]; �2),

we see that

‖F (t, v, w)‖ ≤ m(t)(‖v‖ + ‖w‖h).

In addition, F is a multimap with convex and compact values. Indeed, it
is easily seen that for each (t, v, w) ∈ R

+ × �2 × C([−h, 0]; �2), F (t, v, w)
is a closed convex set. Moreover, F (t, v, w) ⊂ span{f1(t, v, w), f2(t, v, w)},
i.e., F (t, v, w) is a bounded set lying in a two-dimensional subspace of �2,
thus F (t, v, w) is a compact set. Since f1, f2 are continuous, the multimap
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(v, w) �→ F (t, v, w) is closed. This implies that F (t, ·, ·) is u.s.c for each t ∈ R.
Noting that for each u ∈ PC0, τ ∈ [0, 1], the function

f(t) = τf1(t, u(t), u(t − ρ(t))) + (1 − τ)f2(t, u(t), u(t − ρ(t))), τ ∈ [0, 1]

is a (strongly) measurable selection of F . Thus, (F)(1)–(F)(3) are fulfilled.
We now evaluate χ(F (t, V,W )) for bounded sets V ⊂ �2,W ⊂ C([−h, 0];

�2). One sees that

sup
(v,w)∈V ×V

‖Rn[f1(t, v, w)]‖ =

⎛

⎝
∑

|i|>n

|f1i(t, vi, wi(−ρ(0)))|2
⎞

⎠

1
2

≤ m(t) sup
(v,w)∈V ×V

⎛

⎝
∑

|i|>n

[

|vi|2 + |wi(−ρ(0))|2
]

⎞

⎠

1
2

≤ m(t) sup
(v,w)∈V ×V

[
⎛

⎝
∑

|i|>n

|vi|2
⎞

⎠

1
2

+

⎛

⎝
∑

|i|>n

|wi(−ρ(0))|2
⎞

⎠

1
2 ]

≤ m(t)
[

sup
v∈V

⎛

⎝
∑

|i|>n

|vi|2
⎞

⎠

1
2

+ sup
w∈W

⎛

⎝
∑

|i|>n

|wi(−ρ(0))|2
⎞

⎠

1
2 ]

= m(t)
[

sup
v∈V

‖Rn(v)‖ + sup
w∈W

‖Rn(w(−ρ(0)))‖
]

.

Passing to the limit in the last inequality yields

χ(f1(t, V,W )) ≤ m(t)
[

χ(V ) + χ(W (−ρ(0)))
]

≤ m(t)
[

χ(V ) + sup
s∈[−h,0]

χ(W (s))
]

.

By the same arguments for f2, we have

χ(f2(t, V,W )) ≤ m(t)
[

χ(V ) + sup
s∈[−h,0]

χ(W (s))
]

.

Observing that

F (t, V,W ) ⊂ co{f1(t, V,W ) ∪ f2(t, V,W )},

one gets

χ(F (t, V,W )) ≤ χ (f1(t, V,W ) ∪ f2(t, V,W ))

≤ max{χ (f1(t, V,W )) , χ (f2(t, V,W ))}

≤ m(t)
[

χ(V ) + sup
s∈[−h,0]

χ(W (s))
]

.

Then, (F)(4) is satisfied and, therefore, (F*) is testified with k = m.
Now, consider the maps Ik : �2 → �2, k ∈ N, defined by

Ik(v) = (Iik(vi))i∈Z.
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Then, by the continuity of Iik, one gets the continuity of Ik. Moreover,
by (N2) we have

‖Ik(v)‖ =

(
∑

i∈Z

|Iik(vi)|2
) 1

2

≤ lk

(
∑

i∈Z

|vi|2
) 1

2

= lk‖v‖.

Hence, (I)(1) is satisfied. Now, let V ⊂ �2 be a bounded set. Then

sup
v∈V

‖Rn(Ik(v))‖ = sup
v∈V

⎛

⎝
∑

|i|>n

|Iik(vi)|2
⎞

⎠

1
2

≤ lk sup
v∈V

⎛

⎝
∑

|i|>n

|vi|2
⎞

⎠

1
2

= lk sup
v∈V

‖Rn(v)‖.

Taking the limit of the last inequality as n → +∞, we arrive at

χ(Ik(V )) ≤ lkχ(V ).

So the assumption (I) holds with μk = lk, k ∈ N, provided that inf{tk+1 −tk :
k ∈ N} > 0.

Finally, we give an estimate for the integral

I(t) =
∫ t

0

(t − s)α−1‖Pα(t − s)‖m(s)ds.

Observe that in our case ‖etA‖ ≤ 1, then ‖Pα(t)‖ ≤ 1
Γ(α) ,∀t ≥ 0. Then

I(t) ≤ Cm

Γ(α)

(
∫ t

2

0

(t − s)α−1

1 + sα+1
ds +

∫ t

t
2

(t − s)α−1

1 + sα+1
ds

)

≤ Cm

Γ(α)

((
t

2

)α−1 ∫ t
2

0

ds

1 + sα+1
+

1

1 +
(

t
2

)α+1

∫ t

t
2

(t − s)α−1ds

)

≤ Cm

Γ(α)

(

J(t) +
1
α

)

,

where

J(t) =
(

t

2

)α−1 ∫ t
2

0

ds

1 + sα+1
.

Noting that

lim
t→0

J(t) = lim
t→+∞ J(t) = 0,

we get supt>0 J(t) < ∞, then supt>0 I(t) < ∞. It follows that the condi-
tions (4.1) and (4.2) are testified with Cm, lk small, and we get the weakly
asymptotic stability of zero solution to (5.1) and (5.2).
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6. Conclusion

A unified approach is proposed to prove the global solvability and weakly as-
ymptotic stability for the semilinear fractional differential inclusion involving
impulsive effects given by (1.1)–(1.3). That is, we analyze the fixed point set
of the solution operator F associated with our problem on PC�, the space
of piecewise continuous functions on the half-line with weighted function 
,
on which the MNC χ∗ is defined to ensure a compactness condition. In the
case when the semigroup {etA}t≥0 is exponentially stable, the existence of
decay solutions to (1.1)–(1.3) implies the weak attractivity of the zero solu-
tion that leads to the weakly asymptotic stability as mentioned. In further
analysis, one can estimate the decay rate of solutions provided that the im-
pulsive condition (1.2) is relaxed or the Caputo derivative in (1.1) is replaced
by a substantial Caputo derivative (see, e.g [5]).

Acknowledgements

This research is funded by Vietnam National Foundation for Science and
Technology Development (NAFOSTED) under Grant Number 101.02-2015.18.

References

[1] Aubin, J.P.: Viability Theory. Birkhäuser, Basel (1991)
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