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1. Introduction

In the last decades one can observe a remarkable amount of interest for the
development of fixed point theory, since it has a huge number of applications.

Among the generalizations of the Banach–Caccioppoli–Picard
principle—one of the central results of the above-mentioned theory, known
also as the contraction principle—a central role is played by the following
two:

– the one due to Nadler [22] who extended the contraction principle to
set-valued functions and generated in this way many applications in con-
trol theory, convex optimization, etc. (see [17,31–34] and the references
therein);

– the one due to Bakhtin [5] and Czerwik [13,14] who, motivated by the
problem of the convergence of measurable functions with respect to mea-
sure, introduced b-metric spaces (a generalization of metric spaces) and
proved the contraction principle in this framework. In the last period
many mathematicians obtained fixed point results for single-valued or
set-valued functions, in the setting of b-metric spaces (see, for example,
[1,8–10,18,24,25,30,32,35] and the references therein).

In this paper, we indicate a way (see Lemma 2.2) to generalize a series
of fixed point results in the framework of b-metric spaces and we exemplify it
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by extending Nadler’s contraction principle for set-valued functions (see [22])
and a fixed point theorem for set-valued quasi-contraction functions due to
Aydi et al. (see [4]).

2. Preliminary results

In this section, we sum up some basic facts that we are going to use later.

Definition 2.1. Given a non-empty set X and a real number s ∈ [1,∞) , a
function d : X × X → [0,∞) is called b-metric if it satisfies the following
properties:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ s(d(x, z) + d(z, y)) for all x, y, z ∈ X.
The pair (X, d) is called b-metric space of constant s.

Remark 2.1. As when s = 1, a b-metric space is a metric space, we infer that
the family of b-metric spaces is larger than the one of metric spaces. In other
words, every metric space is a b-metric space. Note that Czerwik proved that
the converse need not be true (see also [4,12,19,23,28]), so the family of
b-metric spaces is effectively larger than the one of metric spaces.

Definition 2.2. A sequence (xn)n∈N of elements from a b-metric space (X, d)
is called:

– convergent if there exists l ∈ X such that limn→∞d(xn, l) = 0;
– Cauchy if limm,n→∞d(xm, xn) = 0, i.e. for every ε > 0 there exists

nε ∈ N such that d(xm, xn) < ε for all m,n ∈ N, m,n ≥ nε.

The b-metric space (X, d) is called complete if every Cauchy sequence
of elements from (X, d) is convergent.

Beside the classical spaces lp(R) and Lp[0, 1], where p ∈ (0, 1), one can
find examples of b-metric spaces in [4,6,10,13,14].

Remark 2.2. As in the case of metric spaces, a b-metric space can be endowed
with the topology induced by its convergence and almost all the concepts and
results which are valid for metric spaces can be extended to the framework
of b-metric spaces.

An et al. [3] proved that every b-metric space is a semi-metrizable space
(i.e. there exists a function d : X × X → [0,∞) such that: (i) d(x, y) = 0 if
and only if x = y; (ii) d(x, y) = d(y, x) for all x, y ∈ X ; (iii) x ∈ A if and only
if d(x,A) = inf{d(x, y) | y ∈ A} = 0 for every x ∈ X and every A ⊆ X).
Consequently, many properties of b-metric spaces are obvious. In addition,
they provided a sufficient condition for a b-metric space to be metrizable and
gave an example showing that, in the framework of a b-metric space (X, d),
there exists an open ball (i.e. a set of the form {y ∈ X | d(x, y) < r}, where
r > 0) which is not open.

In a metric space (X, d), the function d is continuous (i.e.
limn→∞d(xn, yn) = d(x, y) for all sequences (xn)n∈N and (yn)n∈N of elements
from X and x, y ∈ X such that limn→∞xn = x and limn→∞yn = y).
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The fact that this property is not valid for b-metric spaces of constant s (as
1
s2 d(x, y) ≤ limn→∞d(xn, yn) ≤ limn→∞d(xn, yn) ≤ s2d(x, y) and 1

sd(x, y) ≤
limn→∞d(xn, y) ≤ limn→∞d(xn, y) ≤ sd(x, y), see [21,23,26]) is a motiva-
tion of our Definition 3.2.

In the sequel, given a b-metric space (X, d):
– by B(X) we denote the set of non-empty bounded closed subsets of X
– for A,B ∈ B(X), we define the Hausdorff–Pompeiu distance between A

and B by h(A,B) = max{supa∈Ad(a,B), supb∈Bd(b, A)}, where d(x,C)
= infc∈Cd(x, c) for every x ∈ X and every C ∈ B(X)

– given T : X → B(X), for c, d ∈ [0, 1] and x, y ∈ X, we shall use the
following notation:

Nc,d(x, y) = max{d(x, y), cd(x, T (x)), cd(y, T (y)),
d

2
(d(x, T (y))+d(y, T (x)))}

– for a sequence (xn)n∈N, of elements from X, sometimes, for the sake of
brevity, we shall use the notation: dn = d(xn, xn+1), where n ∈ N.

Lemma 2.1. For every sequence (xn)n∈N of elements from a b-metric space
(X, d) of constant s, the inequality

d(x0, xk) ≤ sn
k−1∑

i=0

d(xi, xi+1),

is valid for every n ∈ N and every k ∈ {1, 2, 3, ..., 2n − 1, 2n}.
Proof. We are going to use the method of mathematical induction. Denoting
by P (n) the statement: d(x0, xk) ≤ sn

∑k−1
i=0 d(xi, xi+1) for every x0, x1, ..., x2n

∈ X and every k ∈ {1, 2, 3, ..., 2n − 1, 2n}, as the statements P (0) and P (1)
are obvious, it remains to prove that P (n) ⇒ P (n + 1).

Indeed, the above-mentioned implication is true since, on the one hand,
for every k ∈ {1, 2, 3, ..., 2n − 1, 2n}, using P (n), we have

d(x0, xk) ≤ sn
k−1∑

i=0

d(xi, xi+1).

On the other hand, for every k ∈ {2n + 1, 2n + 2, ..., 2n+1 − 1, 2n+1}, using
again P (n), we have

d(x0, xk) ≤ s(d(x0, x2n) + d(x2n , xk))

≤ s

(
sn

2n−1∑

i=0

d(xi, xi+1) + sn
k−1∑

i=2n

d(xi, xi+1)

)
= sn+1

k−1∑

i=0

d(xi, xi+1).

�

Lemma 2.2. Every sequence (xn)n∈N of elements from a b-metric space (X, d)
of constant s, having the property that there exists γ ∈ [0, 1) such that

d(xn+1, xn) ≤ γd(xn, xn−1),

for every n ∈ N, is Cauchy.
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Proof. First let us note that

d(xn+1, xn) ≤ γnd(x1, x0), (1)

for every n ∈ N.
For all m, k ∈ N, with the notation p = [log2 k], we have

d(xm+1, xm+k) ≤ sd(xm+1, xm+2) + sd(xm+2, xm+k)
≤ sd(xm+1, xm+2) + s2d(xm+2, xm+22) + s2d(xm+22 , xm+k)

≤ sd(xm+1, xm+2) + s2d(xm+2, xm+22) + s3d(xm+22 , xm+23)

+ s3d(xm+23 , xm+k)
...

≤
p∑

n=1

snd(xm+2n−1 , xm+2n) + sp+1d(xm+2p , xm+k).

Using Lemma 2.1 and (1), we obtain
d(xm+1, xm+k)

≤
p∑

n=1

s
2n

⎛

⎝
m+2n−1−1∑

i=m

d(x2n−1+i, x2n−1+i+1)

⎞

⎠ + s
2(p+1)

(
m+k−2p−1∑

i=m

d(x2p+i, x2p+i+1)

)

≤
p+1∑

n=1

s
2n

⎛

⎝
m+2n−1−1∑

i=m

d(x2n−1+i, x2n−1+i+1)

⎞

⎠ ≤ d(x0, x1)

p+1∑

n=1

s
2n

⎛

⎝
2n−1−1∑

i=0

γ
m+2n−1+i

⎞

⎠

≤ d(x0, x1)γ
m

1 − γ

p+1∑

n=1

s
2n

γ
2n−1

= γ
m d(x0, x1)

1 − γ

p+1∑

n=1

γ
2n logγ s+2n−1

.

Let us note that since limn→∞(2n logγ s+2n−1 −n) = ∞, for a fixed M > 0,
there exists n0 ∈ N such that 2n logγ s + 2n−1 − n ≥ M , i.e. γ2n logγ s+2n−1 ≤
γMγn for each n ∈ N, n ≥ n0, hence the series

∑∞
n=1γ

2n logγ s+2n−1
is con-

vergent and denoting by S its sum, we come to the conclusion that

d(xm+1, xm+k) ≤ γm d(x0, x1)S
1 − γ

,

for all m, k ∈ N. Consequently, as limn→∞γn = 0, we infer that (xn)n∈N is
Cauchy. �

Theorem 2.1. Let (X, d) be a b-metric space of constant s and T : X → B(X)
having the property that there exist c, d ∈ [0, 1] and α ∈ [0, 1) such that:

(i) αds < 1;
(ii) h(T (x), T (y)) ≤ αNc,d(x, y) for all x, y ∈ X.
Then, for every x0 ∈ X, there exist γ ∈ [0, 1) and a sequence (xn)n∈N of
elements from X such that:
(a) xn+1 ∈ T (xn) for every n ∈ N;
(b) d(xn+1, xn) ≤ γd(xn, xn−1) for every n ∈ N;
(c) (xn)n∈N is Cauchy.

Proof. Let us consider β ∈ (α,min(1, 1
ds )), γ = max{β, dsβ

2−dsβ } < 1, x0 ∈ X

and x1 ∈ T (x0).
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If x1 = x0, then the sequence (xn)n∈N given by xn = x0 for every n ∈ N

satisfies (a), (b) and (c).
Since, based on (ii), we have

d(x1, T (x1)) ≤ h(T (x0), T (x1)) ≤ αNc,d(x0, x1) < βNc,d(x0, x1),

there exists x2 ∈ T (x1) such that d(x1, x2) < βNc,d(x0, x1).
If x2 = x1, then the sequence (xn)n∈N given by xn = x1 for every n ∈ N,

n ≥ 1, satisfies (a), (b) and (c).
By repeating this procedure, we obtain a sequence (xn)n∈N of elements

from X such that xn+1 ∈ T (xn) and 0 < dn < βNc,d(xn−1, xn) for every
n ∈ N, n ≥ 1.

Because d(xn−1, T (xn−1)) ≤ dn−1, d(xn, T (xn)) ≤ dn, d(xn−1, T (xn)) ≤
d(xn−1, xn+1) and d(xn, T (xn−1)) = 0, we have

0 < dn < βNc,d(xn−1, xn)

≤ β max{dn−1, cdn, cdn−1,
d

2
d(xn−1, xn+1)}

≤ β max
{

dn−1, cdn, cdn−1,
ds

2
(dn−1+dn)

}
≤β max

{
dn−1,

ds

2
(dn−1+dn)

}
,

for every n ∈ N, where the justification of the last inequality is the following:
if, by reduction ad absurdum, max{dn−1, cdn, cdn−1,

ds
2 (dn−1 + dn)} = cdn,

then we get that 0 < dn < βcdn ≤ βdn, so we obtain the contradiction 1 < β.
Consequently, dn < βdn−1 or dn < β ds

2 (dn−1 + dn), i.e. dn < βdn−1

or dn < dsβ
2−dsβ dn−1 for every n ∈ N. Thus dn ≤ max{β, dsβ

2−dsβ }dn−1, i.e.
d(xn+1, xn) ≤ γd(xn, xn−1) for every n ∈ N.

Hence the sequence (xn)n∈N satisfies (a) and (b). From Lemma 2.2 we
deduce that it also satisfies (c). �

3. Main results

In this section, making use of Theorem 2.1, we present three fixed point
theorems for set-valued functions.

Definition 3.1. A function T : X → B(X) , where (X, d) is a b-metric space,
is called closed if for all sequences (xn)n∈N and (yn)n∈N of elements from X
and x, y ∈ X such that limn→∞xn = x, limn→∞yn = y and yn ∈ T (xn) for
every n ∈ N, we have y ∈ T (x).

Theorem 3.1. A function T : X → B(X), where (X, d) is a complete b-
metric space of constant s, has a fixed point, provided that it satisfies the
following three conditions:

(i) T is closed;
(ii) there exist c, d ∈ [0, 1] and α ∈ [0, 1) such that

h(T (x), T (y)) ≤ αNc,d(x, y) for all x, y ∈ X;
(iii) αds < 1.
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Proof. Taking into account (ii) and (iii), by virtue of Theorem 2.1, there
exists a Cauchy sequence (xn)n∈N of elements of X such that

xn+1 ∈ T (xn), (2)

for every n ∈ N.
As the b-metric space (X, d) is complete, there exists u ∈ X such that

limn→∞xn = u (so limn→∞xn+1 = u). We combine (i) with (2) to see that
u ∈ T (u) , i.e. u is a fixed point of T . �
Definition 3.2. Given a b-metric space (X, d), the b-metric d is called ∗- con-
tinuous if for every A ∈ B(X), every x ∈ X and every sequence (xn)n∈N of ele-
ments from X such that limn→∞xn = x, we have limn→∞d(xn, A) = d(x,A).

Our notion of ∗-continuity of d is stronger than the continuity of d in
the first variable.

Theorem 3.2. A function T : X → B(X) , where (X, d) is a complete b-
metric space of constant s, has a fixed point, provided that it satisfies the
following three conditions:

(i) d is ∗-continuous;
(ii) there exist c, d ∈ [0, 1] and α ∈ [0, 1) such that

h(T (x), T (y)) ≤ αNc,d(x, y) for all x, y ∈ X;
(iii) αds < 1.

Proof. Based on (ii) and (iii), according to Theorem 2.1, there exists a Cauchy
sequence (xn)n∈N of elements of X such that

xn+1 ∈ T (xn), (3)

for every n ∈ N.
As the b-metric space (X, d) is complete, there exists u ∈ X such that

limn→∞xn = u.
Then, using (ii) and (3), with the notation d(xn, u) = δn, we have

d(xn+1, T (u)) ≤ h(T (xn), T (u)) ≤ αNc,d(xn, u)

= αmax

{
δn, cd(xn, T (xn)), cd(u, T (u)),

d

2
(d(xn, T (u)) + d(u, T (xn)))

}

≤ αmax

{
δn, cdn, cd(u, T (u)),

d

2
(s(δn + d(u, T (u))) + δn+1)

}
, (4)

for every n ∈ N.
Since limn→∞δn = limn→∞dn = 0 and limn→∞d(xn+1, T (u))

= d(u, T (u)) (as d is ∗-continuous and limn→∞xn+1 = u), upon passing
to limit, as n → ∞, in (4), we get

d(u, T (u)) ≤ max
{

αc,
αds

2

}
d(u, T (u)). (5)

As max{αc, αds
2 } < 1 (see (iii)), from (5), we conclude that d(u, T (u)) = 0,

i.e. u ∈ T (u). Hence T has a fixed point. �
Theorem 3.3. A function T : X → B(X) , where (X, d) is a complete b-
metric space of constant s, has a fixed point, provided that it satisfies the
following two conditions:
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(i) there exist c, d ∈ [0, 1] and α ∈ [0, 1) such that
h(T (x), T (y)) ≤ αNc,d(x, y) for all x, y ∈ X;

(ii) max{αcs, αds} < 1.

Proof. Making use of (i) and (ii), according to Theorem 2.1, there exists a
Cauchy sequence (xn)n∈N of elements from X such that xn+1 ∈ T (xn), for
every n ∈ N. As the b-metric space (X, d) is complete, there exists u ∈ X
such that limn→∞xn = u.

First let us note that, as we have seen in (4), we have

d(xn+1, T (u))

≤ α max
{

δn, cd(xn, T (xn)), cd(u, T (u)),
d

2
(d(xn, T (u)) + d(u, T (xn)))

}

≤ α max
{

δn, cd(xn, T (xn)), cd(u, T (u)),
d

2
(d(xn, T (u)) + δn+1)

}

≤ α max
{

δn, cdn, cd(u, T (u)),
d

2
(s(δn + d(u, T (u))) + δn+1))

}
, (6)

for every n ∈ N.
We divide the discussion into two cases:

A. d(u, T (u)) ≤ limn→∞d(xn, T (u));
and

B. d(u, T (u)) > limn→∞d(xn, T (u)).
In case A, there exists a subsequence (xnk

)k∈N of (xn)n∈N having the
property that limk→∞d(xnk+1, T (u)) ≥ d(u, T (u)), so for every ε > 0 there
exists kε ∈ N such that d(u, T (u)) − ε ≤ d(xnk+1, T (u)), for every k ∈ N ,
k ≥ kε. Hence, taking into account (6), we get

d(u, T (u)) − ε

≤ α max
{

δnk
, cdnk

, cd(u, T (u)),
d

2
(s(δnk

+ d(u, T (u))) + δnk+1))
}

,

for every k ∈ N, k ≥ kε. By passing to limit as k → ∞ in the above inequality,
we get that

d(u, T (u)) − ε ≤ α max
{

cd(u, T (u)),
sd

2
d(u, T (u))

}

= d(u, T (u))max
{

αc,
αsd

2

}
,

for every ε > 0, so

d(u, T (u)) ≤ d(u, T (u))max
{

αc,
αsd

2

}
.

Since max{αc, αsd
2 } < 1, from the above inequality, we conclude that

d(u, T (u)) = 0, i.e. u ∈ T (u), so T has a fixed point.
In case B, there exists n0 ∈ N such that

d(xn, T (u)) ≤ d(u, T (u)), (7)
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for every n ∈ N, n ≥ n0. Since d(u, T (u)) ≤ s(δn+1 + d(xn+1, T (u))), i.e.
d(u,T (u))

s − δn+1 ≤ d(xn+1, T (u)), using (6) and (7), we get that

d(u, T (u))
s

− δn+1 ≤ d(xn+1, T (u))

≤ α max{δn, cdn, cd(u, T (u)),
d

2
(d(xn, T (u)) + δn+1))}

≤ α max{δn, cdn, cd(u, T (u)),
d

2
(d(u, T (u)) + δn+1))},

for every n ∈ N, n ≥ n0. By passing to limit as n → ∞ in the above inequality,
we obtain that

d(u, T (u)) ≤ αsmax
{

cd(u, T (u)),
d

2
d(u, T (u))

}
= αsmax

{
c,

d

2

}
d(u, T (u)).

As αsmax{c, d
2} < 1 (see (ii)), we infer that d(u, T (u)) = 0 , so u ∈ T (u),

i.e. T has a fixed point. �

4. Remarks and comments

I. Let us recall the following result (see Lemma 3.1 from [29]):

Lemma 4.1. Every sequence (xn)n∈N of elements from a b-metric space (X, d)
of constant s is Cauchy provided that:

(i) there exists γ ∈ [0, 1) such that

d(xn+1, xn) ≤ γd(xn, xn−1),

for every n ∈ N;
(ii) sγ < 1.

Obviously our Lemma 2.2 is a generalization of the above Lemma which
is the corner stone of the results from [16,19,20,23,29].

II. The following definition is inspired by the definition of a multi-valued
weakly Picard operator in the setting of a metric space from [7].

Definition 4.1. A function T : X → B(X), where (X, d) is a b-metric space,
is called a multi-valued weakly Picard operator if for each x ∈ X and each
y ∈ T (x) there exists a sequence (xn)n∈N such that:

(i) x0 = x and x1 = y;
(ii) xn+1 ∈ T (xn) for every n ∈ N;
(iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

Let us mention that Theorems 3.1, 3.2 and 3.3 provide sufficient condi-
tions for a function T to be multi-valued weakly Picard operator.

III. For c = d = 0 and s = 1 in Theorem 3.3 we obtain Theorem 5 from [22],
i.e. Nadler’s contraction principle for set-valued functions.

IV. Let us recall the following result (see Theorem 2.2 from [4]) which is
a generalization of Theorem 1.2 from [2] which improves Theorem 3.3 from
[15], Corollary 3.3. from [27], Corollary 4.3 from [29] and Theorem 1 from
[11].
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Theorem 4.1. A function T : X → B(X), where (X, d) is a complete b-metric
space of constant s, has a fixed point, provided that it satisfies the following
two conditions:

(i) there exists a ∈ [0, 1) such that

h(T (x), T (y)) ≤ amax{d(x, y), d(x, T (x)), d(y, T (y)), d(x, T (y)), d(y, T (x))},

for all x, y ∈ X;
(ii) a ≤ 1

s+s2 .

Our Theorem 3.3 is a generalization of Theorem 4.1.
Indeed, we shall prove that if (i) and (ii) from Theorem 4.1 are satisfied,

then (i) and (ii) from Theorem 3.3 (for α = 2a and c = d = 1) are satisfied.
First let us note that, according to (ii) from Theorem 4.1, we have 0 ≤ α <

2
s+s2 < 1

s , so αs < 1. Consequently, α ∈ [0, 1
s ) ⊆ [0, 1) and (ii) from Theorem

3.3 is satisfied. Moreover, (i) from Theorem 4.1 implies that

h(T (x), T (y))

≤ α max
{

d(x, y)
2

,
d(x, T (x))

2
,
d(y, T (y))

2
,
d(x, T (y))

2
,
d(y, T (x))

2

}

≤ α max
{

d(x, y), d(x, T (x)), d(y, T (y)),
1
2
(d(x, T (y)) + d(y, T (x)))

}

= αN1,1(x, y),

for all x, y ∈ X, i.e. (i) from Theorem 3.3 is satisfied.
Now let us present a situation when Theorem 3.3 is applicable, but

Theorem 4.1 is not.
We consider the b-metric space (R, d), where d(x, y) = (x − y)2 for

all x, y ∈ R, for which s = 2 and the function f : R → B(R) given by
f(x) = { 9

10x} for every x ∈ R. On the one hand, Theorem 3.3. is applicable
taking c = d = 0 and α = 9

10 . On the other hand, Theorem 4.1 is not
applicable since (i) implies 9

10 ≤ α and (ii) implies α ≤ 1
6 .
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