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Abstract. The purpose of this paper is to introduce an iterative algo-
rithm that does not require any knowledge of the operator norm for
approximating a solution of a split generalised mixed equilibrium prob-
lem which is also a fixed point of a k-strictly pseudocontractive map-
ping. Furthermore, a strong convergence theorem for approximating a
common solution of a split generalised mixed equilibrium problem and a
fixed-point problem for x-strictly pseudocontractive mapping was stated
and proved in the frame work of Hilbert spaces.
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1. Introduction

Let H be a real Hilbert space and K a nonempty, closed and convex subset
of H. A mapping T : K — K is said to be nonezrpansive if

[Tz =Tyl <lz—yll V zyekK, (1.1)

and k-strictly pseudocontractive in the sense of Browder and Petryshyn [2] if
for0 <k <1,

[Tz = Ty|* < llz —yl* + &ll(I = T)a — (I =Tyl* ¥V z,y€K. (1.2)
In a Hilbert space H, we can show that (1.2) is equivalent to
1—k
]
A point x € K is called a fized point of T if Tx = x. The set of fixed points of

T is denoted by F(T). So a fixed-point problem for T is to find x € F(T). It is
a common knowledge that if T is k-strictly pseudocontractive and F(T') # 0,

(Tz —Ty,x—y) < |l —y[* ~ (I =Tz —(I-Tyl* (13)
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then F'(T) is closed and convex. See [2,19,20,32] and references therein, for
more details on strictly pseudocontractive mappings.

Let g : C x C' — R be a bifunction, ¢ : C — R U {+oc0} be a function
and B : C — H be a nonlinear mapping. The Generalised mized equilibrium
problem is to find u € C' such that

9(w,y) + (Bu,y —u) + ¢(y) —p(u) 20, Vy € C. (1.4)
Denote the set of solutions of the problem (1.4) by GM EP(g, ¢, B). That is

GMEP(g,p, B)={ueC : g(u,y)+(Bu,y—u)+¢(y) —p(u) 20, VyeC}.
(1.5)

If B = 0, then the generalised mixed equilibrium problem (1.4) reduces to
the following mized equilibrium problem, find u € C such that

g9(u,y) +o(y) —¢(u) 20, VyeC. (1.6)

If ¢ = 0, then the generalised mixed equilibrium problem (1.4) becomes the
generalised equilibrium problem, find u € C such that

g(u,y) +(Bu,y —u) >0, VyeC. (1.7)

Again if B = ¢ = 0, then the generalised mixed equilibrium problem (1.4)
becomes the equilibrium problem, find u € C such that

g(u,y) >0, VyeCl. (1.8)

Equilibrium problems and their generalisations are well known to have
been important tools for solving problems arising in the fields of linear or
nonlinear programming, variational inequalities, complementary problems,
optimisation problems, fixed-point problems and have been widely applied to
physics, structural analysis, management sciences and economics, etc. (see,
for example [1,5,22,23]). In solving equilibrium problem (1.8), the bifunction
g is said to satisfy the following conditions:

1) g(x,z) =0 for all z € C;

A2) ¢ is monotone, i.e., g(x,y) + g(y,z) > 0 for all z,y € C;

A3) for each x,y € C, hmt_,o gtz + (1 —t)z;y) < g(a;y);

A4) for each z € C; y — g(x,y) is convex and lower semicontinuous. It is
known (see [31]), that if g(z,y) satisfies (A1)—(A4) then the function
Flz,y) = g(,y) + (Ba,y — 7) + ply) — () satisfies (A1) — (A4)
and GMEP(g, B, p,) is closed and convex. An interested reader may
see [4,11,13-18,21,24-27,29,30] and the references there in for more
information on equilibrium problem and its generalisations.

Let H; and Hs be Hilbert spaces and C and () nonempty, closed and
convex subsets of Hy and Hs, respectively. Let f1 : CxC — R, fo : @QxQ — R
be bifunctions, ¢1 : C — RU {+00}, @2 : @ — RU {+o0} be functions and

1:C — Hy, By : Q — Hs be nonlinear mappings. Let A : H; — Hy
be a bounded linear operator. Then the split generalised mized equilibrium
problem is to find z* € C such that

filz™,x) + (Biz™,x — ™) + p1(x) — p1(z*) >0, VzeC, (1.9)

(A
(
(
(
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and y* = Ax* € @ solves

" y) + (Bay™ y —y") + ¢2(y) —2(y) 20, Vye@.  (1.10)
We shall denote the solution set of (1.9)—(1.10) by Q = {z* € GM EP(f,, By,
1)+ Az* € GMEP(f2,Ba,2)}. If By = 0 and By = 0, then (1.9)—(1.10)
reduces to the following split mixed equilibrium problem, find z* € C such
that

fil@e™,z) + 1(x) — p1(a¥) >0, Vael, (1.11)
and y* = Ax* € @ solves
(" y) +o2(y) —2(y’) 20, VyeQ, (1.12)

with solution set Q, = {z* € MEP(fi,¢1) : Az* € MEP(f2,p2)}. Again
in (1.9)—(1.10) if ¢1 = @2 = 0, we obtain the following split generalised
equilibrium problem, find z* € C such that

fil@z*,z) + (Bix*,z —x*) >0, Vzel, (1.13)
and y* = Ax* € @ solves
Ly y) + (Bay™y—y") 20, VyeqQ, (1.14)

with solution set Qp = {z* € GEP(f1,B1) : Az* € GEP(f2, B2)}. More-
over, if B = By and ¢1 = @2 = 0, we have the split equilibrium problem,
find z* € C such that

fi(z®,x) >0, Vel (1.15)
and y* = Ax* € @ solves

fy"y) >0, VyeQ, (1.16)

with solution set Qp = {z* € EP(f1) : Az* € EP(f2)}.

Kazmi and Rizvi [12] studied the pair of equilibrium problems (1.15)
and (1.16) called split equilibrium problem.

Recently, Bnouhachem [3] stated and proved the following strong con-
vergence result.

Theorem 1.1. Let Hy and Hs be two real Hilbert spaces, and let C C Hy and
Q C Hy be nonempty closed and convezr subset of Hy and Hs, respectively.
Let A : Hy — Hsy be a bounded linear operator. Assume that f1 : C x C — R
and fo 1 Q X Q — R are bifunctions satisfying A1 — A4 and fo is upper
semicontinuous in the first argument. Let S, T : C' — C be a nonexpansive
mapping such that QoNF(T) # 0. Let f : C — C be a k-Lipschitzian mapping
and n-strongly monotone and let U : C' — C' be T-Lipschitzian mapping. For
a given arbitrary xo € C , let the iterative sequence {xn}, {un} and {y,} be
generated by

Un = T,f; (zn + 'YA*(vaf —I)Axy)
Tn+1 = PolompU(zn) + (I — anpf)(T(yn))] Vn 2 0

where {r,} C (0,2¢) and v € (0, 1), L is the spectral radius of the operator
A*A, and A* is the adjoint of A. Suppose the parameters satisfy 0 < p <
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2
(k—;]), 0<pn<v, wherev=1—/1— u(2n — pk?) and {a,} and {B,} are
sequences in (0,1) satisfying the following conditions:
(a) limy, ooy, =0 and Y 7 | o, = 00,
(b) limy, oo (22) =0,
rm (¢) Y00 |1 — an| < oo and 307 |Bao1 — Bn| < o0
(d) liminf,, o 7, < limsup,, .o 7n < 2¢ and Y, | [rn—1 — 7| < 00.

Then {x,} converges strongly to z € Qo N F(T).

This result of Bnouhachem and other related results in literature depend
on the prior knowledge of the operator norm.

Hendrickx and Oleshevsky [10] Observed that when p = oo or p = 1
the p-matrix norm is the largest of the row/column sums, and thus may be
easily computed exactly. When p = 2, this problem reduces to computing an
eigenvalue of AT A and thus can be solved in polynomial time in n, log% and
the bit-size of the entries of A.

Hendrickx and Oleshevsky [10] further stated and proved the following
theorem.
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FIGURE 1. Errors: Case 1, e = 10~% (top left; 0:010 s); Case
2, € = 107* (top right; 0:011 s); Case 3, e = 10~* (bottom;

0:013 s)
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Theorem 1.2 (Hendrickx and Oleshevsky [10]). Fiz a rational p € [1, 00) with
p # 1,2. Unless P = NP, there is no algorithm which, given input ¢ and a
matric M with entries in {—1,0,1}, computes ||M||, to relative accuracy e,
in time which is polynomial in €' and the dimensions of the matrix.

The result Theorem 1.2 shows that sometimes it is very difficult if not
impossible to calculate or even estimate the operator norm.

It is our intention here to introduce an iterative scheme which does
not require any knowledge of the operator norm and obtain a strong conver-
gence theorem for approximating solution of split generalised mixed equilib-
rium problem which also solves a fixed-point problem for k-pseudocontractive
mapping.

Precisely, we consider the following problem: find z* € F(S) such that

filz™,x) + (Bix™,x — ") + p1(x) —p1(z*) >0, Vexel, (1.18)
and y* = Ax* € @Q solves
L y) + (Bay™ y —y") + 2(y) —2(y”) 20, Vye@, (1.19)

where S is a strictly pseudocontractive mapping on C.

Many interesting practical problems (see [8]), can be formulated as
fixed-point problems. The importance of equilibrium problem cannot be over
emphasised as several mathematical problems (see [1]), such as optimisa-
tion problem, saddle points problem, Nash equilibria problem in noncooper-
ative games, convex differentiable optimisation problem, variational operator
inequalities problem, complementarity problems and variational inequalities
with multivalued mappings can be formulated as equilibrium problems. It is
easily observed that if we let H; = Hs, and S, A the identity operator, then
this problem we are considering reduces to the generalised mixed equilib-
rium problem considered by Zhang [31], which in turn generalises equilibrium
problems. Our problem also complements the work of He [9] and many other
related results in the literature.

2. Preliminaries

We now state some important results that are vital to the proof of the main
result.

Lemma 2.1 [6,7]. Let H be a Hilbert space and T : H — H a nonexpansive
mapping, then for all x,y € H,

1
((#=T2) = (y=Ty), Ty = Ta) < S|(Tz —2) = (Ty = y)|*,  (2.1)
and consequently if y € F(T) then
1
(x =Tz, Ty—Tzx) < §|\Tx—m|\2. (2.2)

Lemma 2.2. Let H be a real Hilbert space. Then the following result holds
o +yl* < llz)* +2(y,x +y), VY ax,yeH. (2.3)
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Lemma 2.3. Let H be a Hilbert space, thenVx,y € H and « € (0,1) we have
laz + (1= a)yl® = allz[|* + (1 - a)[lyl]* — a(l = a)|z —yl*.  (24)

Lemma 2.4 (Demiclosedness principle). Let K be a nonempty, closed and
convex subset of a real Hilbert space H. Let T : K — K be k-strictly pseu-
docontractive mapping. Then I — T is demi-closed at 0, i.e., if v, = x € K
and x, — Tx, — 0, then x = Tx.

Lemma 2.5 [28]. Assume {a,} is a sequence of nonnegative real numbers such
that

ant1 < (1 —yp)an + Yndpn, n >0, (2.5)
where {7y} is a sequence in (0,1) and {6, } is a sequence in R such that
(i) XonioVn = oo,
(ii) limsup,, . 6 <0 or >0 |6nvn| < oc.
Then lim,,_, a, = 0.

Lemma 2.6 ([31]). Let C be nonempty closed convex subset of a Hilbert space
H. Let B : C — H be a continuous and monotone mapping, ¢ : C — R
be a lower semicontinuous and convex function, and f : C x C — R be a
bifunction that satisfies (A1) — (A4). For r > 0 and x € H; then there exists
u € C such that

1
Fluy) + (Bujy —uw) +o(y) —pu) + ~{y—w,u—-2) 20, vy € C.  (2.6)
Define a mapping T : C — C as follows:

T/ (2) = {ue O fluy) + (Buy - u) +¢(y) - p(u)
—&—%(y—u,u—@zo, VyEC}. (2.7)

Then, the following conclusions hold:
1. T is single-valued,
2. T is firmly nonexpansive, i.e., for any x,y € H; ||Tf (z) — T (v)||* <
(T (z) = T (y), = — ),
3. F(I}) = GMEP(f; By ).
4. GMEP(F; B; ) is closed and convez.

3. Main results

Theorem 3.1. Let Hy and Hy be two real Hilbert spaces, let C C Hy and
Q C Hs be nonempty closed convex subsets of Hy and Hs, respectively. Let
A : Hy — Hy be a bounded linear operator and A* the adjoint of A. Let
f1:CxC =R and fo: QxQ — R be bifunctions satisfying conditions (Al)—
(A4) and fo is upper semicontinuous in first argument. Let By : C' — Hy and
By : Q — Hs be continuous and monotone mappings, o1 : C — R U 400
and @9 : Q — R U400 be proper lower semicontinuous and convex function.
Let S : C — C be a k-strictly pseudocontraction, such that QN F(S) # 0.
Let the step size v, be chosen in such a way that for some ¢ > 0; v, €
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(T2 — 1) Aw, |2

(e, e
|A*(T7 — 1) Awn||?

being any nonnegative real number). Then the sequence {wy}, {x,} and {yn}

generated iteratively for an arbitrary xo € C and a fired u € C' by

—€) for T2 Aw,, # Aw, and v, = 7, otherwise (v

wy, = (1 — an)x, + anu
Yn = T (w, + A" (T — 1) Aw,) (3.1)
Tpt1 = (1 - ﬁn)yn + BnSYn, V>0

converges strongly to a point p € QN F(S), where {an, 152, and {8,152, are
real sequences in (0,1) satisfying the following conditions:

(1) limy, oo n =0, Y00 oy = 00,
(ii) 0 < liminf 3, <limsup(, <1 — k.
Proof. Let p € QN F(S), then from (3.1) we have,

znt1 = pl1* = [|(1 = Bu)yn + BnSyn — pl|?
= I(1 = Bn)(n — P) + Bn(Syn — p)II?
= (1= Bn)?llyn — pII* + B211Syn — oI
+25n(1 - 6n)<yn — D, SYn _p>
< (1= 62)?Mlyn — I + Balllyn — plI* + Kllyn — Synl|?]

+28,(1 = B2)[|lyn — ||
1—k 2
"y, — Syl

= (1 =260 + B)llyn — plI* + B 1llyn — pII” + Kllyn — Synll*]
+2Bnllyn — pII* = 283 llyn — plI?
—Bn(1 = Bn) (1 = &)y — SynHz
= [lyn _p||2 + [/62” = Bn(L = Bn)(1 = K)]llyn — SynHQ
= |lyn _p”2 + Bulk + Bn — llyn — Syn‘|2
< lyn — plI*. (3.2)
Again from (3.1),
lyn = pII* = [|T (wn + 70 A*(TS2 = I) Awy) — pl|?
< lwn + AT = 1) Aw, = pl®
= llwn = Bl + A" (TE2 — 1) |
+27 (wy, — p, AX(T2 — I) Awy,), (3.3)

but from Lemma 2.2
2vn (wy, — p, A* (Tfj — D) Aw,) = 27, (A(w, — p) + (TJZ —I)Aw,
—(Tf> — D) Aw,, (T)> — ) Aw,)
= 27, (T2 Aw,, — Ap, (T)> — T) Aw,,)
—(T = 1) Aw,|?
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1
< 2 ST 1) Aw|P=|[(T 1) Aw, |2

= —Vll(T = 1) Aw,|*. (3.4)
(Tf2 — 1) Aw,,|[?

Tn

Therefore, from (3.3), (3.4) and the condition ~,, € (e, y -
|A(T5; = T) Awn|?

€), we obtain
1y = pII* < llwn = pI® + 2| AN T — D Aws| > = 1l (T2 — 1) Awn|®
= |lwp —=pl P+ byl [A* (T2 = 1) Aw,||* = |[(TL2 — 1) Aw, |
< ||wn — pl*. (3.5)
Thus from (3.2) and (3.5) ,
[|#n41 = pll < [lwn —pl|
= [|(1 — an)zn + anu —pl|
= I(1 = an)(@n — p) + an(u—p)ll
< (1= am)llzn = pll + anllu = pl|
< max{|zn — pl|, |lu —pll}

< max{||zo — pl|, [lu — pl[}- (3.6)

Therefore, {z,} is bounded and so also are {y,}, {w,} and {Sy,} bounded.
Since S is a k-strictly pseudocontraction then,

1Sz = plI* < ||z — plI* + &l|lz — Sz||*
= (Sx —p, Sz —p) < (x —p,x —p) + K||z — Sz
)+ (S —p,x —p) < (x —p,x —p) +sllz — Sz||?
= (Sz—p, Sz — 1) < (& — 52,2 — p) + K}z — Sa
= (Sx —x,8c —x) + (x — p,Sz — 2) < (v — Sz, — p) + K||x — Sz||?

S 1Sz — 2l < (z — p,z — Sz) — (& — p, Sz — ) + +llz — Sa|

= (1—r)||Sz —2||> < 2(x — p,x — Sz). (3.7)
It follows from (3.1) and (3.7) that

|#ns1 = plI* = [|(1 = Bu)yn + BaSyn — plI?
= Hyn —-p+ 671(5%1 - yn)||2
= lyn — pII* + B211Syn — pII* = 280 (yn — D, SYn — Yn)
<|lyn =PI + Bu(Bn — (1 = £))[|Syn — plI?
< lwn = plI* + Ba(Ba — (1 = K))|ISyn — pl[?
= /(1 — an)xn + anu — plI* + Bn(Bn — (1 — K))|[Syn — oI
= (1= an)?lJen —plI* + af||u—p|?
+2a, (1 — ap ){(xn — p,u — p)
+Bn(Bn — (1 = £))|[Syn — plI*. (3.8)

We now consider two cases to establish the strong convergence of {x,} to p.

= (Sz —p,Sx — =z
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Case 1. Assume that {||z,, —p||} is monotonically decreasing sequence. Then
{z,} is convergent and clearly

Jimllew = pll = 1 [fenss —pll (3:9)
Thus, from (3.8), we have

Bu((L = ) = Bu)lISyn — ynl* < (1 = an)?[lwn — plI* = [J@ns1 —plI*
+oi[Ju —plI* + 200 (1 = an){@n — p,u—p)

— 0,n — oo. (3.10)
Therefore,
1SYn = ynl| = 0,7 — oo. (3.11)
From (3.1),
llwn — Tpl| = anllu — zp]] — 0,1 — 0. (3.12)

Again from (3.1), we obtain
|@na1 = plI* = [|(1 = Bu)yn + BaSyn — plI?
= (1=82)llyn—pII>+B211Syn —pl1*+28n (1= Bn) (Y. — D, Syn —p)
<|yn = pI* + Bul=1+ & + Balllyn — Synl|?
< |lyn —pl?
= |IT (wn + W A* (T2 = ) Awy,) — p||?
< Hwn _pH2 + 'YZHA*(TZS - I)Awn”Q - 'Yn||(T7fj - I)Awn”Q
< (1=an)?[|an —pl P +ai |Ju—pl|* + 205 (1 —an ) {2 —p, u — p)
FVRl|AS(TL2 = 1) Awn||* = yul (T2 — 1) Aw, |
< (1=an)?l|an — pl P+ l[u—p||* + 20, (1 — a) {@n —p, u—p)

o lnl[AN (T — D Aw,||? = (T2 — 1) Aw,|?). (3.13)
It then follows from (3.13) and the condition
T2 — T) Aw,||?
o L JAwal | (3.14)
A= (77 = 1) Awn |2

that
|01 = pl[* < (A=an)®|lzn—pl[*+ai |lu = pl|* + 200 (1 — @) (0 — p,u — p)
—€||A*(T2 — 1) Aw,|?, (3.15)
which implies
e[ AT = ) Awn||? < (1 = an)?||zn = pl[* = [l — pl|?
+a2||lu — pl|* + 20, (1 — ap){zy — pyu —p). (3.16)
Hence,

lim [|A*(T/? — I)Aw,||* = 0. (3.17)

n—oo



2118 F. U. Ogbuisi, O. T. Mewomo JFPTA

Furthermore, from (3.13) and (3.17)
Wll(T — DAw,|? < (1= an)?|lz = plI® = [[ents — pI* + ah|lu— pl”

—s—fyleA*(T?!:f — D) Aw,|* 420, (1 — o) (2, — pyu — p)
— 0,n — o0. (3.18)
Therefore
lim |[(T> — I)Aw,|| = 0. (3.19)
On the other hand, if Trff Aw,, = Aw,, then obviously,
lim [|A*(T? — I)Aw,||* =0, (3.20)
n—oo
and
lim (T2 — I)Aw,||* = 0. (3.21)
n—oo
Also,

llyn = oI = I} (wp + 70 AN (T2 = 1) Aw,) = p||?
< AYn — pywn + ’YnA*(T#:? —I)Aw, —p)

1 *
= i[llyn — plP [ wn+7n A (T2 — 1) Aw, — p|*> = ||yn — p
—(wn + 1 A*(T = I Aw,) — p)| ]

IN

1 *

Sl = 21 + [[wn = plP+7n (| A™(TL2 = 1) Awa | — |
(T2 — ) Aw,|)?) = ||lyn — p

—(wn + 7 AY(T? — I)Aw,, — p)||?]

IN

1 *
Sy = Pl +llwn = I =(llyn — wal*+7]14 (T2 — 1) Aw,||
=27 (Yn — wp, A* (TJZ - I)Awn>)]
1 *
< lllyn = pIP+llwn = pIl* = llyn = wall*+7 14 (T2 = 1) Awy ||
27y — wa ||| A*(T]2 — 1) Aw,||]. (3.22)
That is
1y = pII* < [lwn = pII* = 1lyn — wall> + 23nllyn — walll|A*(TL — 1) Aw,||.
(3.23)
It then follows from (3.13) and (3.23) that
lzns1 = pI* < [fwn=pl > =[lyn—wall* + 27allyn — walll|A*(T2 = I) Aw, ||,
(3.24)
which implies that
1yn = wal[* < fJwp = pl* = llznt1 = pI* + 29| lyn — wall]|A*
(T2 — I)Aw, ||

Tn

=1 —an)zy +anu—p||2 —|Zn+1 _pH2 + 290 |yn — wal|[|A*
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(T2 = 1) Aw,||
< lzn =l = llzns1 = plI* + o |Ju —pl®
+2a, (1 — ap){xp — p,u — p)
+29n|[Yn — wal|[|[A* (T2 — I) Aw, || — 0,7 — oo. (3.25)
From (3.12) and (3.25), we obtain that

[T — ynl| < ||zn — wnl| + [Jwn — yul| — 0,7 — oo. (3.26)
Let u,, = w, + %LA*(TTff — I Aw,.
Then

[tn — wal| = Yn||[A* (T2 — I) Aw,|| — 0,7 — occ. (3.27)

Combining (3.25) and (3.27), we get
1y — unll < |lyn — wal| + [[wn — un|| — 0,n — oo. (3.28)

It follows from (3.11) and Lemma 2.4 that {y, } converges weakly top € F(T)
and consequently {z,} and {w,} converges weakly to p.

Next, we show that p € GMEP(f1, B1,¢1). Since y,, = T (wy, +7, A* (T2 —
I)Aw,), we have

J1Wn,y) + (Biyn, ¥ — yn) + 01(y) — ©1(yn)
1
(Y = Yn, A" (Tjj —IAw,) >0, VyeC.

Tn

1
+T‘7<y —YnyYn — wn>
(3.29)

Thus, from the monotonicity of Fy(z,y) := fi(x,y) + (Bixz,y — x) + ¢1(y) —
v1(x), we have

1 *
7(1/ —YnsYn — wn> - 7<y = Yn, A (vaj - [)Awn>
> f1(y, yn) + By yn — y) + 1(Yn) — 01(y), (3.30)

which implies that

1 1 N
7<y_y”lc’ynk _wnk> - Ti<y_ynkvﬁynA (Tffk _I)Awnk> > fl(y’ynk)

Nk Nk
H(B1Y, Yny, — Y) + €1 (Yni) — p1(y)- (3.31)
Since y, — p, then it follows from (3.12), (3.19), (3.24), (3.26) and A4 that,
fi(y,p) + (Biy,p —y) + ¢1(p) —p1(y) < 0,Vy € C. (3.32)

Now, for fixed y € C, let y; := ty + (1 — t)p for all ¢ € (0,1). This implies
that y; € C. Thus from Al and A4
0= f1(ye, yt) + (B1ye,yr — ye) + 01 () — 01(ye)
< tf1(ye,y) + (Brye, vy — ye) + p1(y) — p1(ye)]
(1 =O[f1(ye,p) + (B1ye,p — ye) + 01(p) — 91 (y1)]
< tf1(We, y) + (Brye, v — ye) + 01(y) — 1(ye)]- (3.33)

Therefore

F1(e,y) + (Biys, y — y) + ©1(y) — p1(ye) > 0. (3.34)
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Furthermore, from A3, we have

filp,y) +(Bip,y = p) + ¢1(y) — #1(p) = 0, (3.35)
which implies that p € GMEP(f;,B1,91). Now we show that Ap €
GMEP(fs, Ba,v2). Since {w,} is bounded and w,, — p, there exists a sub-
sequence {wy, } of {w,} such that w,, — p and since A is a bounded linear
operator, Aw,, — Ap.

Set 2z, = Awy, — Tfjk Awy,, . Then we have that Aw,, — z,, = Tfjk Awy,,
and from (3.19), we have

nh_)ngo Zn, = 0. (3.36)

Therefore, from the definition of T,!i : o, we observe that
fa(Awn,, = zn, s y) + (Bawny, = 2, Y = Wny + 2Zny) + 02(y) — @2(wn, — 2n,)
+L<y — (Wny, — 2ny, )y (Wny — 2n,,) — Wn, ) = 0,Vy € C. (3.37)

ng
Since f5 is upper semicontinuous in first argument, then F5 defined as
Fy(z,y) = fa(@,y) + (Bex,y — x) + 2(y) — p2(x) (3.38)

is also upper semicontinuous in first argument. Thus, taking lim sup to the
inequality (3.37) as k — oo and using assumption A3, we have

f2(Ap,y) + (B2Ap,y — Ap) + ¢2(y) — ¢2(Ap) 20 ¥y € C,  (3.39)
which implies Ap € GM EP(fa, Ba, ¢2). Hence p € QN F(S).
We now show that {x,,} converges strongly to p.
£nt1 = 2l1* = [I(1 = Ba)yn + BaSyn — plI?
< lyn — plI?
< flwn —p||2
= [|(1 — an)wn + anu —pl®
= [|(1 = an)(zn — p) + an(u —p)|[?
= (1=an)?[|an—pl[*+ap|[u—pl|[* +2a, (1 — an){z, —p,u—p)
< (L=an)||zn —pl* +anlanllu = p|[* + 2(1 = ay) (@ —p, u—p)].
(3.40)

Therefore, by Lemma 2.5, we obtain z,, — p, n — 0.

Case 2. Assume that {||z,, — p||} is not monotonically decreasing sequence.
Set T, = ||z, — p||? and let 7 : N — N be a mapping for all n > ng (for some
no large enough) defined by

7(n) :=max{k € N: k <n,T) <Tii1}. (3.41)

Clearly 7 is a non-decreasing sequence such that 7(n) — oo as n — oo and
L) £ Trmy41, for n > ng. It follows from (3.8) that

0 < ||x7'(n)+1 _p”2 - ||x‘r(n) _pH2
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< Nzrmy+1 = plI* = (1= o)) |27y — pII?
< O‘i““ —p||2 + an(l = an){Tn — p,u—p)
+ Bu(Bn — (1= &))llyn — Syall*. (3.42)
That is,
Brmy (1 = &) = Brm)lISUr(ny = Yr(m|I* < @F ) llu = pl|*
+ 207(n) (1 = () (T (n) — Py u — D)
—0, as n— oo (3.43)
By the same argument as (3.11) to (3.28) in case 1, we conclude that {z,(,)},
{¥r(ny} and {w, ()} converge weakly to p € F'(S) N Q. Now for all n > ny,
0 < [ler(uyrr = plI* = |27y — pII?
< (1= arm)lerm) = plI* + a2 llu = plI* + 200y (1 = oz () (T ()
—p,u—p) = |27 — pl?
= Ay [ oy |l = PI* +2007 () (1 = () (2 () =P u =) = |27 () — ]

(3.44)
Therefore,
||x7'(n) - p||2 < aT(TL)||u - p”2 + 2ar(n)(1 - ar(n))<x7(n) —p,u— p>
— 0, n — oo. (3.45)
Thus,
lim ||z, —p|?=0, (3.46)
n—oo
and
lim FT(n) = lim FT(n)+1. (3.47)

Furthermore, for n > ng, it is observed that I';(,) < I';(py4q if n # 7(n)
(that is 7(n) < n) because I'; > I'j41 for 7(n) +1 < j < n. Consequently,
for all n > ng,

0 < Fn < maX{I‘T(n),FT(n)H} = FT(n)-i-l' (348)
So lim, oo I'y, = 0, that is {z,},{y,} and {w,} converge strongly to p €
F(S)nQ, Vn > 0. O

Corollary 3.2. Let H, and Hs be two real Hilbert spaces, let C' C Hy and
Q C Hs be nonempty closed convex subsets of Hy and Hs, respectively. Let
A : Hiy — Hs be a bounded linear operator and A* the adjoint of A. Let
fi:CxC —=Rand fo: Q xQ — R be bifunctions satisfying conditions
(A1) —(A4) and fo is upper semicontinuous in first argument. Let By : Hy —
Hy, and By : Hy — Hs be continuous and monotone mappings, p1 : C —
R U400 and ps : Q — R U +o0 be proper lower semicontinuous and convex
function. Let S : C — C be a nonexpansive mapping, such that QN F(S) # (.
Let the step size v, be chosen in such a way that for some € > 0; v, €
(o, T D
)

€
|A*(T2 = I) Aw,||?

— e) for TrfjAwn # Aw,, and 7y, = 7 otherwise (v
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being any nonnegative real number). Then the sequence {wy},{x,} and {y,}
generated iteratively for an arbitrary xo € C and a fired u € C' by

wp, = (1 — ap)xy + apu
Y = T (wy, + 4 A (T2 — 1) Aw,,) (3.49)
Tn+1 = (1 - ﬁn)yn + ﬁnsy’ru vn > 0

converges strongly to a point p € QN F(S) where {a,}52 1 and {$,}22, are
real sequences in (0,1) satisfying the following conditions:

(1) limy oo, =0, Y00 |y = 00,

(ii) 0 < liminf 8,, <limsup S, < 1.

Corollary 3.3. Let Hy and Hs be two real Hilbert spaces, let C C Hy and
Q C Hs be nonempty closed convex subsets of Hy and Hs, respectively. Let
A : Hy — Hy be a bounded linear operator and A* the adjoint of A. Let
f1:CxC =R and fo: QxQ — R be bifunctions satisfying conditions (Al)—
(A4) and fo is upper semicontinuous in first argument. Let By : Hy — Hy and
By : Hy — Hs be continuous and monotone mappings. Let S : C — C be a k
strictly pseudocontraction, such that Qp N F(S) # 0. Let the step size vy, be

T ~Dwal
JA°(1 = DAw, [P
for TfjAwn %+ Aw,, and vy, = 7, otherwise (v being any nonnegative real
number). Then the sequence {wy},{xn} and {yn} generated iteratively for
an arbitrary xg € C and a fized u € C by

chosen in such a way that for some € > 0; 7, € (e

wp, = (1 — ap)zn + anu
Y = T (wy, + 4, A (T2 — 1) Aw,,) (3.50)
Tn+1 = (1 - ﬁn)yn + ﬁnsy’ru vn > 0

converges strongly to a point p € QpNF(S) where {a,}22, and {B,}52 are
real sequences in (0,1) satisfying the following conditions:

(1) limy oo p, =0, Y00 |y = 00,
(ii) 0 < liminf 8, <limsup S, < 1 — k.

Corollary 3.4. Let Hy and Hs be two real Hilbert spaces, let C C Hy and
Q C Hs be nonempty closed convex subsets of Hy and Hs, respectively. Let
A : Hy — Hy be a bounded linear operator and A* the adjoint of A. Let
fi:CxC —Rand fo : Q x Q — R be bifunctions satisfying conditions
(A1) — —(A4) and fo is upper semicontinuous in first argument. Let o1 :
C — RU+o0 and vz : Q@ — RU 400 be proper lower semicontinuous and
convex function. Let S : C — C be a k strictly pseudocontraction, such
that Q, N F(S) # (0. Let the step size 7y, be chosen in such a way that for
TE = 1) Awa
AT — 1) Aw, |
Yn =7, otherwise (v being any nonnegative real number). Then the sequence
{wn}, {zn} and {yn} generated iteratively for an arbitrary xo € C and a fived
ue C by

some € > 0; v, € ( — 6) for T,fjAwn #+ Aw, and
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wp, = (1 — ap)zy, + anu
Yn = T (wy + 1 A*(T2 = I) Aw,) (3.51)
Tn41 = (1 - 5n)yn + BnSYn, Yn >0
converges strongly to a point p € Q, N F(S) where {a, }52; and {8}, are
real sequences in (0,1) satisfying the following conditions

(1) limy oo, =0, Y00 |y = 00,

(ii) 0 < liminf §,, <limsup S, < 1 — k.

Corollary 3.5. Let Hy and Hs be two real Hilbert spaces, let C° C Hy and
Q C Hy be nonempty closed convex subsets of Hy and Hsy, respectively. Let
A : Hy — Hy be a bounded linear operator and A* the adjoint of A. Let
fi:CxC —=Rand fo: Q xQ — R be bifunctions satisfying conditions
(A1) —(A4) and f5 is upper semicontinuous in first argument. Let S : C — C
be a K strictly pseudocontraction, such that QoNF(S) # (0. Let the step size y,
(T2 — 1) Aw,|?
AT = 1) Aw, P

e) for T,Ziwan #+ Aw,, and v, =, otherwise (v being any nonnegative real

be chosen in such a way that for some € > 0; v, € (e

number). Then the sequence {wy},{xn} and {y,} generated iteratively for an
arbitrary xo € C' and a fized u € C by

wy = (1 — an)xn, + anu
Yn = Tﬂz (w, + fynA*(Tﬂif —I)Aw,) (3.52)
Tpt1 = (1 - ﬁn)yn + BnSYn, Y >0

converges strongly to a point p € Qo N F(S) where {an 152, and {6,152, are
real sequences in (0,1) satisfying the following conditions

(1) lmy oo an =0, D00 | = 00,

(ii) 0 < liminf 3, <limsupf, <1 — &.

4. Numerical example and application
We present here in this section an example, a numerical result and an appli-

cation to split convex minimisation problem .

4.1. Example

Let Hy = Hy = L?([0,1]) with inner product given as (f, g) = fol f(t)g(t)dte.
Now take fi(x,y) := ||lyllrz — ||x||r2; Bix := 2x; p1(x) = ||x||z2 and Sz = «.
Suppose A : L%([0,1]) — L2([0,1]) is defined by

1
Ax(s) = /0 V (s, t)x(t)dt, Vo € L([0,1]),
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where V' : [0,1] x [0,1] — R is continuous. Then A is a bounded linear
operator and the adjoint A* of A is defined by

1
A*x(s) :/ V(t,s)x(t)dt, Va € L*([0,1]).
0
Here we take V (s, t) = e*'. Finally take fo(z,y) := ||y|[3.—||z||32; Baz := 3x;
@o(x) = ||z||2.. We consider the problem; find 2* € H; such that

Sz* =x", (4.1)

file*,z) + (Bix*,x — %) + p1(x) — p1(2*) >0, Vo € Hy,  (4.2)

and y* = Ax* € Hs solves

LW y) + (Bay™ y —y*) + @2(y) —2(y*) 20, Vy € Hy. (4.3
The set of solutions of problem (4.1)-(4.3) is nonempty (bince x( ) =0,
a.e. is in the set of solutions). Take a,, = $7 Bn = (1 — m) and

let the step size =, be chosen in such a way that for some ¢ > 0, v, €

(o, T~ Dt
AT — 1) Awy|?

being any nonnegative real number) in iterative scheme (3.1) to obtain

— e) for Tfj Aw,, # Aw, and =, = v, otherwise (v

Wy, = (1—n+3)xn+n+3u

Yn = T (wy + 1 A* (T2 — T) Aw,) (44)
rmii= (1= (1= 2))on 4 (1 k) war n 20

4.2. Example with numerical computation
Let Hy = Hy =Rand C = Q = R. Let f1(z,y) = —52%+ay+4y?, ¢1(v) = 22

and By (z) = 4z, then T (z) = I w—l— T Also Let fo(x,y) = =322 +2y+2y2,
T
$2(x) = 2% and Bo(x) = 2z, then T2 (z) = TEER Furthermore, let Az =
T
8x, A*x = 8z and S(x) = —2x. We make difference choices of xo, u and use
% < 10~* for stopping criterion. Take a,, = H%_Q, B, = (1 - m)
Ty = and let the step size 7, be chosen in such a way that for some

(T2 — 1) Aw,||?

| ATz = I) Aw, |2
positive real number otherwise, in iterative scheme (3.1) to obtain

€> 0,7 € (6, | — e) for T2 Aw,, # Aw, and 7, any

_ 1
_11(7711)“’”
Wn, +’7n8 ( 11(n+1)+1 )
15 (7)) + 1

$n+1=(1—*(1_n7+2>>y _%<1_ﬁr2)y"’ vn 2 0.

Yn =
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(T2 — 1) Awy |2

AT = 1) Aw,|?
Aw,, and 7y, = 0.0000021 otherwise.

Case 1. xp =2, u=1and v, € (e —e) for T,fwan;é

(T — 1) Awy |2
| A*(T2 — 1) Aw, |2

Case 2. xop =6, u =3 and 7, € (e, — 6) for T,{wan =+
Aw, and 7y, = 0.0000222 otherwise.
(T — 1) Aw,|?

|A*(T2 — 1) Aw, |2

Case 3. xp =1, u =8 and 7, € (67 — 6) for T,{wan #

Aw,, and 7, = 0.0003 otherwise.

The Mathlab version used is R2014a and the execution times are as
follows:

(1) (case 1, ¢ = 10~*) and execution time is 0.010 s.

(2) (case 2, ¢ = 10~*) and execution time is 0.011 s.
(3) (case 3, ¢ = 1072) and execution time is 0.013 s (Fig. 1).

4.3. Applications to split convex minimisation problem

Here, we apply our result to study the following split convex minimisation
problem: find

x* € F(S) such that 2™ = arg melg(hl(x) + ¢1(x) + 1(x)), (4.6)
and such that
Az™ = arg ggg(hg(l‘) + ¢2(x) + pa(x)), (4.7)

where C' and @) are nonempty closed and convex subset of H; and Hy. Also
h1,01 : C — Rand hs, s : Q — R are four convex and lower semi-continuous
functionals. Furthermore, ¢; : C — R and ¢5 : @ — R are convex continu-
ously differentiable functions and A : Hy — Hy a bounded linear operator.
Let fi(z,y) = hi(y) — hi(z) and B; = V¢;, i = 1,2 and V¢ denote the
gradient of ¢.

Then the split convex minimisation problem (4.6)—(4.7) can be formulated
as the following split generalised mixed equilibrium problem: find z* € F(.5)
such that

hi(z) — h1(z*) + (Vor2*, 2 — x¥) + v1(x) — p1(2*) >0, Vz e C, (4.8)
and y* = Ax* € @ solves
ha(y) — ha(y™) + (Vooy™,y — y*) + w2(y) —p2(y") =0, Vy € Q. (4.9)

Thus Theorem 3.1 provides a strong convergence theorem for solving split
convex minimisation problem (4.6)—(4.7).
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