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Abstract. We present the result and the ideas of the recent paper (Berti
and Montalto, Quasi-periodic standing wave solutions of gravity-capillary
water waves, http://arxiv.org/abs/1602.02411, 2016) concerning the ex-
istence of Cantor families of small-amplitude time quasi-periodic stand-
ing wave solutions (i.e. periodic and even in the space variable x) of a
2-dimensional ocean, with infinite depth, in irrotational regime, under
the action of gravity and surface tension at the free boundary. These
quasi-periodic solutions are linearly stable.
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1. Introduction

An important research stream of the last decades has been the development of
Kolmogorov–Arnold–Moser (KAM) theory for partial differential equations
(PDEs). Actually, many PDEs arising in Physics are infinite-dimensional
Hamiltonian or reversible dynamical systems

ut = X(u), u ∈ H, (1.1)

defined on some phase space H of functions u := u(x). Main examples are
the nonlinear wave, Klein–Gordon and Schrödinger equations, in one and
more space dimension, the KdV (Korteweg de Vries) equation, the water
waves equations for fluids. The Hamiltonian and the reversible structure of
such equations eliminates dissipative phenomena, like “friction”. When such
PDEs are defined on a bounded domain, like a compact interval x ∈ [0, π],
or x ∈ T

d := (R/2πZ)d (periodic boundary conditions), or, more in general,
x belongs to a compact manifold, their dynamics is expected to have a “re-
current” behaviour in time, and it is natural to expect the existence of many
time-periodic and quasi-periodic solutions.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-016-0375-z&domain=pdf
http://arxiv.org/abs/1602.02411
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We recall that a quasi-periodic solution of the Eq. (1.1) with ν frequen-
cies is a smooth solution defined for all times, of the form

u(t) = U(ωt) ∈ H where T
ν � ϕ �→ U(ϕ) ∈ H

is 2π-periodic in the angular variables ϕ := (ϕ1, . . . , ϕν) and the frequency
vector ω ∈ R

ν is irrational, namely ω · k �= 0, ∀k ∈ Z
ν \ {0}. In such a case,

the linear flow {ωt}t∈R is dense on T
ν and the torus-manifold

T := U(Tν) ⊂ H
is invariant under the flow Φt of (1.1). Denoting by Ψt

ω : Tν → T
ν the linear

flow

Ψt
ω(ϕ) := ϕ + ωt, ϕ ∈ T

ν ,

the search of a quasi-periodic solution amounts to look for U such that

Φt ◦ U = U ◦ Ψt
ω. (1.2)

Note that (1.2) only requires that the flow Φt is defined and smooth on the
compact manifold T := U(Tν). This remark is important because, for PDEs,
the flow could be ill-posed in a neighborhood of the torus T . From a functional
point of view, (1.2) is equivalent to the equation

ω · ∂ϕU(ϕ) − X(U(ϕ)) = 0, ∀ϕ ∈ T
ν .

When ν = 1, the solution u(t) is periodic in time, with period 2π/ω.
In the seventies, existence of periodic solutions for semilinear wave equa-

tions has been obtained by Rabinowitz [31] and Brezis–Coron–Nirenberg [12]
(followed by many others) via minimax variational methods. These proofs
work only to find periodic orbits with a rational frequency, because the other
periods give rise to a “small divisors” problem. A fortiori, they cannot be
extended for the search of quasi-periodic solutions.

Independently of these global results, local bifurcation results of peri-
odic and quasi-periodic solutions were also proved. We cite the pioneering
bifurcation results of periodic solutions by Rabinowitz [32,33] for fully non-
linear forced wave equations with a small dissipation term. Then, we refer to
the beginning of KAM theory for PDEs started with works of Kuksin [27]
and Wayne [37], concerning also quasi-periodic solutions, and subsequently
developed in the nineties by Craig–Wayne [16], Bourgain [11], Pöeschel [30],
among others. All the latter results hold for 1-dimensional semilinear wave
and Schrödinger equations. In the last years, KAM theory has been consid-
erably further extended, mainly in two important directions:

1. Wave and Schrödinger equations in higher space dimensions,
2. quasi-linear PDEs, namely equations of the form ut = L(u) + N(u)

where L is a linear differential (or pseudo-differential) operator of order
ord(L) and the nonlinearity N depends on the derivatives ∂α

x u of the
same order |α| = ord(L).

We have no space to report, here, the complete literature concerning KAM
theory for PDEs for which we refer to the recent survey paper [6]. Here, we
want to present the recent KAM result in [7] for the water waves equations,
which are, indeed, a quasi-linear system.
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1.1. Capillary–gravity standing wave solutions

Consider a 2-dimensional ocean, with infinite depth, filled by an incompress-
ible fluid, in irrotational regime, under the action of gravity and capillarity
at the surface. The fluid satisfies periodic boundary conditions and occupies
the free boundary region

Dη := {(x, y) ∈ T × R : y < η(t, x), T := R/(2πZ)} .

Since the velocity field is irrotational, it is the gradient of a velocity poten-
tial Φ(t, x, y). The incompressibility condition means that Φ is an harmonic
function on Dη. In this context, the Euler equation for the motion of the fluid
reduces to the Bernoulli equation. The water waves equations are

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tΦ + 1
2 |∇Φ|2 + gη = κ ηxx

(1+η2
x)

3/2 at y = η(x)

ΔΦ = 0 in Dη

∇Φ → 0 as y → −∞
∂tη = ∂yΦ − ∂xη · ∂xΦ at y = η(x)

(1.3)

where g is the acceleration of gravity, κ ∈ [κ1, κ2], κ1 > 0, is the surface
tension coefficient and

ηxx

(1 + η2
x)3/2

= ∂x

(
ηx

√
1 + η2

x

)

is the mean curvature of the free surface. The unknowns of the problem are
the free surface y = η(x) and the velocity potential Φ : Dη → R. The first
equation in (1.3) is the Bernoulli condition (also called dynamics condition)
according to which the jump of pressure across the free surface is proportional
to the mean curvature. The last equation in (1.3) (also called Kinematic
condition) expresses that the velocity of the free surface coincides with the
one of the fluid particles, and therefore, the fluid particles on the free surface
y = η(x, t) remain on it along the fluid evolution. In the sequel, we shall
assume (with no loss of generality) that the gravity constant g = 1.

Following Zakharov [35] and Craig–Sulem [14], the evolution problem
(1.3) may be written as an infinite-dimensional Hamiltonian system. At each
time t ∈ R, the profile η(t, x) of the fluid and the value

ψ(t, x) = Φ(t, x, η(t, x))

of the velocity potential Φ restricted to the free boundary uniquely determine
the velocity potential Φ in the whole Dη, solving (at each t) the elliptic
problem

ΔΦ = 0 in Dη, Φ(x + 2π, y) = Φ(x, y), Φ|y=η = ψ, ∇Φ(x, y) → 0 as y → −∞.

As proved in [35], [14], system (1.3) is then equivalent to the system
{

∂tη = G(η)ψ,

∂tψ + η + 1
2ψ2

x − 1
2
(G(η)ψ+ηxψx)

2

1+η2
x

= κ ηxx

(1+η2
x)

3/2

(1.4)
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where G(η) is the so-called Dirichlet–Neumann operator defined by

G(η)ψ(x) :=
√

1 + η2
x ∂nΦ|y=η(x) = (∂yΦ)(x, η(x)) − ηx(x) (∂xΦ)(x, η(x))

(we denote by ηx the space derivative ∂xη.) The operator G(η) is linear in ψ,
self-adjoint with respect to the L2 scalar product and semi-positive definite,
actually its Kernel are only the constants. It depends in an analytic way with
respect to the free boundary η(x) and its derivative with respect to η is

dηG(η)[η̂]ψ = −G(η)(Bη̂) − ∂x(V η̂) (1.5)

where

B := B(η, ψ) :=
ηxψx + G(η)ψ

1 + η2
x

, V := V (η, ψ) := ψx − Bηx. (1.6)

The vector (V,B) = ∇x,yΦ is the velocity field evaluated at the free surface
y = η(x). It is well known since Calderon that the Dirichlet–Neumann opera-
tor G(η) is a pseudo-differential operator with principal symbol |D|; actually,
G(η) − |D| ∈ OPS−∞, if η is C∞.

The Eq. (1.4) are the Hamiltonian system (see [14,35])

∂tη = ∇ψH(η, ψ), ∂tψ = −∇ηH(η, ψ)

∂tu = J∇uH(u), u :=
(

η
ψ

)

, J :=
(

0 Id
−Id 0

)

, (1.7)

where ∇ denotes the L2-gradient, and the Hamiltonian

H(η, ψ) :=
1
2
(ψ,G(η)ψ)L2(Tx) +

∫

T

η2

2
dx + κ

∫

T

√
1 + η2

x dx (1.8)

is the sum of the kinetic energy

K :=
1
2
(ψ,G(η)ψ)L2(Tx) =

1
2

∫

Dη

|∇Φ|2(x, y)dxdy,

the potential energy and the energy of the capillarity forces (area surface
integral) expressed in terms of the variables (η, ψ). In light of (1.7), the vari-
ables (η, ψ) are symplectic “Darboux coordinates”. The symplectic structure
induced by (1.7) is the standard Darboux 2-form

W(u1, u2) := (u1, Ju2)L2(Tx) = (η1, ψ2)L2(Tx) − (ψ1, η2)L2(Tx) (1.9)

for all u1 = (η1, ψ1), u2 = (η2, ψ2).
The water-waves system (1.4)–(1.7) exhibits several symmetries. First

of all, the mass
∫

T

η dx

is a prime integral of (1.4). Moreover,

∂t

∫

T

ψ dx = −
∫

T

η dx −
∫

T

∇ηK dx = −
∫

T

η dx
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because
∫

T
∇ηK dx = 0. This follows because R � c �→ K(c+η, ψ) is constant

(the bottom of the ocean is at −∞) and so, 0 = dηK(η, ψ)[1] = (∇ηK, 1)L2(T).
As a consequence, the subspace

∫

T

η dx =
∫

T

ψ dx = 0 (1.10)

is invariant under the evolution of (1.4) and we shall restrict to solutions
satisfying (1.10).

Also, the subspace of functions which are even in x,

η(x) = η(−x), ψ(x) = ψ(−x), (1.11)

is invariant under (1.4). Thus, we restrict (η, ψ) to the phase space of 2π-
periodic even functions with zero mean, i.e., which admit the Fourier expan-
sion

η(x) =
∑

j≥1

ηj cos(jx), ψ(x) =
∑

j≥1

ψj cos(jx). (1.12)

In this case also, the velocity potential Φ(x, y) is even and 2π-periodic in x,
and so the x-component of the velocity field v = (Φx,Φy) vanishes at x = kπ,
∀k ∈ Z. Hence, there is no flux of fluid through the lines x = kπ, k ∈ Z, and a
solution of (1.4) satisfying (1.11) physically describes the motion of a liquid
confined between two walls.

Another important symmetry of the capillary water waves system is
reversibility, namely the Eqs. (1.4)–(1.7) are reversible with respect to the
involution ρ : (η, ψ) �→ (η,−ψ), or, equivalently, the Hamiltonian is even in
ψ:

H ◦ ρ = H, H(η, ψ) = H(η,−ψ), ρ : (η, ψ) �→ (η,−ψ). (1.13)

As a consequence, it is natural to look for solutions of (1.4) satisfying

u(−t) = ρu(t), i.e. η(−t, x) = η(t, x), ψ(−t, x) = −ψ(t, x), ∀t, x ∈ R,
(1.14)

namely η is even in time and ψ is odd in time. Solutions of the water-waves
equations (1.4) satisfying (1.12) and (1.14) are called capillary–gravity stand-
ing water waves.

Existence of small-amplitude time-periodic pure gravity (without sur-
face tension) standing wave solutions has been proved by Iooss, Plotnikov,
Toland in [23], see also [19,20], and in [29] in finite depth. Existence of time-
periodic capillary–gravity standing wave solutions has been recently proved
by Alazard–Baldi [1]. The above results are proved via a Lyapunov–Schmidt
decomposition combined with a Nash–Moser iterative scheme.

In [7], we have extended this result proving also the existence of time
quasi-periodic capillary–gravity standing wave solutions of (1.4) as well as
their linear stability. This is the result of Theorem 1.1. The reducibility of the
linearized equations at the quasi-periodic solutions is not only an interesting
dynamical information but it is also the key for the existence proof.

We also mention that existence of small-amplitude 2-d travelling gravity
water wave solutions dates back to Levi-Civita [24] (standing waves are not
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traveling because they are even in space, see (1.11)). Existence of small-
amplitude 3-d traveling gravity–capillary water wave solutions with space-
periodic boundary conditions has been proved by Craig–Nicholls [13] (it is
not a small divisor problem) and by Iooss–Plotnikov [21,22] in the case of
zero surface tension (in such a case, it is a small divisor problem).

The first existence results of quasi-periodic solutions of PDEs with un-
bounded perturbations (i.e., the nonlinearity contains derivatives) have been
obtained by Kuksin [28] for KdV, see also Kappeler–Pöschel [26], by Liu–
Yuan [25], Zhang–Gao–Yuan [36] for derivative NLS, by Berti–Biasco–Procesi
[8]-[9] for derivative NLW. All these previous results still refer to semilinear
perturbations, i.e., the order of the derivatives in the nonlinearity is strictly
lower than the order of the constant coefficient (integrable) linear differential
operator.

For quasi-linear, also fully nonlinear, perturbations, the first KAM re-
sults have been recently proved by Baldi–Berti–Montalto in [2–4] for Hamil-
tonian perturbations of Airy, KdV and mKdV equations. These techniques
have been applied by Feola–Procesi [18] also to quasi-linear perturbations of
1-d Schrödinger equations.

The gravity–capillary water-waves system (1.4) is, indeed, a quasi-linear
PDE. In suitable complex coordinates (having introduced the good unknown
of Alinhac), it can be written in the symmetric form

ut = iT (D)u + N(u, ū), u ∈ C,

where

T (D) := |D|1/2(1 − κ∂xx)1/2

is the Fourier multiplier which describes the linear dispersion relation of the
water-waves equations linearized at (η, ψ) = 0 (see (1.15)–(1.18)), and the
nonlinearity N(u, ū) depends on the highest order term |D|3/2u as well.

1.2. Main result

We look for small-amplitude quasi-periodic solutions of (1.4), and therefore,
it is of main importance the dynamics of the linearized system at the equi-
librium (η, ψ) = (0, 0) (flat ocean and fluid at rest), namely

{
∂tη = G(0)ψ,
∂tψ + η = κηxx

(1.15)

where G(0) = |Dx| is the Dirichlet–Neumann operator at the flat surface
η = 0, namely

|Dx| cos(jx) = |j| cos(jx), |Dx| sin(jx) = |j| sin(jx), ∀j ∈ Z.

In compact Hamiltonian form, the system (1.15) reads

∂tu = JΩu, Ω :=
(

1 − κ∂xx 0
0 G(0)

)

, (1.16)
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which is the Hamiltonian system generated by the quadratic Hamiltonian
(see (1.8))

HL :=
1
2
(u,Ωu)L2(Tx) =

1
2
(ψ,G(0)ψ)L2(Tx) +

1
2

∫

T

(
η2 + κη2

x

)
dx. (1.17)

The standing wave solutions of the linear system (1.15) are

η(t, x) =
∑

j≥1

aj cos(ωjt) cos(jx), ψ(t, x) = −
∑

j≥1

ajj
−1ωj sin(ωjt) cos(jx),

where aj ∈ R, and the linear frequencies of oscillations are

ωj := ωj(κ) :=
√

j(1 + κj2), j ≥ 1. (1.18)

Fix an arbitrary finite subset S
+ ⊂ N

+ := {1, 2, . . .} (tangential sites) and
consider the linear standing-wave solutions

η(t, x) =
∑

j∈S+

√
ξj cos(ωjt) cos(jx),

ψ(t, x) = −
∑

j∈S+

√
ξjj

−1ωj sin(ωjt) cos(jx), ξj > 0, (1.19)

which are Fourier supported in S
+. The main result of [7] proves that such

linear standing-wave solutions can be continued to solutions of the nonlinear
water-waves Hamiltonian system (1.4) for most values of the surface tension
parameter κ ∈ [κ1, κ2]. Theorem 1.1 below states the existence of quasi-
periodic solutions

u(ω̃t, x) = (η, ψ)(ω̃t, x)

of (1.4), with frequency ω̃ := (ω̃j)j∈S+ (to be determined), close to the so-
lutions (1.19) of (1.15), for most values of the surface tension parameter
κ ∈ [κ1, κ2].

Let ν := |S+| denote the cardinality of S
+. The function u(ϕ, x) =

(η, ψ)(ϕ, x), ϕ ∈ T
ν , belongs to the Sobolev spaces of (2π)ν+1-periodic real

functions

Hs(Tν+1,R2) := {u = (η, ψ) : η, ψ ∈ Hs}

Hs := Hs(Tν+1,R) =

⎧
⎨

⎩
f =

∑

(�,j)∈Zν+1

f̂�j ei(�·ϕ+jx) :

‖f‖2s :=
∑

(�,j)∈Zν+1

|f̂�j |2〈, j〉2s < +∞

⎫
⎬

⎭
(1.20)

where 〈, j〉 := max{1, ||, |j|} with || := maxi=1,...,ν |i|. For

s ≥ s0 :=
[
ν + 1

2

]

+ 1 ∈ N,

the Sobolev spaces Hs ⊂ L∞(Tν+1) are an algebra with respect to the prod-
uct of functions.
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Theorem 1.1 (KAM for capillary–gravity periodic standing water waves [7]).
For every choice of finitely many tangential sites S

+ ⊂ N
+, there exists s̄ >

s0, ε0 ∈ (0, 1) such that for every |ξ| ≤ ε20, ξ := (ξj)j∈S+ , there exists a
Cantor-like set G ⊂ [κ1, κ2] with asymptotically full measure as ξ → 0, i.e.

lim
ξ→0

|G| = κ2 − κ1,

such that, for any surface tension coefficient κ ∈ G, the capillarity-gravity
system (1.4) has a time quasi-periodic standing wave solution u(ω̃t, x) =
(η(ω̃t, x), ψ(ω̃t, x)), with Sobolev regularity (η, ψ)(ϕ, x) ∈ H s̄(Tν × T,R2), of
the form

η(ω̃t, x) =
∑

j∈S+

√
ξj cos(ω̃jt) cos(jx) + o(

√
|ξ|),

ψ(ω̃, x) = −
∑

j∈S+

√
ξjj

−1ωj sin(ω̃jt) cos(jx) + o(
√

|ξ|)
(1.21)

with a Diophantine frequency vector ω̃ := ω̃(κ, ξ) ∈ R
ν satisfying ω̃j −

ωj(κ) → 0, j ∈ S
+, as ξ → 0. The terms o(

√
|ξ|) are small in H s̄(Tν ×T,R2).

Also, these quasi-periodic solutions are linearly stable.

Let us make some comments.

1. No global-in-time existence results concerning the initial value problem
of the water waves equations (1.4) under periodic boundary conditions
are known so far. The present Nash–Moser-KAM iterative procedure
selects many values of the surface tension parameter κ ∈ [κ1, κ2] which
give rise to the quasi-periodic solutions (1.21), which are defined for all
times. Clearly, by a Fubini-type argument, it also results that, for most
values of κ ∈ [κ1, κ2], there exist quasi-periodic solutions of (1.4) for
most values of the amplitudes |ξ| ≤ ε20. The fact that we find quasi-
periodic solutions restricting to a proper subset of parameters is not a
technical issue. The capillarity–gravity water-waves equations (1.4) are
not expected to be integrable (albeit a rigorous proof is still lacking):
yet, the third-order Birkhoff normal form possesses multiple resonant
triads (Wilton ripples), see Craig–Sulem [15].

2. In the proof of Theorem 1.1, all the estimates depend on the surface
tension coefficient κ > 0 and the result does not hold at the limit of
zero surface tension κ → 0. Because of capillarity, the linear frequencies
(1.18) grow asymptotically ∼ √

κj3/2 as j → +∞. Without surface
tension, the linear frequencies grow asymptotically as ∼ j1/2 and a
different proof is required.

3. The quasi-periodic solutions (1.21) are mainly supported in Fourier
space on the tangential sites S+. The dynamics of the water waves equa-
tions (1.4) restricted to the symplectic subspaces
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HS+ :=

⎧
⎨

⎩
v =

∑

j∈S+

(
ηj

ψj

)

cos(jx)

⎫
⎬

⎭
,

H⊥
S+ :=

⎧
⎨

⎩
z =

∑

j∈N\S+

(
ηj

ψj

)

cos(jx) ∈ H1
0 (Tx)

⎫
⎬

⎭
. (1.22)

is quite different. We call v ∈ HS+ the tangential variable and z ∈ H⊥
S+

the normal one. On the finite-dimensional subspace HS+ , we shall de-
scribe the dynamics by introducing the action–angle variables (θ, I) ∈
T

ν×R
ν as in (2.2). The quasi-periodic solutions (1.21) of (1.4) are, there-

fore, close to T
ν × {ξ} × {z = 0}, ξ ∈ R

ν
+. On the infinite-dimensional

subspace H⊥
S+

, the solution stays, forever, close to the elliptic equilib-
rium z = 0, in some Sobolev norm.

A first key observation is that, for most values of the surface ten-
sion parameter κ ∈ [κ1, κ2], the unperturbed linear frequencies (1.18),
regrouped on the tangential and normal components

�ω(κ) := (ωj(κ))j∈S+ , �Ω(κ) := (Ωj(κ))j∈N+\S+ := (ωj(κ))j∈N+\S+ ,

(1.23)

are Diophantine, namely

|�ω(κ) · | ≥ γ

||τ , ∀ ∈ Z
ν \ {0},

and also satisfy stronger non-resonance properties, the so-called first-
and second-order Melnikov non-resonance conditions, see (2.14), which
are non-resonance conditions between the tangential and the normal
frequencies. We shall prove this fact by degenerate KAM theory, see
Sect. 2.2. For such values of κ ∈ [κ1, κ2], the solutions (1.19) of the linear
equation (1.15) are already sufficiently good approximate quasi-periodic
solutions of the nonlinear water-waves system (1.4). Since the parameter
space [κ1, κ2] is fixed, the small divisor constant γ can be taken γ = o(εa)
with a > 0 small as needed, see (2.15). As a consequence, for proving the
continuation of (1.19) to solutions of the nonlinear water-waves system
(1.4), all the terms which are at least quadratic in (1.4) are already
perturbative (i.e. in (2.1), it is sufficient to regard the vector field εXPε

as a perturbation of the linear vector field JΩ).

Linear stability. The quasi-periodic solutions u(ω̃t) = (η(ω̃t), ψ(ω̃t)) found
in Theorem 1.1 are linearly stable. This is not only a dynamically relevant
information but also an essential ingredient of the existence proof (it is not
necessary for time-periodic solutions as in [1,19,20,23]). Let us state precisely
the result. Around each invariant torus, there exist symplectic coordinates

(φ, y, w) = (φ, y, η, ψ) ∈ T
ν × R

ν × H⊥
S+
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(see [10]) in which the water-waves Hamiltonian reads

ω · y +
1
2
K20(φ)y · y + (K11(φ)y, w)L2(Tx)

+
1
2

(K02(φ)w,w)L2(Tx)

+K≥3(φ, y, w)

where K≥3 collects the terms at least cubic in the variables (y, w). In these
coordinates, the quasi-periodic solution reads t �→ (ωt, 0, 0) (for simplicity,
we denote the frequency ω̃ of the quasi-periodic solution by ω) and the cor-
responding linearized water-waves equations are

⎧
⎪⎨

⎪⎩

φ̇ = K20(ωt)[y] + KT
11(ωt)[w]

ẏ = 0
ẇ = JK02(ωt)[w] + JK11(ωt)[y] .

Thus, the actions y(t) = y(0) do not evolve in time, and the third equation
reduces to the PDE

ẇ = JK02(ωt)[w] + JK11(ωt)[y(0)]. (1.24)

The self-adjoint operator K02(ωt) is, up to a finite-dimensional remainder,
the restriction to H⊥

S+
of the linearized water-waves vector field ∂u∇H(u(ωt)),

which is explicitly computed in (2.19).
Denote Hs

⊥ := Hs
⊥(Tx) := Hs(Tx) ∩ H⊥

S
(real or complex valued). We

prove the existence of bounded and invertible “symmetrizer” maps Wm,∞(ϕ),
m = 1, 2 such that ∀ϕ ∈ T

ν , s ≥ s0,

Wm,∞(ϕ) :

(Hs(Tx,C) × Hs(Tx,C)) ∩ H⊥
S+

→
(
Hs(Tx,R) × Hs− 1

2 (Tx,R)
)

∩ H⊥
S+

,

(1.25)
W−1

m,∞(ϕ) :
(
Hs(Tx,R) × Hs− 1

2 (Tx,R)
)

∩ H⊥
S+

→
(
Hs(Tx,C) × Hs(Tx,C)

)
∩ H⊥

S+
,

(1.26)

and such that, under the quasi-periodic-in-time change of variables

w = (η, ψ) = W1,∞(ωt)w∞, w∞ = (w∞, w∞),

the Eq. (1.24) transforms into the diagonal system

∂tw∞ = −iD∞w∞ + f∞(ωt),

f∞(ωt) := W2,∞(ϕ)(ωt)−1JK11(ωt)[y(0)] =
(
f∞(ωt)
f∞(ωt)

)

(1.27)

where, denoting S0 := S+ ∪ (−S+) ∪ {0} ⊆ Z,

D∞ :=
(

D∞ 0
0 −D∞

)

, D∞ := diagj∈S
c
0
{μ∞

j }, μ∞
j ∈ R, (1.28)

is a Fourier multiplier operator of the form

μ∞
j := m∞

3

√
|j|(1 + κj2) + m∞

1 |j| 1
2 + r∞

j , j ∈ S
c
0, r∞

j = r∞
−j , (1.29)
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where, for some a > 0,

m∞
3 = 1 + O(εa), m∞

1 = O(εa), sup
j∈S

c
0

|r∞
j | = O(εa), ∀|k| ≤ k0,

see (2.12)–(2.13), (2.15) and k0 ∈ N is a constant which depends only on the
linear frequencies ωj(κ) defined in (1.18). The iμ∞

j are the Floquet exponents
of the quasi-periodic solution. The fact that they are purely imaginary is a
consequence of the reversible structure of the water-waves equations.

The second equation of system (1.27) is actually the complex conjugated
of the first one, and (1.27) reduces to the infinitely many decoupled scalar
equations

∂tw∞,j = −iμ∞
j w∞,j + f∞,j(ωt), ∀j ∈ S

c
0.

By variation of constants, the solutions are

w∞,j(t) = cje
−iμ∞

j t + v∞,j(t), v∞,j(t) :=
∑

�∈Zν

f∞,j,� eiω·�t

i(ω ·  + μ∞
j )

, ∀j ∈ S
c
0.

(1.30)

Since the Melnikov conditions (2.14) hold at a solution, then v∞
j (t) in (1.30)

is well defined. Moreover, (1.25) implies ‖f∞(ωt)‖Hs
x×Hs

x
≤ C|y(0)|. As a

consequence, the Sobolev norm of the solution of (1.27) with initial condition
w∞(0) ∈ Hs0(Tx), s0 < s (in a suitable range of values), satisfies

‖w∞(t)‖H
s0
x ×H

s0
x

≤ C(s)(|y(0)| + ‖w∞(0)‖H
s0
x ×H

s0
x

),

and, for all t ∈ R, using (1.25), (1.26), we get

‖(η, ψ)(t)‖
H

s0
x ×H

s0− 1
2

x

≤ ‖(η(0), ψ(0))‖
H

s0
x ×H

s0− 1
2

x

which proves the linear stability of the quasi-periodic solution. Note that
the profile η ∈ Hs0(Tx) is more regular than the velocity potential ψ ∈
Hs0− 1

2 (Tx), as it is expected in the presence of surface tension.
Clearly, a crucial point is the diagonalization of (1.24) into (1.28). With

respect to [1], this requires to analyze more in detail the pseudo-differential
nature of the operators obtained after each conjugation and to implement a
KAM scheme with second-order Melnikov non-resonance conditions, as we
shall explain in detail below. We now present the main ideas of the proof.

2. Ideas of the proof

We prove Theorem 1.1 by a Nash–Moser iterative scheme in Sobolev spaces
formulated as a “Theorem of hypothetic conjugation” á la Herman (Sect. 2.1)
plus a degenerate KAM theory argument to perform the measure estimates
in κ (Sect. 2.2). The core of the Nash–Moser scheme is to prove that the
linearized operators obtained at any approximate solution are invertible, with
an inverse that satisfies tame estimates in Sobolev spaces. We explain how
to prove this property in Sect. 2.3.
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First of all, instead of working in a shrinking neighborhood of the origin,
it is a convenient device to rescale the variable u �→ εu with u = O(1), writing
(1.4), (1.7) as

∂tu = JΩu + εXPε
(u) (2.1)

where JΩ is defined in (1.16) and XPε
(u) is the Hamiltonian vector field

generated by the Hamiltonian

Hε(u) := ε−2H(εu) = HL(u) + εPε(u)

where H is the water-waves Hamiltonian (1.8) and HL is defined in (1.17).
We decompose the phase space as in (1.22),

H1
0,even = HS+ ⊕ H⊥

S+ ,

and we introduce action–angle variables on the tangential sites by setting

ηj :=

√
2
π

Λ1/2
j

√
ξj + Ij cos(θj), ψj := −

√
2
π

Λ−1/2
j

√
ξj + Ij sin(θj)

Λj :=
√

j(1 + κj2)−1, j ∈ S
+, (2.2)

where ξj > 0, j = 1, . . . , ν, are positive constants, and |Ij | ≤ ξj . The sym-
plectic 2-form in (1.9) then reads

W :=

⎛

⎝
∑

j∈S+

dθj ∧ dIj

⎞

⎠⊕ W|H⊥
S+

and the Hamiltonian system (2.1) transforms into the new Hamiltonian sys-
tem

θ̇ = ∂IHε(θ, I, z), İ = −∂θHε(θ, I, z), zt = J∇zHε(θ, I, z) (2.3)

generated by the Hamiltonian

Hε := Hε ◦ A = ε−2H ◦ εA (2.4)

where

A(θ, I, z) := v(θ, I) + z :=
∑

j∈S+

√
2
π

(
Λ1/2

j

√
ξj + Ij cos(θj)

−Λ−1/2
j

√
ξj + Ij sin(θj)

)

cos(jx) + z.

(2.5)
We denote by

XHε
:= (∂IHε,−∂θHε, J∇zHε)

the Hamiltonian vector field in the variables (θ, I, z) ∈ T
ν × R

ν × H⊥
S+

. The
involution ρ in (1.13) becomes

ρ̃ : (θ, I, z) �→ (−θ, I, ρz). (2.6)

By (1.8) and (2.4), the Hamiltonian Hε reads (up to a constant)

Hε = N + εP, N := HL ◦ A = �ω(κ) · I +
1
2
(z,Ωz)L2

x
, P := Pε ◦ A, (2.7)

where �ω(κ) is defined in (1.23) and Ω in (1.16). We look for an embedded
invariant torus

i : Tν → T
ν × R

ν × H⊥
S+ , ϕ �→ i(ϕ) := (θ(ϕ), I(ϕ), z(ϕ))
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of the Hamiltonian vector field XHε
filled by quasi-periodic solutions with

Diophantine frequency ω ∈ R
ν .

2.1. Nash–Moser theorem of hypothetic conjugation

The Hamiltonian Hε in (2.7) is a perturbation of the isochronous system with
Hamiltonian N . The expected quasi-periodic solutions of the corresponding
Hamiltonian system (2.3) will have a shifted frequency—to be found—close
to the linear frequencies ωj(κ) in (1.18), which depend on the nonlinear term
P and the amplitudes ξj .

In view of that, we introduce the family of Hamiltonians

Hα := Nα + εP, Nα := α · I +
1
2
(z,Ωz)L2

x
, α ∈ R

ν , (2.8)

which depend on a constant vector α ∈ R
ν . For the value α = �ω(κ), we have

Hα = Hε. Then, we look for a zero (i, α) of the nonlinear operator

F(i, α) := F(i, α, ω, κ, ε) := ω ·∂ϕi(ϕ) − XHα
(i(ϕ))

= ω ·∂ϕi(ϕ) − (XNα
+ εXP )(i(ϕ))

:=

⎛

⎝
ω ·∂ϕθ(ϕ) − α − ε∂IP (i(ϕ))

ω ·∂ϕI(ϕ) + ε∂θP (i(ϕ))
ω ·∂ϕz(ϕ) − J(Ωz + ε∇zP (i(ϕ)))

⎞

⎠ (2.9)

for some Diophantine vector ω ∈ R
ν . If F(i, α) = 0, then ϕ �→ i(ϕ) is an

embedded torus, invariant for the Hamiltonian vector field XHα
, filled by

quasi-periodic solutions with frequency ω.
Since each Hamiltonian Hα in (2.8) is reversible, we look for reversible

solutions of F(i, α) = 0, namely satisfying �̃i(ϕ) = i(−ϕ) (see (2.6)), i.e.

θ(−ϕ) = −θ(ϕ), I(−ϕ) = I(ϕ), z(−ϕ) = (�z)(ϕ). (2.10)

The Sobolev norm of the periodic component of the embedded torus

I(ϕ) := i(ϕ) − (ϕ, 0, 0) := (Θ(ϕ), I(ϕ), z(ϕ)), Θ(ϕ) := θ(ϕ) − ϕ,

is

‖I‖s := ‖Θ‖Hs
ϕ

+ ‖I‖Hs
ϕ

+ ‖z‖s

where ‖z‖s := ‖z‖Hs
ϕ,x

= ‖η‖s + ‖ψ‖s, see (1.20).
For the next theorem, we recall that k0 is the index of non-degeneracy

provided by Proposition 2.3 and it depends only on the linear unperturbed
frequencies ωj(κ). Therefore, it is considered as an absolute constant and
we will often omit to write explicitly the dependence of the constants with
respect to k0. We look for quasi-periodic solutions with frequency ω belonging
to a δ-neighborhood (independent of ε)

Ω := {ω ∈ R
ν : dist (ω, �ω[κ1, κ2]) < δ, δ > 0}

of the unperturbed linear frequencies �ω[κ1, κ2] defined in (1.23).

Theorem 2.1 (Nash–Moser theorem of hypothetic conjugation). Fix finitely
many tangential sites S

+ ⊂ N
+ and let ν := |S+|. Let τ ≥ 1. There exist

constants ε0 > 0, a0 := a0(ν, τ, k0) > 0 and k1 := k1(ν, k0, τ) > 0 such that,
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for all γ = εa, 0 < a < a0, ε ∈ (0, ε0), there exists a k0-times differentiable
function

α∞ : Ω × [κ1, κ2] �→ R
ν , α∞(ω, κ) = ω + rε(ω, κ), |rε|k0,γ ≤ Cεγ−(1+k1),

(2.11)

a family of embedded tori i∞ defined for all ω ∈ Ω and κ ∈ [κ1, κ2] satisfying
the reversibility property (2.10) and

‖i∞(ϕ) − (ϕ, 0, 0)‖k0,γ
s0

≤ Cεγ−(1+k1),

a sequence of k0-times differentiable functions μ∞
j : Ω × [κ1, κ2] → R, j ∈

N
+ \ S

+, of the form

μ∞
j (ω, κ) = m∞

3 (ω, κ)j
1
2 (1 + κj2)

1
2 + m∞

1 (ω, κ)j
1
2 + r∞

j (ω, κ) (2.12)

satisfying

|m∞
3 − 1|k0,γ + |m∞

1 |k0,γ ≤ Cε, sup
j∈Sc

|r∞
j |k0,γ ≤ Cεγ−k1 , (2.13)

such that for all (ω, κ) in the Cantor-like set

Cγ
∞ :=

{

(ω, κ) ∈ Ω × [κ1, κ2] : |ω · | ≥ γ〈〉−τ , ∀ ∈ Z
ν \ {0},

|ω ·  + μ∞
j (ω, κ)| ≥ 4γj

3
2 〈〉−τ , ∀ ∈ Z

ν , j ∈ N
+ \ S

+

(1-Melnikov conditions)

|ω ·  + μ∞
j (ω, κ) − ςμ∞

j′ (ω, κ)| ≥ 4γ|j 3
2 − ςj′ 32 |
〈〉τ

,

∀ ∈ Z
ν , j, j′ ∈ N

+ \ S
+, ς = ±1, (2-Melnikov)

}

(2.14)

the function i∞(ϕ) := i∞(ω, κ, ε)(ϕ) is a solution of F(i∞, α∞(ω, κ), ω, κ, ε)
= 0. As a consequence, the embedded torus ϕ �→ i∞(ϕ) is invariant for the
Hamiltonian vector field XHα∞(ω,κ) and it is filled by quasi-periodic solutions
with frequency ω.

In Theorem 2.1, we are not concerned about the measure of Cγ
∞, in

particular in investigating if it is not empty. Note that the Cantor-like set
Cγ

∞ in (2.14) for which a solution exists is defined only in terms of the “final”
solution i∞ and the “final” normal perturbed frequencies μ∞

j , j ∈ N
+ \ S

+,
which are defined for all the values of (ω, κ) ∈ Ω× [κ1, κ2] by a Whitney-type
extension argument.

Theorem 2.1 is called of “hypothetic conjugation” because it does not
prove the existence of a quasi-periodic solution for the original Hamiltonian
Hε but just for a nearby Hamiltonian Hα∞(ω,κ). The aim is, now, to deduce
Theorem 1.1 from Theorem 2.1: we have to prove the existence of quasi-
periodic solutions of the water-waves equations (1.4), and not only of the
system with modified Hamiltonian Hα with α := α∞(ω, κ). Therefore, we



Vol. 19 (2017) Quasi-periodic water waves 143

have to prove that the curve of the unperturbed linear frequencies

[κ1, κ2] � κ �→ �ω(κ) := (
√

j(1 + κj2))j∈S+ ∈ R
ν

intersects the image α∞(Cγ
∞), under the map α∞ of the Cantor set Cγ

∞, for
“most” values of κ ∈ [κ1, κ2].

The above functional setting perspective is in the spirit of the Théoréme
de conjugaison hypothétique of Herman proved by Fejoz [17] for finite-
dimensional Hamiltonian systems. A relevant difference is that in [17], in
addition to α, also the normal frequencies are introduced as independent
parameters, unlike in Theorem 2.1. Actually, for PDEs, it seems more con-
venient the present formulation: it is, indeed, a major point of the work to
know the asymptotic expansion (1.29) of the Floquet exponents.

2.2. Measure estimates and degenerate KAM theory

For any β ∈ α∞(Cγ
∞), Theorem 2.1 proves the existence of an embedded

invariant torus filled by quasi-periodic solutions with Diophantine frequency
ω = α−1

∞ (β, κ) for the Hamiltonian

Hβ = β · I +
1
2
(z,Ωz)L2

x
+ εP.

Theorem 2.2 now proves that for “most” values of κ ∈ [κ1, κ2], the vector
β = �ω(κ) ∈ α∞(Cγ

∞). Hence, for such values of κ, we have found an embed-
ded invariant torus for the Hamiltonian Hε in (2.7), filled by quasi-periodic
solutions with Diophantine frequency ω = α−1

∞ (�ω(κ), κ).

Theorem 2.2 (Measure estimates). Let

γ = εa, 0 < a < min{a0, 1/(1 + k0 + k1)}, τ > k0(ν + 4). (2.15)

Then, the measure of the set

Gε :=
{
κ ∈ [κ1, κ2] :

(
α−1

∞ (�ω(κ), κ), κ
)

∈ Cγ
∞
}

(2.16)

satisfies |Gε| ≥ (κ2 − κ1) − Cεa/k0 as ε → 0.

Clearly, Theorems 2.1 and 2.2 imply Theorem 1.1 with the Cantor-like
set G := Gε and frequency vector ω̃ = α−1

∞ (�ω(κ), κ).
Let us sketch the proof of Theorem 2.2. By (2.11), for ε small, for any

κ ∈ [κ1, κ2], the function α∞(·, κ) is invertible:

β = α∞(ω, κ) = ω + rε(ω, κ) ⇐⇒ ω = α−1
∞ (β, κ) = β + r̃ε(β, κ)

with |r̃ε|k0,γ ≤ Cεγ−(1+k1).

We then consider the perturbed tangential frequency vector

ωε(κ) := α−1
∞ (�ω(κ), κ) = �ω(κ) + rε(κ), rε(κ) := r̃ε(�ω(κ), κ), (2.17)

which satisfies

|∂k
κrε(κ)| ≤ Cεγ−(1+k1+k), ∀0 ≤ k ≤ k0.
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We also denote, with a small abuse of notations, the perturbed normal Flo-
quet exponents

μ∞
j (κ) := μ∞

j (ωε(κ), κ) := m∞
3 (κ)j

1
2 (1 + κj2)

1
2 + m∞

1 (κ)j
1
2 + r∞

j (κ),

∀j ∈ N
+ \ S

+, (2.18)

where

m∞
3 (κ) := m∞

3 (ωε(κ), κ), m∞
1 (κ) := m∞

1 (ωε(κ), κ), r∞
j (κ) := r∞

j (ωε(κ), κ).

For proving the measure estimate of Theorem 2.2, the key point is to prove
the following transversality property.

Proposition 2.3 (Transversality). There exist k0 ∈ N, ρ0 > 0 such that, for
any κ ∈ [κ1, κ2],

max
k≤k0

|∂k
κ{�ω(κ) · �}| ≥ ρ0〈�〉, ∀� ∈ Z

ν \ {0},

max
k≤k0

|∂k
κ{�ω(κ) · � + Ωj(κ)}| ≥ ρ0〈�〉, ∀� ∈ Z

ν , j ∈ N
+ \ S

+,

max
k≤k0

|∂k
κ{�ω(κ) · � + Ωj(κ) − Ωj′(κ)}| ≥ ρ0〈�〉, ∀(�, j, j′) �= (0, j, j), j, j′ ∈ N

+ \ S
+,

max
k≤k0

|∂k
κ{�ω(κ) · � + Ωj(κ) + Ωj′(κ)}| ≥ ρ0〈�〉, ∀� ∈ Z

ν , j, j′ ∈ N
+ \ S

+.

We call (following [34]) ρ0 the “amount of non-degeneracy” and k0 the “index
of nondegeneracy”.

The above conditions are stable under perturbations which are small in
Ck0-norm, and, therefore, hold for the perturbed tangential frequency ωε(κ)
defined in (2.17) and the perturbed Floquet exponents μj(κ) introduced in
(2.18). It follows that

Lemma 2.4. For ε small enough, for all κ ∈ [κ1, κ2],
max
k≤k0

|∂k
κ{ωε(κ) · �}| ≥ ρ0〈�〉/2, ∀� ∈ Z

ν \ {0},

max
k≤k0

|∂k
κ{ωε(κ) · � + μ

∞
j (κ)}| ≥ ρ0〈�〉/2, ∀� ∈ Z

ν
, j ∈ N

+ \ S
+

,

max
k≤k0

|∂k
κ{ωε(κ) · � + μ

∞
j (κ) − μ

∞
j′ (κ)}| ≥ ρ0〈�〉/2, ∀(�, j, j

′
) �= (0, j, j), j, j

′ ∈ N
+ \ S

+
,

max
k≤k0

|∂k
κ{ωε(κ) · � + μ

∞
j (κ) + μ

∞
j′ (κ)}| ≥ ρ0〈�〉/2, ∀� ∈ Z

ν
, j, j

′ ∈ N
+ \ S

+
.

As a consequence, the classical Rüssmann lemma (Theorem 17.1 in [34])
implies that the measure of the κ ∈ [κ1, κ2] where

|ωε(κ) ·  + μ∞
j (ωε(κ), κ) − ςμ∞

j′ (ωε(κ), κ)| <
4γ|j 3

2 − ςj′ 32 |
〈〉τ

,

 ∈ Z
ν , j, j′ ∈ N

+ \ S
+, ς = ±1,

has measure O(γ1/k0), and similarly for the other Melnikov conditions in
(2.14). Together with the asymptotic of the eigenvalues, this implies that the
Cantor-like set of non-resonant parameters Gε defined in (2.16) has asymp-
totically full measure.

The transversality Proposition 2.3 is proved by arguments of degenerate
KAM theory as developed in [5]. It uses in an essential way that the unper-
turbed frequencies κ �→ ωj(κ) are analytic, are simple (on the subspace of
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the even functions), grow asymptotically as j3/2 and are non-degenerate in
the following sense:

Definition 2.1. A function f := (f1, . . . , fN ) : [κ1, κ2] → R
N is non-degenerate

if, for any c := (c1, . . . , cN ) ∈ R
N \{0}, the function f · c = f1c1 + · · ·+ fNcN

is not identically zero on the whole interval [κ1, κ2].

From a geometric point of view, f non-degenerate means that the image
of the curve f([κ1, κ2]) ⊂ R

N is not contained in any hyperplane of R
N .

For such reason, a curve f which satisfies the non-degeneracy property of
Definition 2.1 is also referred as an essentially non-planar curve, or a curve
with full torsion. Proposition 2.3 is deduced by the following non-degeneracy
properties.

Lemma 2.5. The frequency vectors �ω(κ) ∈ R
ν , (

√
κ, �ω(κ)) ∈ R

ν+1 and

(�ω(κ),Ωj(κ)) ∈ R
ν+1, j ∈ N

+\S+, (�ω(κ),Ωj(κ),Ωj′(κ)) ∈ R
ν+2,

∀j, j′ ∈ N
+ \ S

+, j �= j′,

are non-degenerate.

This lemma is proved by a direct verification. Setting λ0(κ) :=
√

κ and
λj(κ) :=

√
j(1 + κj2), j ≥ 1, it is sufficient to show that, for any N , for any

0 ≤ j1 < · · · < jN , the matrix

A(κ) :=

⎛

⎜
⎜
⎜
⎝

λj1(κ) . . . λjN
(κ)

∂κλj1(κ) . . . ∂κλjN
(κ)

...
. . .

...
∂N−1

κ λj1(κ) . . . ∂N−1
κ λjN

(κ)

⎞

⎟
⎟
⎟
⎠

is non-singular at some value of κ ∈ [κ1, κ2]. Actually, A(κ) turns out to be
non-singular for all κ ∈ [κ1, κ2]. A direct computation shows that detA(κ) is
proportional to a Van der Monde determinant.

2.3. Analysis of the linearized operators

In addition to the previous bifurcation analysis, the other key step for the
Nash–Moser iterative scheme is to prove that the operator dα,iF obtained
linearizing (2.9) at any approximate solution is, for most values of the pa-
rameters (ω, κ), invertible, and that its inverse satisfies tame estimates in
Sobolev spaces.

The linearized operator dα,iF is quite complicated because all the com-
ponents (θ, I, z) components in the system (2.9) are coupled among them.
Therefore, we first implement the procedure developed in Berti–Bolle [10],
and used in [3], which consists in introducing a convenient set of symplec-
tic variables near the approximate invariant torus such that the linearized
equations become (approximately) decoupled in the action–angle components
and the normal one. As a consequence, the problem reduces to “almost-
approximately” invert a quasi-periodic linear operator restricted to the nor-
mal directions. Actually, since this symplectic change of variables modifies,
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up to a translation, only the finite-dimensional action component, this oper-
ator turns out to be just the linearized water-waves system in the original
coordinates, restricted to the normal directions. More precisely,

Π⊥
S+L|H⊥

S+
where L := ω ·∂ϕI2 − J∂u∇uH(U(ϕ))

is obtained linearizing (1.4), (1.7) at an approximate solution U(ϕ) = (η, ψ)
(ϕ, x), changing ∂t � ω ·∂ϕ, and denoting the 2 × 2-identity matrix by

I2 :=
(

Id 0
0 Id

)

.

Using formula (1.5), the linearized operator L is computed to be

L = ω ·∂ϕI2 +
(

∂xV + G(η)B −G(η)
(1 + BVx) + BG(η)B − κ∂xc∂x V ∂x − BG(η)

)

(2.19)

where the functions B := B(ϕ, x), V := V (ϕ, x) are defined by (1.6) and
c := c(ϕ, x) := (1 + η2

x)−3/2. The operator L is real, even and reversible.

Notation. In (2.19) and hereafter, any function a is identified with the cor-
responding multiplication operators h �→ ah, and, where there is no paren-
thesis, composition of operators is understood. For example, ∂xc∂x means:
h �→ ∂x(c∂xh).

The key part of the analysis consists, now, in diagonalizing (actually it
is sufficient to “almost” diagonalize) the quasi-periodic linear operator L, via
linear changes of variables close to the identity, which map Sobolev spaces
into itself and satisfy tame estimates. These changes of variables have two
well-different tasks:

1. Transform L to an operator of the form (2.20) which has constant co-
efficients up to pseudo-differential remainders of order zero (actually
more regularizing on the off-diagonal terms). These steps are exposed
in Sects. 2.3.1–2.3.5.

2. Reduce quadratically the size of the perturbative terms R, Q, see
Sect. 2.3.6.
For the search of periodic solutions, i.e. [1,19,20,23,29], there is no need

to perform the task 2, because it is possible to invert the linearized operator
in (2.20) simply by a Neumann-argument. Indeed, for periodic solutions, a
sufficiently regularizing operator in the space variable is also regularizing in
the time variable, on the characteristic Fourier indices which correspond to
the small divisors. This is clearly not true for quasi-periodic solutions. That
is why we will completely diagonalize the linear operator in (2.20) by a KAM
scheme. For that, we need to analyze more in detail the pseudo-differential
nature of the remainders after each conjugation step.

The approximate solution U(ϕ, x) at which we linearize is assumed to
be bounded in a low Sobolev norm (as it is satisfied by any approximate
solutions along the Nash–Moser iteration). Moreover, U(ϕ, x) is supposed to
be C∞(Tν

ϕ ×Tx) because, along the Nash–Moser iteration, each approximate
solution is actually a trigonometric polynomial in (ϕ, x) (with clearly more
and more harmonics). As a consequence, all the coefficients of the linearized



Vol. 19 (2017) Quasi-periodic water waves 147

operator L in (2.19) are C∞. This allows to work in the usual framework of
C∞ pseudo-differential symbols. For the Nash–Moser convergence, we shall
then perform quantitative estimates in Sobolev spaces.

2.3.1. Reduction of L to constant coefficients in decreasing symbols. The
goal of the first steps is to reduce L to a quasi-periodic linear operator of the
form

(h, h̄) �→
(
ω ·∂ϕ + im3T (D) + im1|D| 1

2

)
h + Rh + Qh̄, h ∈ C, (2.20)

where m3, m1 ∈ R are constants coefficients, satisfying m3 ≈ 1, m1 ≈ 0, the
principal symbol operator

T (D) = |D|1/2(1 − κ∂xx)1/2,

and the remainders R := R(ϕ), Q := Q(ϕ) are small bounded operators
acting in the Sobolev spaces Hs, which satisfy tame estimates. More precisely,
in view of a KAM reducibility scheme that will completely diagonalize the
operator (2.20) (Sect. 2.3.6), we need that all the derivatives

∂β
ϕ∂k

ω,κR, ∂β
ϕ∂k

ω,κQ, |β| ≤ β0, |k| ≤ k0, (2.21)

for β0 large enough (depending on the Diophantine exponent τ), satisfy tame
estimates.

2.3.2. Symmetrization and space–time reduction of L at the highest
order. The first part of the analysis is similar to Alazard–Baldi [1]. We
first conjugate the linear operator L in (2.19) by the change of variable

Z :=
(

1 0
B 1

)

, Z−1 =
(

1 0
−B 1

)

obtaining

L0 := Z−1LZ = ω ·∂ϕI2 +
(

∂xV −G(η)
a − κ∂xc∂x V ∂x

)

(2.22)

for some function a(ϕ, x). This step amounts to introduce (a linearized version
of) the “good unknown of Alinhac”.

As a second step, we conjugate L0 with an operator of the form SQB,
where B is a change of variable

(Bh)(ϕ, x) := h(ϕ, x + β(ϕ, x)) (2.23)

induced by a ϕ-dependent family of diffeomorphisms of the torus

y = x + β(ϕ, x) ⇔ x = y + β̃(ϕ, y), (2.24)

Q is a matrix-valued multiplication operator

Q :=
(

1 0
0 q

)

, Q−1 :=
(

1 0
0 q−1

)

,

for a function q(ϕ, x) close to 1, and S is the vector-valued Fourier multiplier

S =
(

1 0
0 G

)

, G := |D|− 1
2 (1 + κD2)

1
2 ∈ OPS1/2.
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Choosing properly the small periodic functions β(ϕ, x) and q(ϕ, x) − 1, one
gets
L1 = S−1Q−1B−1L0BQS

= ω·∂ϕI2+

(
a1∂x+a2 −m3(ϕ)T (D)+

√
κ a3H|D| 1

2 +R1,B

m3(ϕ)T (D)− a4√
κ

|D| 1
2 H+m3(ϕ)π0+R1,C a1∂x+R1,D

)

(2.25)

for suitable functions a1, a2, a3, a4 and pseudo-differential operators remain-
ders R1,B , R1,C , R1,D ∈ OPS0 which are O(ε) small, in low Sobolev norm.
All the coefficients and the operators depend in a tame way, i.e. at most
linearly, in the high Sobolev norm of the approximate solution ‖u‖s+σ with
a possible fixed loss of derivatives σ. Note that the coefficient m3(ϕ) of the
highest order operator L1 in (2.25) is independent of the space variable. The
operator π0 is the L2 projector of the constants, that, for simplicity of expo-
sition, we neglect in the sequel.

We then write L1 as an operator acting on the complex variables

h := η + iψ, h̄ := η − iψ,

obtaining

L1 = ω ·∂ϕI2 + im3(ϕ)T(D) + A1(ϕ, x)∂x + i(A(I)
0 (ϕ, x)

+A(II)
0 (ϕ, x))H|D| 1

2 + R(I)
1 + R(II)

1 (2.26)

where

T(D) :=
(

T (D) 0
0 −T (D)

)

, A1(ϕ, x) :=
(

a1(ϕ, x) 0
0 a1(ϕ, x)

)

,

A(I)
0 (ϕ, x) :=

(
a5(ϕ, x) 0

0 −a5(ϕ, x)

)

,

A(II)
0 (ϕ, x) :=

(
0 a6(ϕ, x)

−a6(ϕ, x) 0

)

,

and

R(I)
1 :=

(
r
(I)
1 (x,D) 0

0 r
(I)
1 (x,D)

)

,

R(II)
1 :=

(
0 r

(II)
1 (x,D)

r
(II)
1 (x,D) 0

)

∈ OPS0 (2.27)

are O(ε)-pseudo-differential operators. Note that L1 in (2.26) is block-diagonal
(in (u, ū)) up to order |D|1/2.

The next step is to remove the dependence on ϕ from the highest order
term im3(ϕ)T(D), by applying a quasi-periodic time reparametrization

P I2 =
(

P 0
0 P

)

, (Ph)(ϕ, x) := h(ϕ + ωp(ϕ), x),

induced by the diffeomorphism

ϑ := ϕ + ωp(ϕ) ⇔ ϕ = ϑ + ωp̃(ϑ)



Vol. 19 (2017) Quasi-periodic water waves 149

where p(ϕ) is a small periodic function. Choosing properly p and assuming
ω to be Diophantine, we get

L2 := ω ·∂ϕI2 + im3T(D) + B1(ϕ, x)∂x

+i
(
B(I)

0 (ϕ, x) + B(II)
0 (ϕ, x)

)
H|D| 1

2 + R(I)
2 + R(II)

2 (2.28)

where

B1 =
(

a7(ϕ, x) 0
0 a7(ϕ, x)

)

, B(I)
0 =

(
a8(ϕ, x) 0

0 −a8(ϕ, x)

)

,

B(II)
0 =

(
0 a9(ϕ, x)

a9(ϕ, x) 0

)

and R(I)
2 R(II)

2 are O(ε) pseudo-differential operators R(I)
2 R(II)

2 . All the
previous transformations are real, even, and reversibility-preserving, so that
L2 is a real, even and reversible operator.

From this point, we have to proceed quite differently with respect to [1].

2.3.3. Block-decoupling. The next step is to conjugate the operator L2 in
(2.28) to an operator of the form

LM := Φ−1
M L2ΦM = ω ·∂ϕI2

+im3T(D) + B1(ϕ, x)∂x + iB(I)
0 (ϕ, x)H|D| 1

2 + R(I)
M + R(II)

M (2.29)

where the remainders

R(I)
M :=

(
r
(I)
M (ϕ, x,D) 0

0 r
(I)
M (ϕ, x,D)

)

∈ OPS0,

R(II)
M :=

(
0 R(II)

M

R(II)

M 0

)

∈ OPS
1
2−M

are ε small. This is achieved by applying iteratively M -times a conjugation
map which transforms the off-diagonal block operators into 1-smoother ones.
Notice that the operator LM in (2.29) is block-diagonal up to the smoothing
remainder R(II)

M ∈ OPS
1
2−M . The coefficients of R(II)

M depend on O(M)-
derivatives of the approximate solution. In any case, the number of regu-
larizing steps M will be fixed (independently on s, depending just on the
Diophantine exponent τ), determined by the KAM reducibility scheme.

2.3.4. Egorov analysis. Space reduction of the order ∂x. The goal is now
to eliminate the first-order vector field B1(ϕ, x)∂x from LM . We conjugate
LM by the flow

Φ(ϕ, t) :=
(

Φ(ϕ, t) 0
0 Φ(ϕ, t)

)

generated by the system

∂t

(
u
u

)

= i
(

a(ϕ, x) 0
0 −a(ϕ, x)

)

|D| 1
2

(
u
u

)

(2.30)
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where a(ϕ, x) is a small real valued function to be determined. Thus, Φ(ϕ, t)
is the flow of the scalar linear pseudo-PDE

∂tu = ia(ϕ, x)|D| 1
2 u. (2.31)

Conjugating the operator LM in (2.29) by the time one flow operator Φ(ϕ) :=
Φ(ϕ, 1), we get

L(1)
M = ΦLMΦ−1 = ω ·∂ϕI2 + Φ(ϕ)P0(ϕ, x,D)Φ(ϕ)−1

+Φ(ϕ)ω ·∂ϕ{Φ(ϕ)−1} + ΦR(II)
M Φ−1

where we have denoted

P0(ϕ, x,D) = im3T(D) + B1(ϕ, x)∂x + iB(I)
0 (ϕ, x)H|D| 1

2 + R(I)
M

the diagonal part of LM . Note that the terms Φ(ϕ)P0(ϕ, x,D)Φ(ϕ)−1 and
Φ(ϕ)ω·∂ϕ{Φ(ϕ)−1} are block-diagonal. They are classical pseudo-differential
operators and can be analyzed by an Egorov-type argument. On the other
hand, the off-diagonal term ΦR(II)

M Φ−1 is very regularizing and satisfies tame
estimates. Let us see how evolves the operator

P(ϕ, t) = Φ(ϕ, t)P0Φ(ϕ, t)−1 =
(

P (ϕ, t) 0
0 P (ϕ, t)

)

,

P (ϕ, t) := Φ(ϕ, t)p0(ϕ, x,D)Φ−1(ϕ, t). (2.32)

under the flow of (2.30). The operator P (ϕ, t) solves the usual Heisenberg
equation
{

∂tP (ϕ, t) = i[A(ϕ), P (ϕ, t)]
P (ϕ, 0) = P0 := p0(ϕ, x,D)

where A(ϕ) = a(ϕ, x)|D| 1
2 . (2.33)

The Eq. (2.33) can be solved in decreasing symbols using the fact that the
order of the commutator [A(ϕ), Q(ϕ)] with a classical pseudo-differential op-
erator Q is strictly less than the order of Q. More precisely, (2.33) has an
approximate solution Q(ϕ, t) := q(t, ϕ, x,D) expanded in decreasing orders

q(t, ϕ, x, ξ) =
M∑

n=0

qn(t, ϕ, x, ξ), qn(t, ϕ, x, ξ) ∈ S
1
2 (3−n), ∀n = 0, . . . ,M

(2.34)
where q0 = p0 and the other lower order symbols qn are recursively computed.
This shows that the diagonal term P (ϕ, t) remains pseudo-differential along
the conjugation. One can analyze Φ(ϕ)ω ·∂ϕ{Φ(ϕ)−1} in the same way.

As an outcome, choosing properly the function a(ϕ, x), and using the
fact that the operator L2 is even, one can eliminate the order ∂x, getting an
operator of the form

L(1)
M = ω·∂ϕI2+im3T(D)+i (C1(ϕ, x) + C0(ϕ, x)H) |D| 1

2 +R(1)
M +Q(1)

M (2.35)

where

C1(ϕ, x) :=
(

a10 0
0 −a10

)

, C0(ϕ, x) :=
(

a11 0
0 −a11

)

.
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Remark 2.6. Alazard–Baldi [1] uses a semi-Fourier integral operator like
Op(eia(ϕ,x)

√
|ξ|) ∈ OPS0

1
2 , 12

. The use of the flow Φ(ϕ) of (2.31) is simpler

because the proof that Φ, as well as its inverse Φ−1, is a bounded operator
on Sobolev spaces Hs and satisfies tame estimates, follows by simple energy
estimates (the vector field ia(ϕ, x)|D|1/2 is skew-adjoint at the highest order,
see Appendix of [7]).

The fact that the diagonal terms of the conjugated operator (2.35) are
still pseudo-differential is a relevant information. Indeed, the flow Φ(ϕ) ∼
Op(eia(ϕ,x)

√
|ξ|) maps Sobolev spaces in itself, but each derivative

∂ϕΦ(ϕ) ∼ Op
(
eia(ϕ,x)

√
|ξ| i∂ϕa(ϕ, x)

√
|ξ|
)

is an unbounded operator which loses |D|1/2 derivatives. Actually, ∂k
ω,κ∂β

ϕΦ(ϕ)

loses |D| |β|+|k|
2 derivatives. Since the conjugated operator

P+(ϕ) := Φ(ϕ)P0Φ(ϕ)−1 = Op(c(ϕ, x, ξ)), c(ϕ, x, ξ) ∈ Sm, (2.36)

is a classical pseudo-differential operator, the differentiated operator

∂ϕP+(ϕ) = Op(∂ϕc(ϕ, x, ξ)) ∈ OPSm

is still a pseudo-differential operator of the same order of P0 with just a sym-
bol ∂ϕc less regular in ϕ. The loss of regularity for ∂ϕc may be compensated
by the usual Nash–Moser smoothing procedure in ϕ. This is the reason why
we require that the diagonal remainder R ∈ OPS0 is just of order zero.

On the other hand, the off-diagonal term QM ∈ OPS−M evolves,
under the flow Φ(ϕ, t), according to the “skew-Heisenberg” equation ob-
tained replacing in (2.33) the commutator with the skew-commutator. As
a consequence, the symbol of Q+

M := Φ(ϕ)QMΦ(ϕ)−1 assumes the form

eia(ϕ,x)
√

|ξ|q(ϕ, x, ξ), where q(ϕ, x, ξ) ∈ S−M is a classical symbol (actually
we do not prove it explicitly because it is not needed). Thus, the action of
each ∂ϕ on Q+

M produces an operator which loses |D| 1
2 derivatives in space

more than QM . This is why we have performed previously a large number
M of regularizing steps for the off-diagonal components Q.

2.3.5. Space reduction of the order |D|1/2. Finally, we eliminate the x-
dependence of the coefficient in front of |D| 1

2 in the operator L(1)
M in (2.35),

conjugating L(1)
M by a matrix-valued multiplication operator of the form

V :=
(

V 0
0 V

)

, V := Op(v), v := v(ϕ, x, ξ) ∈ S0.

Choosing properly the function v(ϕ, x), one finally gets

L(2)
M := ω·∂ϕI2+im3T(D)+im1Σ|D| 1

2 +R(2)
M +Q(2)

M , where Σ :=
(

1 0
0 −1

)

(2.37)
which has the form stated in (2.20). We remark that all the previous trans-
formations are real, even, and reversibility-preserving, so that L(2)

M is real,
even and reversible.
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2.3.6. KAM-reducibility scheme. We are now in position to apply an it-
erative quadratic scheme to reduce the size of the terms R(2)

M and Q(2)
M (if

possible). Let us explain the main idea. Consider a linear real, even, and
reversible operator acting on H⊥

S0
,

L = ω ·∂ϕI
⊥
2 + D + εP, (2.38)

with diagonal part (with respect to the exponential basis)

D =
(

iΛ 0
0 −iΛ

)

, Λ = diagj(μj), μj = m3
√

j(1 + κj2) + m1j
1
2 + rj ,

sup
j

|rj | = O(ε)

with rj ∈ R (at the first step, μj = m3
√

j(1 + κj2) + m1j
1
2 by (2.37)), and a

bounded perturbation

P =
(

P1 P2

P 2 P 1

)

.

Transform L under the flow Φ(ϕ, τ) generated by a linear system

∂τ

(
u
ū

)

= εW(ϕ)
(

u
ū

)

where W(ϕ) =
(

W1 W2

W 2 W 1

)

is a bounded map, to be determined. The conjugated operator L(τ) = Φ(ϕ, τ)
LΦ(ϕ, τ)−1 solves as usual the vector Heisenberg equation

{
∂τL(τ) = [εW(ϕ),L(τ)]
L(0) = L = ω · ∂ϕ + D + εP.

This time, we expand L(1) in power of ε (Lie series)

L(1) = L(0) + [εW(ϕ),L(0)] + O(ε2)

= ω · ∂ϕ + D + ε {P + ω · ∂ϕW(ϕ) + [W,D]} + O(ε2).

The goal is to eliminate the ε-term ω · ∂ϕW(ϕ) + [W,D] + P (if possible).
This amounts to solve

ω · ∂ϕW1(ϕ) + i(W1(ϕ)Λ − ΛW1(ϕ)) + P1(ϕ) = [[P1(ϕ)]]

ω · ∂ϕW2(ϕ) + i(W2(ϕ)Λ + ΛW2(ϕ)) + P2(ϕ) = 0,

where [[P1(ϕ)]] := diag([P1(ϕ)]jj). Expanding in Fourier series Wi(ϕ) =
∑

�∈Zν

Wi()ei�·ϕ and Pi(ϕ) =
∑

�∈Zν Pi()ei�·ϕ, i = 1, 2, we are led to the following
equations:

iω · W1() + i(W1()Λ − ΛW1()) + P1() = [[P1()]]

iω · W2() + i(W2()Λ + ΛW1()) + P2() = 0.

Representing Wi() = ([Wi()]
j
k)j,k∈Z as a matrix, we get the infinitely many

scalar equations

iω · [W1()]
j
k + i[W1()]

j
k(μj − μk) + [P1()]

j
k = [P1()]kj

iω · [W2()]
j
k + i[W2()]

j
k(μj + μk) + [P2()]

j
k = 0.



Vol. 19 (2017) Quasi-periodic water waves 153

These equations admit the solutions

[W1()]
j
k =

[P1()]
j
k

i(ω ·  + μj − μk)

∀(, j, k) �= (0, j, j), [W2()]
j
k =

[P2()]
j
k

i(ω ·  + μj + μk)
, ∀(, j, k)

if the corresponding denominators do not vanish. Note that since we look for
solutions even in x and the eigenvalues μj are simple, μj − μk �= 0 for j �= k
(we could expand on the cos(jx) basis so that j, k ∈ N

+). We actually require
a quantitative lower bound for the denominators, as

|ω ·  + μj − μk| ≥ |j3/2 − k3/2|
γ〈〉τ

, |ω ·  + μj + μk| ≥ |j3/2 + k3/2|
γ〈〉τ

.

These conditions are called the second-order Melnikov non-resonance con-
ditions and appear in the Cantor set (2.14). After this conjugation step,
we have obtained a linear operator of the same form (2.38), but with a
smaller O(ε2) perturbation and a new diagonal part corrected by the ma-
trix [[P1(0)]] = diag[P1(0)]jj . Since P is reversible, then [P1(0)]jj are purely
imaginary. To apply the above classical KAM reducibility scheme to the op-
erator L(2)

M in (2.37), a difficulty is that the remainders R(2)
M , Q(2)

M just satisfy
tame estimates. For technical details of the proof, we refer to [7]. Here, we
just mention that for the convergence, we need the tame conditions (2.21).
In conclusion, the operator L(2)

M defined in (2.37) may be conjugated to a
diagonal operator of the form

ω ·∂ϕI
⊥
2 + iD∞, D∞ =

(
iΛ∞ 0
0 −iΛ∞

)

,

with

Λ∞ = diagj(μ
∞
j ), μ∞

j = m3
√

j(1 + κj2) + m1j
1
2 + r∞

j , sup
j

r∞
j = O(ε).

It is then sufficient to require the first-order Melnikov conditions

|ω ·  + μ∞
j | ≥ 2γj

3
2 〈〉−τ , ∀ ∈ Z

ν , j ∈ N \ S
+

to prove the invertibility of the diagonal operators ω ·∂ϕI
⊥
2 + iD∞. These

conditions appear in (2.14).
Since all the transformations that we have performed above are bounded

map between Sobolev spaces, we get the required tame estimates for the
inverse.

After the above analysis of the linearized operator, a differentiable Nash–
Moser iterative scheme constructs a sequence of better and better approxi-
mate solutions of (2.9), finally proving Theorem 2.1.
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